Variations in “rescuability” of immunoglobulin molecules from different forms of human lymphoma: implications for anti-idiotype vaccine development

Mercedes Rodríguez-Calvillo, Susana Inogés, Ascensión López-Díaz de Cerio, Natalia Zabalegui, Helena Villanueva, Maurizio Bendandi*

Cell Therapy Area, Department of Hematology, University Clinic of Navarre and the Foundation for Applied Medical Research, Avda. Pío XII, 36-11008 Pamplona, Spain

Accepted 25 May 2004

Abstract

Idiotype (Id) vaccination has shown promising results in patients with follicular lymphoma (FL). However, it still remains unclear whether the same approach might be suitable for the treatment of other B-cell malignancies. For this reason, we recently performed an interim analysis of patients proposed to receive this treatment at our center.

The feasibility of employing idiotype vaccines was evaluated for five different B-cell malignancies in their first relapse, both in terms of induction and fusion, as well as overall treatment. Our data suggest that, unlike follicular lymphoma (87%), this approach is not feasible to treat other B-cell malignancies (0–20%) such as mantle cell, small lymphocytic, diffuse large cell and Burkitt’s lymphoma (P < 0.01). The main difficulties encountered were technical problems related to the survival of idiotype-producing hybridomas (83%) and the early loss of idiotype production by growing hybridomas (17%).

However, it remains possible that an idiotype vaccine might still be produced through molecular means for most, if not all cases of relapsing B-cell malignancies.

© 2004 Elsevier Ireland Ltd. All rights reserved.

Keywords: Idiotype vaccine; Feasibility; B-cell malignancies; Hybridoma; Recombinant technology; bcl-2; PCR

1. Introduction

Currently, two ongoing phase-III clinical trials enrolling newly diagnosed patients are evaluating the use of idiotypic (Id) vaccination to treat follicular lymphoma (FL) [1,2].
Through these studies, the clinical development of this treat-
ment will approach its final stages should the benefit to pa-
tients be demonstrated. However, for this critical step to be
reached, it was first necessary to demonstrate that idiotypic
determinants present in the immunoglobulin borne by FL
cells can serve both as a tumor- and patient-specific antigen
(Fig. 1; [3,4]). Subsequently, it was shown that immuniza-
tion of FL patients against such a self-antigen was possible
[5] and induced an idiotype-specific, humoral
[5–8] and cel-
lar [6,7,9] immune response. Finally, it was demonstrated
that in vivo, vaccine-induced, Id-specific immune responses
can kill FL cells that have survived standard chemotherapy
(CHT; [7,8]). However, even in the event that one or both of the ongoing
clinical trials prove successful, a number of important ques-
tions will still remain unanswered. In particular, neither trial
will determine whether Id vaccines might be applicable to
most if not all relapsed FL and/or other B-cell malignancies.
Indeed, the feasibility of using the Id vaccine ultimately de-
pends not only on the capacity to accurately reproduce the
very same immunoglobulin ex vivo, including the unique
tumor-specific Id, but also on the ability to do so both in a
safe manner and in immunotherapeutic quantities.

2. Soluble protein idiotype vaccine production

Nowadays, Id vaccines for B-cell malignancies can be
divided into two major groups: those based on the whole
immunoglobulin as a soluble protein and those based on
the DNA sequences encoding both of the immunoglobulin’s
variable regions (Fig. 1). Here, we shall center on the pro-
duction of soluble protein, since an extensive discussion of
the whole recombinant immunoglobulin in vitro, including the unique
tumor-specific Id, but also on the ability to do so both in a
safe manner and in immunotherapeutic quantities.

![Diagram of idiotype localization](image)

Fig. 1. Schematic representation of idiotype localization within the monomeric immunoglobulin. Abbreviations: V: variable region; C: con-
stant region; H: heavy chain; L: light chain.

should be noted that DNA-based Id vaccines [10–14] are at
an early stage in their development as clinical tools and de-
serve to be paid plenty of attention. Indeed, should they ulti-
ately produce results comparable to those of protein-based
formulations, they might present a number of potential lo-
gistical advantages.

As far as the Id vaccines based on the whole immunoglob-
ulin as a soluble protein are concerned, there are two en-
tirely different methods to obtain them. The more estab-
lished strategy is based on the use of “rescue” fusions (i.e.: the production of hybridomas), while the newer option is
based on recombinant technology. This disregards the op-
tion of affinity chromatography purification of a pathologi-
cally circulating paraprotein (Fig. 2), which is inapplicable
to non-Hodgkin’s lymphoma (NHL).

Again, an extensive description of the recombinant
technology used to produce the soluble protein falls out-
side the scope of this review for a number of reasons.
Firstly, because all such methods currently under inves-
tigation contain a number of steps that remain unpub-
lished due to patent-related issues. Secondly, because
our own experience with them is still relatively recent,
making it difficult to reach firm conclusions. However,
in terms of the fundamental aspects of this approach, a
relatively small number of tumor cells can be used to re-
veal the complete genetic sequence corresponding to both
variable regions of the tumor-specific, Id-containing im-
munoglobulin. Subsequently, these sequences are inserted
into especially designed vectors together with non-specific
heavy and light chain constant region sequences to ex-
press the whole recombinant immunoglobulin in vitro
[1.15].

The hybridoma-based methodology used to rescue
tumor-specific, Id-containing whole immunoglobulins
(Fig. 2) has been responsible for all the Id vaccine-related
achievements over the last fifteen years, as outlined above. A
large number of tumor cells are required for the fusion with a
purposely-selected cell line (KOH6/B5, i.e. ATCC CRL
1823) according to the published methods [16]. Among
the several hybridomas grown (Fig. 3), one is ultimately
selected according to a number of morphological, genetic,
immunological and quantitative features. In particular,
the growth of the hybridoma should be relatively fast, and as a
single colony to prevent the risk of later discovering that the
proliferating cells are not clonal (Fig. 3A). Moreover, the
hybridoma molecular fingerprint must fully overlap with
that of the corresponding tumor cell to ensure complete
identity between the tumor-specific Id and that synthesized
by the hybridoma [17]. Furthermore, the hybridoma must
indeed secrete an immunoglobulin as determined by stan-
dard ELISA. Finally, sufficient immunoglobulin must be
secreted by the hybridoma to guarantee enough material
can be obtained for all the vaccine doses as well as the
post-vaccine immunological tests.

Whichever the method used, the Id-containing im-
munoglobulin is subsequently converted into the tumor-and
Fig. 2. Flow chart of idiotype vaccine production for B-cell malignancies. The dotted lines refer to the rescue of the idiotype-containing immunoglobulin for B-cell malignancies with a circulating M component. The continuous lines refer to the same rescue carried out by the hybridoma technique for B-cell malignancies with no circulating paraprotein.

Fig. 3. Schematic representation of the content of individual wells within a 96-well plate 2–3 weeks after a successful hybridoma production. (A) Well containing a clonal, rapidly-growing hybridoma colony. (B) Well containing more than one independent colony of growing hybridomas. (C) Well containing a clonal, slowly-growing hybridoma colony. Of course, wells featuring a combination of these characteristics are also frequently observed.

patient-specific, and therefore custom-made, vaccine through conjugation with a carrier such as KLH and the concomitant administration of an immunological adjuvant such as GM-CSF [2].

3. Potential pitfalls

There are still some potential pitfalls that affect both methods currently in use to produce soluble protein Id vaccines. While some of these pitfalls are common to both techniques, others are particular to one or the other, either being scientific or logistic in nature. However, the most important pitfall is still the feasibility of generating the vaccine in the broadest sense.

In FL, it is reasonable to assume that Id vaccine generation is feasible in about 80% of cases using hybridoma technology and in about 95% of cases using recombinant technology. In other NHLs, these figures remain to be determined, although some insights into this problem will be presented...
The Id vaccine treatment was considered unfeasible when the salvage therapy did not induce an adequate response to proceed with Id vaccination (induction treatment-related), when insufficient idiotypic was generated to make the vaccine (fusion-related), or overall. All patients received the CHT regime in use at our institution for their respective disease at that time of first relapse. Following their respective protocols, patients with FL, mantle cell lymphoma (MCL) and small lymphocytic lymphoma (SLL), received Id vaccination if they achieved either a complete (CR) or partial (PR) response according to standard clinical criteria. Patients with either diffuse large cell lymphoma (DLCL) or Burkitt’s lymphoma (BL) received Id vaccination only if they achieved a clinical CR. Indeed, given the very different prognostic meaning of CR and PR in either indolent or aggressive NHL, Id vaccination was proposed as further treatment for eligible patients with indolent lymphoma and as active immunotherapy-based maintenance treatment for patients with aggressive NHL. Finally, fusion-related feasibility was evaluated by taking into consideration both of the potential causes of failure: short hybridoma survival and loss of Id production.

In total, 34 patients were enrolled in the study and all of them were evaluated on an intention-to-treat basis. Fifteen patients had FL, 10 had indolent lymphoma other than FL and 9 had aggressive NHL. In terms of the feasibility of induction, we found a substantial difference between indolent (80–100%) and aggressive (40–50%) NHL subtypes. However, the data were only striking because they referred to very different eligibility criteria for Id vaccination following CHT. In fact, the overall response (OR) to induction treatment for aggressive NHL reached 75–80% (CR + PR), but in this group only patients achieving CR were considered eligible to receive Id vaccination.

A far more important restriction on treatment was the production of the Id-secreting hybridoma. Despite plating a comparable number of 96-well plates in all cases, important differences were found between patients with FL and those with any other NHL studied. Specifically, while most FL cases were characterized by a successful fusion at the first attempt, the other NHL cases required as many as five attempts, irrespective of the ultimate outcome of Id production. Similarly, in most FL cases the average number of successful fusions per 96-well plate was well above 15. In contrast, the number for most if not all the other NHL cases was typically less than five. All the differences between FL cases and those of all other NHL cases, in terms of fusion-related and overall feasibility, as well as those of both indolent and aggressive lymphoma, were statistically significant.

It is also noteworthy that both the fusion-related and the overall feasibility of the Id vaccine treatment for FL in first relapse were comparable with those already described for both newly diagnosed and relapsed patients with the same disease [6,7]. In our series, one FL patient experienced both pre-vaccine disease progression and failure to produce an Id vaccine. Furthermore, no differences in induction treatment-, fusion-related and overall Id vaccine feasibility were observed among the FL cases analyzed with respect to their histological grade [19].

Finally, the main cause for the failure to produce Id vaccine was the poor survival of the hybridoma (15/18 cases), which accounted for 100% of failures in aggressive lymphoma (9/9 cases). Loss of Id secretion by growing hybridomas accounted for only 3/18 cases of failure to produce Id vaccine. Interestingly, the Id vaccine production success rate was substantially lower in cases of MCL, in contrast to what was initially described with the very same
of aggressive, highly undifferentiated but still bcl-2 positive and confirmed diagnosis. The relapse involved a rare form of any vaccine trial, a 33-year-old woman with bcl-2 positive and better than that of most NHLs when the two cell types are fused together. However, in relation to this, another anecdotal finding may be of some importance. Independently of any vaccine trial, a 33-year-old woman with bcl-2 positive FL suffered a relapse two years after the first review and confirmed diagnosis. The relapse involved a rare form of aggressive, highly undifferentiated but still bcl-2 positive NHL, secondary DLCL. Since we had frozen single cell suspensions of both the diagnosis and relapse tumor, an attempt was made to produce hybridomas from both samples. As might have been predicted, most FL-derived, long-term-growth and Id-secreting hybridomas were bcl-2 positive and all of these bcl-2 positive hybridomas maintained the K6H6/B5-derived, bcl-2/IgH rearrangement. Interestingly, all bcl-2 positive hybridomas maintained the K6H6/B5-derived, bcl-2/IgH rearrangement. Consequently, most undifferentiated NHL-derived, Id-secreting hybridomas that showed long-term growth were also bcl-2 positive. Nevertheless, all of these hybridomas retained the tumor-derived, bcl-2/IgH rearrangement in detriment of that derived from the K6H6/B5 fusion partner. In terms of clinical outcome, the patient died four months after relapse due to the impressively disseminated, high-dose CHT-resistant NHL.

To complete the picture of the feasibility of producing Id vaccines for aggressive NHL, it seems reasonable to underline that investigators exploiting recombinant technology have so far not reported problems in what is the most advanced trial in this area to date [22].

5. Conclusions

On the assumption that the ongoing, phase-III clinical trials on idiotypic vaccination for newly-diagnosed FL will successfully demonstrate that Id vaccines produce clinical benefits, it is reasonable to expect an increase in the interest in such immunotherapeutic strategies for both newly-diagnosed and relapsed FL, as well as for other B-cell malignancies. Our data suggest that, in the vast majority of cases, the feasibility of idiotypic vaccination for patients with first-relapse B-cell malignancies strictly depends on the ultimate capacity to produce a viable Id vaccine, rather than on the probability of inducing a clinical response suitable for subsequent idiotypic vaccination. In this respect, first-relapse FL clearly appears more suitable for hybridoma-based Id vaccine production than any other first-relapse NHL subtype tested in our laboratory.

As the same fusion partner (K6H6/B5) was used with all the different malignant B-cell tumor cells [16], these results seem to imply that B-cells other than those constituting FL clonal populations are less prone to originate suitable hybridomas with the same fusion method utilized for FL Id vaccine production. This conclusion is further supported by the fact that only one fusion attempt was required in most FL cases, as opposed to the other NHL subtypes where the pre-established, arbitrary, five-attempt cut-off, was reached in most instances, irrespective of the ultimate Id vaccine production outcome. Furthermore, the number of successful

Fig. 4. Nucleotide sequence of the K6H6/B5-specific bcl-2/IgH rearrangement.
fusions with viable hybridomas was also strikingly superior in FL cases when compared to that of any other NHL subtypes. Similarly, the most frequent cause of failure was the short survival of Id-secretting hybridomas, only occasionally observed for FL hybridomas. This phenomenon might imply that the most crucial step in this strategy for producing Id vaccine is the biological stabilization of an Id-secreting hybridoma. This is a problem that, per se, is not easily surmountable when dealing with rescue fusions and might even accelerate the transition towards recombinant technologies.

Finally, at the time of writing it is not clear whether the recent identification of acquired, potential glycosylation sites within the amino acid sequences of tumor-specific immunoglobulins [25–27] may have an impact on either idiotypic vaccination as a whole or the choice of the methods by which the Id-containing immunoglobulin is rescued.

Acknowledgements

Supported in part by: FIMA (agreement between FIMA and UTE), FIS Ministerio de Salud, RTIC Cancer C03/10 (Madrid, Spain), Departamento de Educación y Cultura del Gobierno de Navarra (Pamplona, Spain), PIUNA (Pamplona, Spain), Ruzic Research Foundation (Beverly Shores, IN, USA). Mauricio Bendandi is a Leukemia and Lymphoma Society Scholar in Clinical Research.

References

Biography

Maurizio Bendandi, M.D., Ph.D. is currently associate professor of hematology at the University of Navarre Medical School. He is the Head of the Immunotherapy Lab in the Cell Therapy Area at the University Clinic of Navarre, and a Scholar in Clinical Research of the Leukemia and Lymphoma Society. He obtained his MD at the University of Bologna and his Ph.D. at the “Tor Vergata” University of Rome, after spending several years as a Visiting Fellow at the National Cancer Institute of Bethesda.