Finance II (Dirección Financiera II)
Apuntes del Material Docente

Szabolcs István Blazsek-Ayala

Table of contents

Fixed-income securities..1
Derivatives..27
A note on traditional return and log return.............................78
Financial statements, financial ratios......................................80
Company valuation...100
Coca-Cola DCF valuation...135
A bond is a security that is issued in connection with a borrowing arrangement. The borrower issues (i.e. sells) a bond to the lender for some amount of cash. The arrangement obliges the issuer to make specified payments to the bondholder on specified dates.

A typical bond obliges the issuer to make semiannual payments of interest to the bondholder for the life of the bond. These are called coupon payments. Most bonds have coupons that investors would clip off and present to claim the interest payment.

When the bond matures, the issuer repays the debt by paying the bondholder the bond’s par value (or face value). The coupon rate of the bond serves to determine the interest payment: The annual payment is the coupon rate times the bond’s par value.

The contract between the issuer and the bondholder contains:
1. Coupon rate
2. Maturity date
3. Par value

A bond with par value EUR1000 and coupon rate of 8%. The bondholder is then entitled to a payment of 8% of EUR1000, or EUR80 per year, for the stated life of the bond, 30 years. The EUR80 payment typically comes in two semiannual installments of EUR40 each. At the end of the 30-year life of the bond, the issuer also pays the EUR1000 value to the bondholder.
Zero-coupon bonds

- These are bonds with no coupon payments.
- Investors receive par value at the maturity date but receive no interest payments until then.
- The bond has a coupon rate of zero percent.
- These bonds are issued at prices considerably below par value, and the investor’s return comes solely from the difference between issue price and the payment of par value at maturity.

Treasury bonds, notes and bills

- The U.S. government finances its public budget by issuing public fixed-income securities.
- The maturity of the treasury bond is from 10 to 30 years.
- The maturity of the treasury note is from 1 to 10 years.
- The maturity of the treasury bill (T-bill) is up to 1 year.

Corporate bonds

Like the governments, corporations borrow money by issuing bonds.
- Although some corporate bonds are traded at organized markets, most bonds are traded over-the-counter in a computer network of bond dealers.
- As a general rule, safer bonds with higher ratings promise lower yields to maturity than more risky bonds.

Corporate bonds

- The are several types of corporate bonds related to the specific characteristics of the bond contract:
 1. Call provisions on corporate bonds
 2. Puttable bonds
 3. Convertible bonds
 4. Floating-rate bonds

1. Call provisions on corporate bonds

- Some corporate bonds are issued with call provisions allowing the issuer to repurchase the bond at a specified call price before the maturity date.
- For example, if a company issues a bond with a high coupon rate when market interest rates are high, and interest rates later fall, the firm might like to retire the high-coupon debt and issue new bonds at a lower coupon rate. This is called refunding.

1. Call provisions on corporate bonds

- Callable bonds are typically come with a period of call protection, an initial time during which the bonds are not callable.
- Such bonds are referred to as deferred callable bonds.
2. Puttable bonds
- While the callable bond gives the issuer the option to retire the bond at the call date, the **put bond** gives this option to the bondholder.

3. Convertible bonds
- Convertible bonds give bondholders an option to exchange each bond for a specified number of shares of common stock of the firm.
- The **conversion ratio** is the number of shares for which each bond may be exchanged.

3. Convertible bonds
- The **market conversion value** is the current value of the shares for which the bonds may be exchanged.
- The **conversion premium** is the excess of the bond value over its conversion value.
- **Example**: If the bond were selling currently for EUR950 and its conversion value is EUR800, its premium would be EUR150.

4. Floating-rate bonds
- These bonds make interest payments that are tied to some measure of current market rates.
- For example, the rate can be adjusted annually to the current T-bill rate plus 2%.

Other specific bonds
- Other bonds (or bond-like assets) traded on the market:
 1. **Preferred stock**
 2. **International bond**
 3. **Bond innovations**

1. Preferred stock
- Although the preferred stock strictly speaking is considered to be equity, it can be also considered as a bond.
- The reason is that a preferred stock promises to pay a specified stream of dividends.
- Preferred stocks commonly pay a fixed dividend.
- Therefore, it is in effect a perpetuity.
1. Preferred stock
- In the last two decades, floating-rate preferred stocks have become popular.
- Floating-rate preferred stock is much like a floating-rate bond:
- The dividend rate is linked to a measure of current market interest rates and is adjusted at regular intervals.

2. International bonds
- International bonds are commonly divided into two categories:
 2a. Foreign bonds
 2b. Eurobonds

2a. International bonds
Foreign bonds
- Foreign bonds are issued by a borrower from a country other than the one in which the bond is sold.
- The bond is denominated in the currency of the country in which it is marketed.
- For example, a German firm sells a dollar-denominated bond in the U.S., the bond is considered as a foreign bond.

2b. International bonds
Eurobonds
- Eurobonds are bonds issued in the currency of one country but sold in other national markets.
 1. The Eurodollar market refers to dollar-denominated Eurobonds sold outside the U.S..
 2. The Euroyen bonds are yen-denominated Eurobonds sold outside Japan.
 3. The Eurosterling bonds are pound-denominated Eurobonds sold outside the U.K..

Innovations in the bond market
- Issuers constantly develop innovative bonds with unusual features. Some of these bonds are:
 1. Inverse floaters
 2. Asset-backed bonds
 3. Catastrophe bonds
 4. Indexed bonds
1. Inverse floaters

- These are similar to the floating-rate bonds except that the coupon rate on these bonds falls when the general level of interest rates rises.
- Investors suffer doubly when rates rise:
 1. The present value of the future bond payments decreases.
 2. The level of the future bond payments decreases.
- Investors benefit doubly when rates fall.

2. Asset-backed bonds

- In asset-backed securities, the income from a specific group of assets is used to service the debt.
- For example, Dawid Bowie bonds have been issued with payments that will be tied to the royalties on some of his albums.

2. Mortgage-backed bonds

- Another example of asset-backed bonds is mortgage-backed security, which is either an ownership claim in a pool of mortgages or an obligation that is secured by such a pool.
- These claims represent securitization of mortgage loans.
- Mortgage lenders originate loans and then sell packages of these loans in the secondary market.

2. Mortgage-backed bonds

- The mortgage originator continues to service the loan, collecting principal and interest payments, and passes these payments to the purchaser of the mortgage.
- For this reason, mortgage-backed securities are called pass-throughs.

3. Catastrophe bonds

- Catastrophe bonds are a way to transfer catastrophe risk from a firm to the market.
- For example, Tokyo Disneyland issued a bond with a final payment that depended on whether there has been an earthquake near the park.

4. Indexed bonds

- Indexed bonds make payments that are tied to a general price index or the price of a particular commodity.
- For example, Mexico issued 20-year bonds with payments that depend on the price of oil.
- The U.S. Treasury issued inflation protected bonds in 1997. (Treasury Inflation Protected Securities, TIPS)
- For TIPS, the coupon and final payment is related to the consumer price index.
BOND PRICING

Bond pricing
• Because a bond’s coupon and principal repayments all occur in the future, the price an investor would be willing to pay for a claim to those payments depends on the value of dollars to be received in the future compared to dollars in hand today.
• This present value calculation depends on the market interest rates.

Bond pricing
• First, we simplify the present value calculation by assuming that there is one interest rate that is appropriate for discounting cash flows of any maturity.
• Later we can relax this assumption easily.
• In practice, there may be different discount rates for cash flows accruing in different periods.

Bond pricing
• To value a security, we discount its expected cash flows by the appropriate discount rate.
• The cash flows from a bond consist of coupon payments until the maturity date plus the final payment of par value.
• Therefore,
 \[
 \text{Bond value} = \text{Present value of coupons} + \text{Present value of par value}
 \]

Bond pricing
• Let \(r \) denote the interest rate and \(T \) the maturity date of the bond. Then, the value of the bond is given by:

 \[
 \text{Bond value} = \sum_{t=1}^{T} \frac{\text{Coupon}}{(1+r)^t} + \frac{\text{Par value}}{(1+r)^T}
 \]

Bond pricing
• Notice that the bond pays a \(T \)-year annuity of coupons and a single payment of par value at year \(T \).
• Therefore, it is useful to introduce the annuity factor (AF) and the discount factor (DF).
Annuity factor

- The **T-year annuity factor** is used to compute the present value of a T-year annuity:

 \[T \text{-period annuity factor} = AF(r, T) = \frac{1}{r} \left[1 - \frac{1}{(1+r)^T} \right] \]

- Notice that AF is a function of the interest rate, \(r \) and the time period of the annuity, \(T \).

Discount factor

- The **discount factor for period** \(t \) is used to compute the present value of a cash flow of year \(t \):

 \[\text{Discount factor of period } t = DF(r, t) = \frac{1}{(1 + r)^t} \]

- Notice that DF is a function of the interest rate, \(r \) and the time of the cash flow payment, \(t \).

Bond pricing

- We can rewrite the previous bond pricing formula using the AF and DF as follows:

 Bond value = Coupon \times AF(r, T) + \text{Par value} \times DF(r, T)

- **Example**: We consider a 30-year bond with par value 100 and coupon rate 8%.

 In the following figure, we present the value of this bond as a function of the interest rate, \(r \).

Bond pricing: Perpetuities

- The value of a **perpetuity** paying \(C \) forever with yield \(y \) at time \(t=0 \) is

 \[P = \frac{C}{y} \]

 where the bond pays the following cash flows:

 \[
 \begin{array}{cccccc}
 t=0 & t=1 & t=2 & t=3 & t=4 & \ldots \\
 0 & C & C & C & C & \ldots \\
 \end{array}
 \]

- We can prove this formula easily: Use that

 \[a + ab + ab^2 + ab^3 + \ldots = a(1-b) \]

 when \(|b|<1 \).
Bond pricing: Perpetuities

- The value of a growing perpetuity paying \(C_{t+1} = (1 + g)C_t \) with yield \(y \) and \(g<y \) at time \(t=0 \) is
\[
P = \frac{C_1}{(y-g)}
\]
where the bond pays the following cash flows:

\[
\begin{align*}
0 & \quad C_1 \quad C_2 \quad C_3 \quad C_4 \quad \ldots \\
\end{align*}
\]

- We can prove this formula easily: Use that
\[
a + ab + ab^2 + ab^3 + \ldots = a(1-b)
\]
when \(|b|<1 \).

Bond pricing: Annuity

- We prove that the price of the following annuity with yield \(y \) at time \(t=0 \)
\[
\begin{align*}
t=0 & \quad t=1 \quad t=2 \quad \ldots \quad t=n \quad t=n+1 \quad t=n+2 \ldots \\
0 & \quad C \quad C \quad \ldots \quad C \quad 0 \quad 0 \quad \ldots
\end{align*}
\]
is
\[
P = \frac{C}{y} \left[\frac{1}{(1+y)^n} \right]
\]

Bond pricing: Annuity

- In the proof, one uses the fact that the cash flow of the annuity is the difference of the following two perpetuities:
\[
\begin{align*}
t=0 & \quad t=1 \quad \ldots \quad t=n \quad t=n+1 \quad t=n+2 \quad \ldots \\
0 & \quad C \quad \ldots \quad C \quad C \quad C \quad \ldots \\
0 & \quad 0 \quad \ldots \quad 0 \quad C \quad C \quad \ldots
\end{align*}
\]
- Compute the price of both perpetuities and take the difference of the two prices to get the price of the annuity.

Bond pricing: Annuity

- In the proof, one uses the fact that the cash flow of the annuity is the difference of the following two perpetuities:
\[
\begin{align*}
t=0 & \quad t=1 \quad \ldots \quad t=n \quad t=n+1 \quad t=n+2 \quad \ldots \\
0 & \quad C \quad \ldots \quad C \quad C \quad C \quad \ldots \\
0 & \quad 0 \quad \ldots \quad 0 \quad C \quad C \quad \ldots
\end{align*}
\]
- Compute the price of both perpetuities and take the difference of the two prices to get the price of the annuity.

Quoted bond prices

- In the newspapers, there are two prices presented for each bond:
 - The bid price at which one can sell the bond to a dealer.
 - The asked price is the price at which one can buy the bond from a dealer.
- The asked price is higher than the bid price.

Accrued interest and quoted bond prices

- The bond prices presented in the newspaper are not actually the prices that investors pay for the bond.
- The prices which appear in financial press are called flat prices.
- This is because the quoted price does not include the interest that accrues between coupon payment dates.
Accrued interest and quoted bond prices

- The actual invoice price that the buyer pays for the bond includes accrued interest:

\[
\text{Invoice price} = \text{Flat price} + \text{Accrued interest}
\]

Accrued interest and quoted bond prices

- If a bond is purchased between coupon payments, the buyer must pay the seller for accrued interest, the prorated share of the upcoming semiannual coupon.

Example: If 30 days have passed since the last coupon payment, and there are 182 days in the semiannual coupon period, the seller is entitled to a payment of accrued interest of 30/182 of the semiannual coupon.

Accrued interest and quoted bond prices

- In general, the formula for the amount of accrued interest between two dates of the semiannual payment is

\[
\text{Accrued interest} = \left(\frac{\text{Annual coupon payment}}{2} \right) \times \left(\frac{\text{Days since last coupon payment}}{\text{Days separating coupon payments}} \right)
\]

Bond yields

Yield to maturity

- In practice, an investor considering the purchase of a bond is not quoted a promised rate of return.
- Instead, the investor must use the bond price, maturity date, and coupon payments to infer the return offered by the bond over its life.
- The yield to maturity (YTM) is defined as the interest rate that makes the present value of a bond’s payments equal to its price.
Yield to maturity

- The calculate the YTM, we solve the bond price equation for the interest rate given the bond’s price.
- The following YIELD(·) or RENDTO(·) function can be used in English and Spanish language Excel, respectively, to compute the yield to maturity:

YIELD(settlement, maturity, rate, pr, redemption, frequency [,basis])
- settlement: The settlement date of the security.
- maturity: The maturity date of the security.
- rate: The annual coupon rate of the security.
- pr: The price per $100 face value.
- redemption: The security’s redemption value per $100 face value.
- frequency: The number of coupon payments per year:
 - 1 = annual
 - 2 = semi-annual
 - 4 = quarterly
- basis: The type of day counting to use.
 - 0 = US 30/360
 - 1 = Actual/Actual
 - 2 = Actual/360
 - 3 = Actual/365
 - 4 = European 30/360

Yield to maturity

- YTM differs from the current yield of the bond, which is the bond’s annual coupon payment divided by the bond price.
- For premium bonds (bonds selling above par value), coupon rate is greater than current yield, which is greater than yield to maturity:
 \[\text{YTM} < \text{Current yield} < \text{Coupon rate} \]

Yield to maturity

- For discount bonds (bonds selling below par value), coupon rate is lower than current yield, which is lower than yield to maturity:
 \[\text{Coupon rate} < \text{Current yield} < \text{YTM} \]

TERM STRUCTURE OF INTEREST RATES

- The term structure of interest rates is represented by the yield curve.
- The yield curve is a plot of yield to maturity (YTM) as a function of time to maturity.
- If yields on different-maturity bonds are not equal, how should we value coupon bonds that make payments at many different times?

TERM STRUCTURE OF INTEREST RATES
TERM STRUCTURE OF INTEREST RATES

- **Example**: Suppose that zero-coupon bonds with 1-year maturity sell at YTM \(y_1 = 5\% \), 2-year zeros sell at YTM \(y_2 = 6\% \) and 3-year zeros sell at YTM \(y_3 = 7\% \).
- Which of these rates should we use to discount bond cash flows?
- **ALL OF THEM**.
- The trick is to consider each bond cash flow – either coupon or par value payment – as a zero-coupon bond.

TERM STRUCTURE OF INTEREST RATES

- **Example** (continued): Price a bond paying the following cash flow:

 \[
 \begin{align*}
 t=1 & \quad 100 \\
 t=2 & \quad 100 \\
 t=3 & \quad 1100 \\
 \end{align*}
 \]

 \[
 \begin{array}{|c|c|c|c|c|}
 \hline
 \text{Period} & \text{Cash flow} & \text{Rate} & \text{DF}(r,t) & \text{Present value} \\
 \hline
 1 & 100 & 5\% & 0.952 & 95.2 \\
 2 & 100 & 6\% & 0.890 & 89.0 \\
 3 & 1100 & 7\% & 0.816 & 897.9 \\
 \hline
 \end{array}
 \]

 Bond value: 1082.2

TERM STRUCTURE OF INTEREST RATES

- **Example** (continued):

 In the previous table, bond value is computed by the following formulas:

 \[
 \text{Bond value} = \frac{100}{(1+y_1)} + \frac{100}{(1+y_2)^2} + \frac{1100}{(1+y_3)^3}
 \]

 \[
 \text{Bond value} = \frac{100}{(1+5\%)} + \frac{100}{(1+6\%)^2} + \frac{1100}{(1+7\%)^3} = 1082.2
 \]

ZERO-COUPOON BONDS

- In the previous example, we used the yields of the zero-coupon bonds to discount future cash flows.
- Zero-coupon bonds are **maybe the most important bonds** because they can be used to build up other bonds with more complicated cash flow structure.
- When the prices of zero-coupon bonds are known, they can be used to **price** more complicated bonds.

SPOT RATE

- Practitioners call the yield to maturity on zero-coupon bonds **spot rate** meaning the rate that prevails today for a time period corresponding to the zero’s maturity.
- We denote the spot rates for the time periods \(t=1,2,\ldots,T \) as follows:
 \[\{y_1,y_2,\ldots,y_T\}\]
- The sequence of the spot rates over \(t=1,\ldots,T \) defines the **SPOT YIELD CURVE**:
 \[\{y_1,y_2,\ldots,y_T\}\]

SHORT RATE

- In contrast, the **short rate** for a given time interval (for example 1 year) refers to the interest rate for that interval available at different points of time of the future.
- We denote the **1-year short rate** for the time period \(t \) as:
 \[r_{1t}\]

 More generally, for time periods \(1 \leq t \leq T \):

 \[\{r_{1t},r_{2t},\ldots,r_{T-1t}\}\]
SHORT RATE AND SPOT RATE

We shall relate the spot and short rates in two alternative situations:
1. Future interest rates are certain.
2. Future interest rates are uncertain.

SHORT AND SPOT RATES: FUTURE RATES ARE CERTAIN

- The spot rates can be computed knowing the short rates because:
 \[
 (1+y_t)^t = (1+r_{t1})(1+r_{t2})\ldots(1+r_{tt})
 \]
- Notice that \(y_1 = 0 \).
- The short rates can be computed knowing the spot rates because:
 \[
 r_{t-1}r_t = \left(\frac{(1+y_t)^t}{(1+y_{t-1})^{t-1}}\right) - 1
 \]
- The assumption in these formulas is that future short rates are known with certainty.

SHORT AND SPOT RATES: FUTURE RATES ARE UNCERTAIN

- However, in reality, future short rates are not known.
- Nevertheless, it is still common to investigate the implications of the yield curve for future interest rates.

FORWARD INTEREST RATE

- Recognizing that future interest rates are uncertain, we call the interest rate that we infer in this manner the forward interest rate or the future short rate, denoted \(f_{t1} \) for period \(t \), because it need not be the interest rate that actually will prevail at the future date.
- The sequence of forward rates for periods \(t=1,\ldots,T \) defines the forward yield curve: \(\{f_{t2:2}, f_{t3:3}, \ldots, f_{TT:T}\} \)

FORWARD INTEREST RATE

- If the 1-year forward rate for period \(t \) is denoted \(f_{t1} \), we then define \(f_{t1} \) by the next equation:
 \[
 f_{t1} = \left[\frac{(1+y_t)^t}{(1+y_{t-1})^{t-1}}\right] - 1
 \]
- Equivalently, we can express the spot rate for period \(t \) using the forward rates as follows:
 \[
 (1+y_t)^t = (1+f_{t1})(1+f_{t2})\ldots(1+f_{tt})
 \]
- Notice that \(f_{t1} = y_t \).
SHORT AND FORWARD INTEREST RATES

- We emphasize that the interest rate that actually will prevail in the future need not equal the forward rate, which is calculated from today’s data.
- Indeed, it is not even necessary the case that the forward rate equals the expected value of the future short rate.

The difference between the forward rate and the future short rate is called liquidity premium. The name comes from the fact that the forward rate determines the interest that long-term investors obtain while short-term investors are more interested in the future short-rate.

In order to relate the future short rates with forward rates, economists worked out several alternative theories. These are called theories of term structure. We will see two alternative theories:

1. Expectation hypothesis
2. Liquidity preference theory

EXPECTATION HYPOTHESIS

- The expectation hypothesis is the simplest theory of term structure.
- It states that the forward rate equals the market consensus expectation of the future short interest rate for all periods t:

\[f_t = E_{t-1}[r_t] \]

LIQUIDITY PREFERENCE

- In this theory, we have two types of investors:
 1. Short-term investors: They prefer to invest for short time horizons.
 2. Long-term investors: They prefer to invest for long time horizons.

- Short-term investors are willing to hold long-term bonds if

\[f_t > E_{t-1}[r_t] \]

- Long-term investors are willing to hold short-term bonds if

\[f_t < E_{t-1}[r_t] \]
LIQUIDITY PREFERENCE

- People who believe in the liquidity preference theory think that short-term investors dominate the market.
- Therefore, in general the forward rate is higher than the future short rate:
 \[t-1, f_t > E[t-1, r_t] \]
- Therefore, the liquidity premium is positive:
 \[\text{Liquidity premium} = t-1, f_t - E[t-1, r_t] > 0 \]

FORWARD RATES AS FORWARD CONTRACTS

- We have seen how the forward rates can be derived from the spot yield curve.
- Why are these forward rates important from practical point of view?
- There is an important sense in which the forward rate is a market interest rate:

Example:
- Suppose the price of 1-year maturity zero-coupon bond with face value EUR1000 is EUR952.38 and
- the price of 2-year zero-coupon bond with face value EUR1000 is EUR890.

FORWARD RATES AS FORWARD CONTRACTS

- In the liquidity preference theory,
 \[\text{Forward rate} = \text{Short rate} + \text{Liquidity premium} \]
- Therefore, the shape of the forward yield curve is determined by two components:
 1. Investors’ expectations about future interest rates (short rate component) and
 2. Investors’ future liquidity premium requirements (liquidity premium component).

FORWARD RATES AS FORWARD CONTRACTS

- Suppose that you wanted to arrange now to make a loan at some future date.
- You would agree today on the interest rate that will be charged, but the loan would not commence until some time in the future.
- How would the interest rate on such a “forward loan” be determined?
- We will show that the interest rate of this forward loan would be the forward rate.

Example:
- We can determine two spot rates and the forward rate for the second period:
 \[
 y_1 = 1000 / 952.38 - 1 = 5% \\
 y_2 = (1000 / 890)^{1/2} - 1 = 6% \\
 f_2 = (1+y_2)^2 / (1+y_1) - 1 = 7.01%
 \]
FORWARD RATES AS
FORWARD CONTRACTS

- Now consider the following strategy:
 1. Buy one unit 1-year zero-coupon bond
 2. Sell 1.0701 unit 2-year zero-coupon bonds

- In the followings, we review the cash flows of this strategy:

FORWARD RATES AS
FORWARD CONTRACTS

- At \(t=0 \), initial cash flow:
 1. Long one one-year zero:
 \(-952.38 \text{ EUR}\)
 2. Short 1.0701 two-year zeros:
 \(+890 \times 1.0701 = 952.38 \text{ EUR}\)

TOTAL cash flow at \(t=0 \):
\[-952.38 + 952.38 = 0\]

FORWARD RATES AS
FORWARD CONTRACTS

- At \(t=1 \), cash flow:
 1. Long one one-year zero:
 \(+1000 \text{ EUR}\)
 2. Short 1.0701 two-year zero:
 \(0 \text{ EUR}\)

TOTAL cash flow at \(t=1 \):
\(+1000 \text{ EUR}\)

FORWARD RATES AS
FORWARD CONTRACTS

- At \(t=2 \), cash flow:
 1. Long one one-year zero:
 \(0 \text{ EUR}\)
 2. Short 1.0701 two-year zero:
 \(-1.0701 \times 1000 \text{ EUR} = -1070.01 \text{ EUR}\)

TOTAL cash flow at \(t=2 \):
\(-1070.01 \text{ EUR}\)

FORWARD RATES AS
FORWARD CONTRACTS

- In summary, we present the total cash flows over the two periods:

\[
t=0 \quad t=1 \quad t=2 \\
0 \text{ EUR} \quad +1000 \text{ EUR} \quad -1070.01 \text{ EUR}
\]

- Thus, we can see that the strategy creates a synthetic “forward loan”: borrowing 1000 at \(t=1 \) and paying 1070.01 at \(t=2 \).

- Notice that the interest rate of this loan is
 \[1070.01/1000 – 1 = 7.01\%
\]
 which is equal to the **forward rate**.

FORWARD RATES AS
FORWARD CONTRACTS

- Therefore, we can synthetically construct a forward loan by buying a shorter maturity zero-coupon bond and short selling a longer maturity zero-coupon bond.

- The interest rate of this forward loan is determined by the forward rate.
We talked about how can we use the values of the spot yield curve in order to discount future cash flows. However, in the reality we do not observe the yield curve. In the real world, we observe:
1. The bid and asked prices of bonds
2. The cash flows of coupon and par value payments of bonds.

It is useful from a practical point of view to estimate the spot yield curve because it helps us to discount cash flows paid at any time in the future. Therefore, given the yield curve we can price any fixed-income financial asset on the market.

In this section, we review a methodology to estimate the spot yield curve given the observed bond prices and future cash flow payments.

We will start with observed data on (1) bid and asked prices, (2) accrued interest and (3) future cash flows of several bonds traded on the market. We also know the exact day of each cash flow payment. In order to estimate the spot yield curve, we proceed as follows:

1. Compute the market price, \(p \) for each bond by the next formula:
 \[
 p = \frac{(\text{Asked price} + \text{Bid price})}{2} + \text{Accrued interest}
 \]
2. To get an estimate of the spot rate, \(y_t \) use the following cubic polynomial approximation of the log-spot rate, \(\ln y_t \):
\[
\ln y_t = a + bt + ct^2 + dt^3
\]
where \(a, b, c \) and \(d \) are the parameters of the cubic polynomial.

Remark 1: We approximate the log-interest rate because we want to avoid sign restrictions on the \(a, b, c \) and \(d \) parameters (as \(y_t \) is positive).

Remark 2: We employ a cubic polynomial approximation because a third-order polynomial can model the yield curve in a very flexible way:
- It can capture various types of increasing / decreasing / convex / concave parts of the yield curve.
- Therefore, the model can be very realistic.

3. Given the parameters, we compute the value of \(y_t \) by taking the exponential of the cubic polynomial.

4. Then, we compute the discount factor for each point of time \(t \) according to the next formula:
\[
DF(t, y_t) = \frac{1}{(1 + y_t)^t}
\]

5. Afterwards, we use the discount factors to compute the present value of future cash flows:
\[
PV(CF_t) = CF_t \times DF(t, y_t)
\]

6. Then, we sum these present values to get an estimate of the bond price:
\[
p^* = \sum_{t=1}^{T} PV(CF_t)
\]
where \(p^* \) is the bond price estimate, \(PV \) denotes present value.

7. Finally, we compute the following measure of estimation precision:
\[
MSE = \frac{1}{N} \sum_{i=1}^{N} (p_i - p_i^*)^2
\]
where MSE is the mean squared error, \(N \) is the number of bonds observed, \(p_i \) is the market price of the \(i \)-th bond and \(p_i^* \) is the estimate of the \(i \)-th bond price.
ESTIMATING THE YIELD CURVE

- How do we choose the values of the parameters?
- We choose parameter values such that the MSE precision measure is minimized.
- The MSE minimization can be done numerically in Excel using the **SOLVER** tool.
- (In Excel use: Tools / Solver or Herramientas / Solver.)

ESTIMATING THE YIELD CURVE

The following figure show the spot yield curve estimate for Hungarian government bond data for the 1997-2002 period:

ESTIMATING THE YIELD CURVE

SPOT YIELD CURVE, y(t)

MANAGING BOND PORTFOLIOS

- We are going to review several topics related to bond portfolio management.
- In particular, we shall see:
 1. Evolution of bond prices over time
 2. Interest rate risk of bonds
 3. Default or credit risk of bonds

EVOLUTION OF BOND PRICES OVER TIME
In this section we are going to be in a dynamic framework. That is we shall analyze the evolution of the bond price over several periods: $t=0,1,2,\ldots,T$.

Future cash flows are fixed in the contract, therefore, they are time invariant. (Supposing that there is no default! In this section, we assume that there is no default risk. We shall see default risk later.) However, the YTM or the yield curve may change over time.

We shall investigate the evolution of bond price under two alternative situations:

1. The YTM and spot yield curve are constant over time (NOT REALISTIC ASSUMPTION but it helps to understand a basic characteristic of the bond price evolution.)
2. The YTM and spot yield curve are change over time (MORE REALISTIC SETUP)

1. YTM and spot yield curve are constant
 - When the market price of a bond is observed over several periods $t=1,\ldots,T$, we find that the price of the bond is converging to its par value.
 - When we have a premium bond then the price of the bond is higher than the par value.
 - Therefore, the bond price is decreasing during its convergence.

1. YTM and spot yield curve are constant
 - On the other hand, when we have a discount bond then the price of the bond is lower than the par value.
 - Therefore, the bond price is increasing during its convergence.
 - The convergence of the bond price to its par value, under constant YTM, can be observed on the following figure:
1. YTM and spot yield curve are constant

2. YTM and spot yield curve are changing

- In the reality, the level of the yield (YTM and spot yield curve) that is used to discount future cash flows is **not constant**.
- As the relation between the changing YTM and the fixed coupon rate may change, bonds may be discount or premium bonds over time.

2. YTM and spot yield curve are changing

- The following figure presents the evolution of bond price over time when YTM is changing over time:

2. YTM and spot yield curve are changing

- We obtained different yield for each period by Monte Carlo simulation from the following AR(1) process of log-return:

 \[\ln r_t = c + \varphi \ln r_{t-1} + \psi u_t \]

 where \(c, \varphi \) and \(\psi \) are parameters and \(u_t \sim N(0,1) \) i.i.d is the error term.

- After simulating \(\ln r_t \) we take the exponential of it to get \(r_t \).
- Note: We model log-return to ensure to the positivity of yield.

2. YTM and spot yield curve are changing

- As the yield is not constant, in some periods the bond value is higher than the par value and in other periods it is lower than the par value.
- However, in the figure we can see the convergence of the bond price to the par value as we approach to maturity.
- In the Excel spreadsheet, you can re-simulate the yield process with alternative parameters using the “F9” button.
INTEREST RATE RISK

From the previous figure we can see that although bonds promise a fixed income payment over time, the actual price of a bond is affected by the level of interest rates.

Therefore, fixed income securities are not risk-free.

Before the time of maturity, their prices are volatile as they are impacted by the changing interest rate.

The sensitivity of bond price to the interest rate is called interest rate risk.

Interest rate risk we only have before maturity because the bond promises a fixed par value payment at maturity.

The only case when the evolution of interest rates is important for the investor is when the investor wants to sell the bond before its maturity time.

If an investor wants to avoid interest rate risk then it is enough to purchase a bond that will be held until the maturity time of the bond.

By doing this, it is not important for the investor how the rates change during the lifetime of the bond.

At maturity time, the investor will receive the fixed par value.

The duration is the weighted average of the times of each coupon payment where the weights, \(w_t \), are

\[
 w_t = \frac{PV(CF)_t}{Bond \ price} = \frac{CF_t/(1+y)^t}{Bond \ price}
\]

where \(y \) is the YTM of the bond and duration is computed as

\[
 Duration = D = \sum_{t=1}^{T} t \times w_t
\]
DURATION

- The duration can be interpreted as the effective average maturity of the bond portfolio.
- The scale of the duration is years.

Remarks about DURATION

(1) The duration of a zero-coupon bond is equal to the maturity of the zero-coupon bond: $D = T$.
(2) The duration of a T-period annuity is:
$$D = \frac{(1+y)/y - T}{[(1+y)^T - 1]}$$
(3) The duration of a perpetuity is
$$D = \frac{1+y}{y}$$
where y is the yield of the annuity and perpetuity in (2) and (3).

MODIFIED DURATION

- The modified duration for any bond is defined as
$$\text{Modified duration} = D^* = \frac{D}{1+y}$$
where y is the YTM of the bond.

MODIFIED DURATION

- Modified duration can be used to compute the interest rate sensitivity of bond prices because:
$$\frac{\partial P}{\partial y} = -D^* P$$
where P is the bond price, y is the YTM.

MODIFIED DURATION

- The modified duration also helps to answer the following more practical question:
 - **Question:** What is the percentage change of the bond price when the interest rate changes by Δy?
 - **Answer:** When the interest rate change is relatively small than the percentage price change is approximately:
$$\frac{\Delta P}{P} \approx -D^* \Delta y$$

MODIFIED DURATION

- **Remark:** Notice that if the duration (or modified duration) of a bond is higher then its interest rate sensitivity will be higher.
- In other words, bonds with longer maturity time are more sensitive to changes of the interest rate.
- In other words, interest rate risk of long maturity bonds is higher than that of short maturity bonds.
CONVEXITY

• The convexity of a bond is defined as

\[
\text{Convexity} = \frac{1}{P(1+y)^2} \sum_{t=1}^{T} \left[\frac{\text{CF}_t}{(1+y)^t} \right] (t^2 + t)
\]

• Convexity is important because it is related to the second derivative of the bond:

\[
\frac{\partial^2 P}{\partial y^2} = \text{Convexity} \times P
\]

CONVEXITY

• In order to present this more clearly, where the “convexity” name comes from, we present the bond price as a function of the interest rate:

<table>
<thead>
<tr>
<th>Interest rate</th>
<th>Bond value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0%</td>
<td>100.0</td>
</tr>
<tr>
<td>0.10%</td>
<td>99.50</td>
</tr>
<tr>
<td>0.20%</td>
<td>99.00</td>
</tr>
<tr>
<td>0.30%</td>
<td>98.50</td>
</tr>
<tr>
<td>0.40%</td>
<td>98.00</td>
</tr>
<tr>
<td>0.50%</td>
<td>97.50</td>
</tr>
<tr>
<td>0.60%</td>
<td>97.00</td>
</tr>
<tr>
<td>0.70%</td>
<td>96.50</td>
</tr>
<tr>
<td>0.80%</td>
<td>96.00</td>
</tr>
<tr>
<td>0.90%</td>
<td>95.50</td>
</tr>
<tr>
<td>1.00%</td>
<td>95.00</td>
</tr>
<tr>
<td>1.10%</td>
<td>94.50</td>
</tr>
<tr>
<td>1.20%</td>
<td>94.00</td>
</tr>
<tr>
<td>1.30%</td>
<td>93.50</td>
</tr>
<tr>
<td>1.40%</td>
<td>93.00</td>
</tr>
<tr>
<td>1.50%</td>
<td>92.50</td>
</tr>
<tr>
<td>1.60%</td>
<td>92.00</td>
</tr>
<tr>
<td>1.70%</td>
<td>91.50</td>
</tr>
<tr>
<td>1.80%</td>
<td>91.00</td>
</tr>
<tr>
<td>1.90%</td>
<td>90.50</td>
</tr>
<tr>
<td>2.00%</td>
<td>90.00</td>
</tr>
</tbody>
</table>

CONVEXITY

• Notice on this figure that the function of bond price, \(P(y) \) is convex.

• This means that the shape of the curve implies that an increase in the interest rate results in a price decline that is smaller than the price gain resulting from a decrease of equal magnitude in the interest rate.

CONVEXITY

• As the \(P(y) \) function is non-linear, the previously discussed

\[
\frac{\Delta P}{P} \approx -D^* \Delta y
\]

formula is only an approximation of the percentage change of the bond price that only applies when the change of the interest rate is small.

CONVEXITY

• A more precise formula takes into account the convexity of the bond as well:

\[
\frac{\Delta P}{P} = -D^* \Delta y + \frac{1}{2} \times \text{Convexity} \times (\Delta y)^2
\]

• This formula applies when the change of the interest rate is large.

• It is also an approximation, however, it is more precise than the formula where only the first-derivative of \(P(y) \) is included.
IMMUNIZATION

- Some financial institutions like banks or pension funds have fixed-income financial products in both the assets and liabilities sides of their balances.

Example: A pension fund is receiving fixed payments from young clients who are working and paying every month the pension fund to get pension after their retirement. These payments are in the asset side of the balance.
- In the same time, the pension fund pays fixed monthly pensions to retired pensioners. These payments are on the liability side of the balance.

IMMUNIZATION

- These payments can be seen as bond portfolios.
- Therefore, they are subject to interest rate risk.
- How can a financial company manage the interest rate risk of its assets and liabilities?
- By doing IMMUNIZATION.

IMMUNIZATION

- Immunization means that the duration of assets and liabilities of the company are equal:
 \[D_A = D_L \]
- When assets and liabilities of financial firms are immunized then a rate change has the same impact on its assets and liabilities.
- This where the name “immunization” comes from.

DEFAULT OF BONDS: CREDIT RISK

- Default risk
 - Although bonds generally promise a fixed flow of income, that income stream is not risk-free unless the issuer will not default on the obligation.
 - While most government bonds may be treated as assets free of default risk, this is not true for corporate bonds.
Default risk

- Bond default risk, usually called credit risk, is measured by the next firms:
 1. Moody’s,
 2. Standard and Poor’s (S&P’s) and
 3. Fitch

These institutions provide financial information on firms as well as quality ratings of large corporate and municipal bond issues.

Default risk

- International bonds, especially in emerging markets, also are commonly rated for default risk.
- Each rating firm assigns letter grades to the bonds to reflect their assessment of the safety of the bond issue.
- In the following table, the grades of Moody’s and Standard and Poor’s are presented:

<table>
<thead>
<tr>
<th>Bond grade</th>
<th>Quality of bond</th>
<th>Moody’s rating</th>
<th>S&P’s rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>Very high quality</td>
<td>A</td>
<td>AAA</td>
</tr>
<tr>
<td>Aa</td>
<td>High quality</td>
<td>Aa</td>
<td>AA</td>
</tr>
<tr>
<td>A</td>
<td>High quality</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Ba</td>
<td>High quality</td>
<td>Ba</td>
<td>BBB</td>
</tr>
<tr>
<td>B</td>
<td>Speculative</td>
<td>B</td>
<td>BB</td>
</tr>
<tr>
<td>Caa</td>
<td>Very poor</td>
<td>Caa</td>
<td>CCC</td>
</tr>
<tr>
<td>C</td>
<td>Very poor</td>
<td>C</td>
<td>CC</td>
</tr>
<tr>
<td>D</td>
<td>Very poor</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

At times Moody’s and S&P’s use adjustments to these ratings:
1. S&P uses plus and minus signs: A+ is the strongest and A- is the weakest.
2. Moody’s uses a 1, 2 or 3 designation, with A1 indicating the strongest and A3 indicating the weakest.

Determinants of bond safety

- Rating agencies base their quality ratings largely on the level and trend of issuer’s financial ratios.
- The key ratios are:
 1. Coverage ratios: Ratios of company earnings to fixed costs.
 2. Leverage ratio: Debt-to-equity ratio.

3. Liquidity ratios:
 3a. Current ratio =
 Current assets / current liabilities
 3b. Quick ratio =
 Current assets excluding inventories / current liabilities
Determinants of bond safety

4. Profitability ratios: Measures of rates of return on assets or equity
4a. Return on assets (ROA) = Net income / total assets
4b. Return on equity (ROE) = Net income / equity

5. Cash flow-to-debt ratio: Ratio of total cash flow to outstanding debt

Default premium

• To compensate for the possibility of default, corporate bonds must offer a default premium.
• The default premium is the difference between the promised yield on a corporate bond and the yield of an otherwise identical government bond that is risk-free in terms of default.

Default premium

• If the firm remains solvent and actually pays the investor all of the promised cash flows, the investor will realize a higher yield to maturity than would be realized from the government bond.
• However, if the firm goes bankrupt, the corporate bond will likely provide a lower return than the government bond.
• That is why the corporate bond is riskier than the government bond.

Default premium

• The pattern of default premiums offered on risky bonds is sometimes called the risk structure of interest rates.
• The following figure shows the yield to maturity of different credit risk class bonds:

![Yields on bonds with different credit risk](image_url)
DERIVATIVES

A derivative is a financial instrument that is derived from some other asset (known as the underlying asset). Rather than trade or exchange the underlying asset itself, derivative traders enter into an agreement that involves a final payoff which depends on the price of the underlying asset.

A GENERAL DEFINITION OF DERIVATIVES

- The final payoff of a derivative is always a specific function of past and current prices of the underlying asset.

\[(\text{Payoff of derivative at time } t) = f(S_1,...,S_t)\]

where \(S_t\) is the price of the underlying asset at time \(t\) and \(f(\cdot)\) is the payoff function of the derivative.

A GENERAL DEFINITION OF RELATIVELY SIMPLE DERIVATIVES

- The payoff of the more simple derivatives depends only on the current price of the underlying asset:

\[(\text{Payoff of derivative at time } t) = f(S_t)\]

- Most derivatives that we see in this course have this type of payoff function.

A REMARK

- The word “derivative” has nothing to do with the derivative that you have studied in differentiation during the mathematical calculus course.
- The word “derivative” refers to the fact that the payoff of a derivative is a function of the price of the underlying asset.
- The payoff function defines the derivative.
- Different derivatives have different payoff functions.

DERIVATIVES

- Important types of derivatives are:
 1. FUTURES and FORWARDS
 2. OPTIONS
 3. SWAPS
A contract to buy or sell an asset on a future date at a fixed price.
- The buyer and the seller of the futures contract have the obligation to buy or sell the asset.

The buyer of the futures contract is in long futures position.
The seller of the futures contract is in short futures position.

The underlying asset of the futures contract can be:
1. Commodity like grain, metals or energy
2. Financial product like interest rate, exchange rate, stock or stock index

The main elements of the futures contract are the
1. Futures price, F
 - This is the price fixed in the contract at which the transaction will occur in the future.
2. Expiration date, T
 - This is the date fixed in the contract when the delivery will take place in the future.

The payoff and the profit of the long futures position at the expiration date, T is

$$\text{Payoff} = \text{Profit} = S_T - F$$

where S_T is the price of the underlying product at time T.
PAYOFF OF FUTURES CONTRACT

- Note that payoff = profit in the futures contract.
- This is because the contract is symmetric: both sides have obligation to buy/sell.
- Therefore, there is no cost of the establishment of the futures contract at time $t=0$.

PAYOFF OF FUTURES CONTRACT

The payoff and profit of the long futures position can be presented on the next graph:

\[
\text{Payoff} = \text{Profit} = F - S_T
\]

where S_T is the price of the underlying product at time T.

PAYOFF OF FUTURES CONTRACT

The payoff and profit of the short futures position at the expiration date, T, is:

\[
\text{Payoff} = \text{Profit} = F - S_T
\]

where S_T is the price of the underlying product at time T.

FUTURES PRICE

Determining the correct futures price F:
Consider two alternative portfolios:

Portfolio 1:
- One long futures position of the underlying product with futures price F and maturity date T.
- One risk-free treasury bill (T-bill) with face value F and maturity date T. The T-bill pays risk-free rate of r.

Portfolio 2:
- One underlying product.

Payoffs at time $t=T$:
At time $t=T$, the T-bill will pay F amount of cash which will be used in the long futures contract to buy the underlying product at price F.
After buying the underlying using the LF contract both portfolios will be equal: both will have one underlying product.
SPOT-FUTURES PARITY

- Therefore, the cost of the establishment of both portfolios should be equal:
- Cost of portfolio 1 = \(F/(1+r)^T = PV(F) \)
- Cost of portfolio 2 = \(S_0 \)
- Therefore, \(F/(1+r)^T = S_0 \)
- And the correct futures price is given by
 \[F = S_0 (1+r)^T \]
- This equation is called SPOT-FUTURES PARITY.

SPOT-FUTURES PARITY with dividends

- A more general formulation of the spot-futures parity is obtained when the underlying product is a stock that pays dividend \(DIV \) until the maturity date \(T \) of the futures contract.
- The generalized spot-futures parity is given by:
 \[F = S_0 (1+r)^T - DIV = S_0 (1+r-d)^T \]
 where the second equality defines the dividend yield, \(d \).

SPOT-FUTURES PARITY with dividends

Proof: Consider two alternative portfolios:

Portfolio 1:
- One long futures position of the underlying product with futures price \(F \) and maturity date \(T \).
- One risk-free treasury bill (T-bill) with face value \(F+DIV \) and maturity date \(T \). The T-bill pays risk-free rate of \(r \).

Portfolio 2:
- One underlying product.

Costs and payoffs:
- Cost of establishment of the two portfolios at time \(t=0 \):
 - Portfolio 1: \((F+DIV)/(1+r)^T \)
 - Portfolio 2: \(S_0 \)
- Payoff of both portfolios at time \(t=T \):
 - \((S_T+DIV) \)

FORWARDS
FUTURES AND FORWARDS

- Forward contracts are the same as futures contracts:
- Both are about buying or selling an asset on a future date at a fixed price.
- In both, the buyer and the seller have the obligation to buy or sell the asset.
- Also the underlying asset of both contract can be either commodity or another financial asset.

The distinction between “futures” and “forward” does not apply to the contract, but to how the contract is traded.

Trading of futures contracts

- Futures contracts are always traded in organized exchanges.
- In an organized exchange, futures products are standardized (with respect to possible maturity times and quality of products) and this way the liquidity of the futures market is increased.

As futures products are standardized, it is possible that the quality and prices of “local” commodity product that the investor wants to hedge using a commodity futures contract is not the same as the quality and price of the underlying commodity of the futures contract traded at the organized exchange.

Trading of futures contracts

- Although there is a common dependence between local and exchange prices and quality (i.e. there is a high correlation), the correlation is not perfect.
- In risk management, this type of risk is called basis risk.

Another consequence of standardized futures commodity exchanges is that the geographic location of the futures exchange may be far from the investor’s location.
- This can make costly and inconvenient the physical delivery of the commodity.
Trading of futures contracts

- Because of this reason, frequently, futures contracts are **closed** just before the maturity date and the corresponding profit or loss is delivered in cash.
- Closing a futures position means to open an opposite futures position to cancel the payoffs of both positions.
- For example, an investor having a LF position can close this by opening a SF position.

Trading of futures contracts

- When a futures contract is bought or sold, the investor is asked to put up a **margin** in the form of either cash or Treasury-bills to demonstrate that he has the money to finance his side of the bargain.
- In addition, futures contracts are **marked-to-market**. This means that each day any profit or losses on the contract are calculated and the investor pays the exchange any losses and receive any profits.

Trading of futures contracts

- For example, famous futures exchanges in the U.S. are:
 1. Chicago Mercantile Exchange Group (**CME Group**) that was formed by the fusion of Chicago Board of Trade (**CBOT**) and Chicago Mercantile Exchange (**CME**).
 2. New York Mercantile Exchange (**NYMEX**).

Trading of forward contracts

- Liquidity of futures exchanges is high because of standardization of the futures contracts.
- However, if the terms of the futures contracts do not suit the particular needs of the investor, he may able to buy or sell **forward contracts**.

Trading of forward contracts

- The main forward market is in **foreign currency**. (**Forex market** or **FX market**)
- It is also possible to enter into a forward interest rate contract called **forward rate agreement** (**FRA**).
OPTIONS

- An option is a contract between a buyer and a seller that gives the buyer the right - but not the obligation - to buy or to sell a particular asset (the underlying asset) at a later day at an agreed strike price.
- The purchase price of the option is called the premium. It represents the compensation the purchaser of the call must pay for the right to exercise the option.

CALL AND PUT OPTIONS

- A call option gives the buyer the right to buy the underlying asset.
- A put option gives the buyer of the option the right to sell the underlying asset.
- If the buyer chooses to exercise this right, the seller is obliged to sell or buy the asset at the agreed price.
- The buyer may choose not to exercise the right and let it expire.

ELEMENTS OF OPTIONS CONTRACT

- The main elements of the options contract are the
 1. Strike price, X
 This is the price fixed in the contract at which the buyer of the option can exercise his right to buy or sell the underlying product.
 2. Expiration date, T
 This is the future date fixed in the contract until which the buyer can exercise his option.

OPTIONS POSITIONS

- The buyer of the call option is in long call (LC) position.
- The seller of the call option is in short call (SC) position.
- The buyer of the put option is in long put (LP) position.
- The seller of the put option is in short put (SP) position.

EUROPEAN / AMERICAN OPTIONS

- There are two types of options:
 1. European option:
 The buyer of the option can exercise his right to buy or sell the underlying product only on the expiration date.
 2. American option:
 The buyer of the option can exercise his right to buy or sell the underlying product at on or before the expiration date.
PAYOFF OF OPTIONS

- In the following slides, we show the payoff and the profit of the call and put options.
- We shall use the following notation:
 1. X: strike price
 2. T: expiration date
 3. S_T: price of underlying product on the expiration date
 4. c: premium of the call option
 5. p: premium of the put option

PAYOFF OF LONG CALL

- The payoff of the European long call position is
 $$\text{Payoff LC} = \max\{S_T - X, 0\}$$

PAYOFF OF SHORT CALL

- The payoff of the European short call position is
 $$\text{Payoff SC} = -\max\{S_T - X, 0\}$$

PAYOFF OF LONG PUT

- The payoff of the European long put position is
 $$\text{Payoff LP} = \max\{X - S_T, 0\}$$

PROFIT OF LONG CALL

- The profit of the European long call position is
 $$\text{Profit LC} = \max\{S_T - X, 0\} - c$$

PROFIT OF SHORT CALL

- The profit of the European short call position is
 $$\text{Profit SC} = -\max\{S_T - X, 0\} + c$$
PROFIT OF LONG PUT

- The profit of the European long put position is
 \[
 \text{Profit LP} = \max \{X - S_T, 0\} - p
 \]

PROFIT OF SHORT PUT

- The profit of the European short put position is
 \[
 \text{Profit SP} = -\max \{X - S_T, 0\} + p
 \]

PAYOFF OF SHORT PUT

- The payoff of the European short put position is
 \[
 \text{Payoff SP} = -\max \{X - S_T, 0\}
 \]

IN/AT/OUT OF THE MONEY OPTIONS

- An option is described as in the money when its exercise would produce positive payoff for its holder.
- An option is out of the money when exercise would produce zero payoff.
- Options are at the money when the exercise price and underlying asset price are equal.

UNDERLYINGS OF OPTIONS

Examples of options:
1. Stock options: the underlying product is a stock price.
2. Index options: the underlying product is a stock index.
3. Futures options: the underlying product is a futures contract.
4. Foreign currency options: the underlying product is an exchange rate.
5. Interest rate options: the underlying product is an interest rate

OPTIONS STRATEGIES
OPTIONS STRATEGIES

Options trading strategies:
1. Call options trading strategy
2. Put options trading strategy
3. Protective put strategy
4. Covered call strategy
5. Straddle strategy
6. Spread strategy

CALL OPTION STRATEGY

Call options trading strategy:
- Purchasing call options (LC) provide profit when the price of the underlying product increase.
- Selling call options (SC) provide profit when the price of the underlying product decrease.

PUT OPTION STRATEGY

Put options trading strategy:
- Purchasing put options (LP) provide profit when the price of the underlying product decrease.
- Selling put options (SP) provide profit when the price of the underlying product increase.

PROTECTIVE PUT STRATEGY

1. Payoff of the long underlying position:

2. Payoff of the LP position:

PROTECTIVE PUT STRATEGY

1. Payoff of the long underlying position:

2. Payoff of the LP position:
PROTECTIVE PUT STRATEGY

1+2. Payoff of the protective put strategy:

\[\text{Payoff} \]

\[\begin{array}{c}
X \\
\hline
X \\
S_T
\end{array} \]

PROTECTIVE PUT STRATEGY

1+2. Profit of the protective put strategy:

\[\text{Profit} \]

\[\begin{array}{c}
X-(S_0+p) \\
\hline
S_T
\end{array} \]

COVERED CALL STRATEGY

- Covered call strategy:
 1. Purchase of the underlying product (long underlying position) at price \(S_0 \).
 2. Sale of a call option on the underlying (SC position) with strike price \(X \).

COVERED CALL STRATEGY

1. Payoff of the long underlying position:

\[\text{Payoff} \]

\[\begin{array}{c}
\hline
S_T
\end{array} \]

COVERED CALL STRATEGY

2. Payoff of the SC position:

\[\text{Payoff} \]

\[\begin{array}{c}
X \\
\hline
S_T
\end{array} \]

COVERED CALL STRATEGY

1+2. Payoff of the covered call strategy:

\[\text{Payoff} \]

\[\begin{array}{c}
X \\
\hline
S_T
\end{array} \]
COVERED CALL STRATEGY

1+2. Profit of the covered call strategy:

\[
\text{Profit} = \begin{cases}
X-S_0+c & \text{if } X \leq S_T \\
0 & \text{if } X > S_T
\end{cases}
\]

STADDLE STRATEGY

- Straddle strategy:
 1. Long straddle:
 Buying both a call and a put option on the same underlying product each with the same strike price, X and expiration date, T.
 2. Short straddle:
 Selling both a call and a put option on the same underlying product each with the same strike price, X and expiration date, T.

STADDLE STRATEGY

- Payoff of the long straddle:

\[
\text{Payoff} = \begin{cases}
X & \text{if } X \leq S_T \\
X-(c+p) & \text{if } X > S_T
\end{cases}
\]

- Profit of the long straddle:

\[
\text{Profit} = \begin{cases}
X-(c+p) & \text{if } X \leq S_T \\
-(c+p) & \text{if } X > S_T
\end{cases}
\]

STADDLE STRATEGY

- Payoff of the short straddle:

\[
\text{Payoff} = \begin{cases}
0 & \text{if } X \leq S_T \\
X-(c+p) & \text{if } X > S_T
\end{cases}
\]

- Profit of the short straddle:

\[
\text{Profit} = \begin{cases}
0 & \text{if } X \leq S_T \\
X-(c+p) & \text{if } X > S_T
\end{cases}
\]
STADDLE STRATEGY

Strip and strap strategies: These are variations of straddles.
1. **Long strip**: Buying two puts and one call with the same strike price and exercise date.
2. **Short strip**: Selling two puts and one call with the same strike price and exercise date.
3. **Long strap**: Buying two calls and one put with the same strike price and exercise date.
4. **Short strap**: Selling two calls and one put with the same strike price and exercise date.

SPREAD STRATEGY

- **Spread strategy**: A spread is a combination of two or more call options (or two or more put options) on the same underlying product with differing strike prices or expiration dates.
 1. **Money spread**: involves the purchase and sale of options with different strike prices.
 2. **Time spread**: involves the purchase and sale of options with different expiration dates.

SPREAD STRATEGY

- In the followings, we shall focus only on money spreads.
- We review three types of money spreads:
 1. **BULLISH SPREAD**: used when the investor expects that the price of the underlying will increase.
 2. **BEARISH SPREAD**: used when the investor expects that the price of the underlying will decrease.
 3. **BUTTERFLY SPREAD**: used when the investor expects relatively small or relatively large price changes in the future.

SPREAD STRATEGY

2. **Second way**:
 (2a) Buying a put option with strike price X_1 and
 (2b) Selling a put option with strike price X_2 where $X_2 > X_1$.

SPREAD STRATEGY

- **Payoff of the bullish spread**:

 ![Payoff Diagram](image)
SPREAD STRATEGY

- **Profit of the bullish spread** (constructed from call options):

\[X_2 - X_1 - c_1 + c_2 \]

- **Profit of the bearish spread** (constructed from call options):

\[S - X_2 - X_1 - c_1 + c_2 \]

BEARISH SPREAD STRATEGY

- Bearish spread strategy: This can be constructed in two alternative ways:

1. **First way:**
 (1a) Buying a call option with strike price \(X_1 \) and
 (1b) Selling a call option with strike price \(X_2 \) when \(X_2 < X_1 \).

2. **Second way:**
 (2a) Buying a put option with strike price \(X_1 \) and
 (2b) Selling a put option with strike price \(X_2 \) where \(X_2 < X_1 \).

BUTTERFLY SPREAD STRATEGY

- The butterfly spread strategy has the following two types:

1. **LONG BUTTERFLY SPREAD**
2. **SHORT BUTTERFLY SPREAD**
SPREAD STRATEGY

1. LONG BUTTERFLY SPREAD
- It can be constructed in two alternative ways:
 1. First way:
 Purchase one call option with strike price \(X_1\).
 Purchase one call option with strike price \(X_3\).
 Sell two call options with strike price \(X_2\).
 \(X_1 < X_2 < X_3\) and \(X_2 = \frac{X_1 + X_3}{2}\)

SPREAD STRATEGY

2. Second way:
- Purchase one put option with strike price \(X_1\).
- Purchase one put option with strike price \(X_3\).
- Sell two put options with strike price \(X_2\).
- \(X_1 < X_2 < X_3\) and \(X_2 = \frac{X_1 + X_3}{2}\)

PAYOFF OF THE LONG BUTTERFLY SPREAD:

![Graph showing the payoff of a long butterfly spread with strike prices \(X_1, X_2, \) and \(X_3\).]

PROFIT OF THE LONG BUTTERFLY SPREAD:

![Graph showing the profit of a long butterfly spread constructed from call options with strike prices \(X_1, X_2, \) and \(X_3\).]

SPREAD STRATEGY

2. SHORT BUTTERFLY SPREAD
- It can be constructed in two alternative ways:
 1. First way:
 Sell one call option with strike price \(X_1\).
 Sell one call option with strike price \(X_3\).
 Buy two call options with strike price \(X_2\).
 \(X_1 < X_2 < X_3\) and \(X_2 = \frac{X_1 + X_3}{2}\)

SPREAD STRATEGY

2. Second way:
- Sell one put option with strike price \(X_1\).
- Sell one put option with strike price \(X_3\).
- Buy two put options with strike price \(X_2\).
- \(X_1 < X_2 < X_3\) and \(X_2 = \frac{X_1 + X_3}{2}\)
SPREAD STRATEGY

- Payoff of the short butterfly spread:

Profit of the short butterfly spread (constructed from call options):

PUT-CALL PARITY

- The put-call parity is an important formula because it establishes the relationship between the prices of call and put options, the underlying product and the risk-free bond.
- The put-call parity must hold on the financial market in order to avoid arbitrage opportunities.
- On the following slides, the put-call parity is derived.

PUT-CALL PARITY

- Consider two alternative portfolios established at time $t=0$:

 Portfolio 1:
 - Buy one European call option with strike price X and expiration date T.
 - Buy one risk-free treasury bill (T-bill) with face value X and maturity date T.

 Portfolio 2:
 - Buy one European put option with strike price X and expiration date T and
 - Buy one underlying product.
Notice that the payoff of both portfolios at time T is equal independently of S_T:

$$\text{Payoff} = \begin{cases} X & \text{if } S_T > X \\ X & \text{if } S_T \leq X \end{cases}$$

If the payoff of the portfolios is equal at time T then the cost of establishment of the two portfolios at time $t=0$ should be equal as well.

- The cost of Portfolio 1 = $c + PV(X) = c + X(1+r)^T$
- The cost of Portfolio 2 = $p + S_0$

The consequence is that

$$c + X(1+r)^T = p + S_0$$

or

$$c + PV(X) = p + S_0$$

This equation explains the relationship between the prices of the call and put options and is called PUT-CALL PARITY.

More general formulation of the put-call parity for dividend paying stocks:

- Suppose that the underlying product is a stock that pays dividends, DIV until the expiration date T.
- Then, we can reformulate the put-call parity as follows:

$$c + PV(X) + PV(DIV) = p + S_0$$

Proof:

- Consider two alternative portfolios at time $t=0$:

Portfolio 1:
- Buy one European call option with strike price X and expiration date T.
- Buy one risk-free treasury bill (T-bill) with face value $(X+DIV)$ and maturity date T.

Portfolio 2:
- Buy one European put option with strike price X and expiration date T and
- Buy one underlying product.
PUT-CALL PARITY with dividends

- Notice that the payoff of both portfolios at time T will be equal independently of S_T:

\[X + \text{DIV} \]

\[S_T \]

\[\text{Payoff} \]

PUT-CALL PARITY with dividends

- If the payoff of the portfolios is equal at time T then the cost of establishment of the two portfolios at time $t=0$ should be equal too.
- The cost of Portfolio 1 =
 - $c + \text{PV}(X + \text{DIV}) = c + (X + \text{DIV})/(1+r)^T$
- The cost of Portfolio 2 =
 - $p + S_0$

EXOTIC OPTIONS

EXOTIC OPTIONS:

1. Bermuda option
2. Compound option
3. Chooser option
4. Barrier option
5. Binary option
6. Lookback option
7. Asian option

Bermuda option

- The Bermuda option is similar to the American option. That is it can be exercised on dates before the date of exercise.
- However, unlike to American option that can be exercised on any date before or on the exercise date, the Bermuda option can be exercised only on a limited number of dates before the exercise date.
Compound option
- The compound option is an option whose underlying product is an option.
- There are four types of compound option:
 1. Call option on a call option (underlying = call option)
 2. Put option on a call option (underlying = call option)
 3. Call option on a put option (underlying = put option)
 4. Put option on a put option (underlying = put option)

Chooser option
- In the “chooser” or “as you like it” option, the buyer of the option can choose between having a call option OR a put option after buying the option.

Barrier option
- **Barrier options** have payoffs that depend not only on some asset price on the expiration date, but also on whether the underlying asset price has crossed through some “barrier”.
- A barrier option is a type of option where the option to exercise depends on the underlying crossing or reaching a given barrier level.
- Barrier options are always cheaper than a similar option without barrier.
- Therefore, barrier options were created to provide the insurance value of an option without charging as much premium.

Barrier option

There are four types of barrier options:

1. **Up-and-out**: the price of the underlying starts below the barrier level and has to move up to the barrier level to be knocked out.
2. **Down-and-out**: the price of the underlying starts above the barrier level and has to move down to the barrier level to be knocked out.

Up-and-out barrier call option

Payoff:

\[
\text{max} \{S_T - X, 0\}
\]

As the barrier has been crossed before \(t=T \), the call option has been knocked out thus its payoff is zero.
Down-and-out barrier call option

- **Payoff:**
 \[\max (S_T - X, 0) \]

- As the barrier has been crossed before \(t = T \), the call option has been knocked out thus its payoff is zero.

Barrier option

3. **Up-and-in:** the price of the underlying starts below the barrier level and has to move up to the barrier level to become activated.

4. **Down-and-in:** the price of the underlying starts above the barrier level and has to move down to the barrier level to become activated.

Up-and-in barrier call option

- **Payoff:**
 \[\max (S_T - X, 0) \]

- As the barrier has not been crossed before \(t = T \), the call option has not become activated thus its payoff is zero.

Down-and-in barrier call option

- **Payoff:**
 \[\max (S_T - X, 0) \]

- The barrier has been passed thus the option has been activated:
 \[\max (S_T - X, 0) \]

Binary option

- The **binary option** is an option with discontinuous payoff.
- An example of the binary option is the "cash-or-nothing call". This option pays nothing if \(S_T < X \) and pays a fixed cash \(Q \) if \(S_T \geq X \).

Lookback option

- **Lookback options** have payoffs that depend in part on the **minimum** or **maximum** price of the underlying asset during the life of the option.
- For example, the payoff of a lookback call option may depend on the maximum price:
 \[\text{Payoff} = \max (\max (S_t) - X, 0) \]
 or the minimum price of the underlying asset:
 \[\text{Payoff} = \max (\min (S_t) - X, 0) \]
Lookback option

- The payoff of lookback options depends on the evolution of the price of the underlying product during $0 \leq t \leq T$.

\[
\text{Payoff} = \max\{S_t \text{ for } 0 \leq t \leq T\}
\]

Asian option

- Asian options are options with payoffs that depend on the average price of the underlying asset during at least some portion of the life of the option.

- For example, the payoff of an Asian call option can be

\[
\text{Payoff} = \max\{\text{mean}(S_t) - X, 0\}
\]

where mean(S_t) is the average price of the underlying during the lifetime of the option.

PRICING DERIVATIVES

ASSET PRICING

- First, we give a short introduction of two alternative asset pricing approaches of finance:

1. Expectation pricing and
2. Arbitrage pricing

- Then, we present two alternative approaches of derivatives pricing:

1. Binomial tree approach and
2. Black-Scholes model

1. Expectation pricing models

- Expectation pricing models use several assumptions regarding investors’ preferences and solve expected utility maximization problems to derive prices.

- In expectation pricing, we need to assume a distribution for future returns because we maximize the expected value of random returns of investments.
1. Expectation pricing models

- This assumption may fail easily and thus the prices obtained by expectation pricing are not robust in general.
- Expectation pricing **does not enforce** market prices, it only gives a **suggestion** for market prices.
- A famous equilibrium pricing model is the **capital asset pricing model (CAPM)**.

Arbitrage pricing models

2. Arbitrage pricing models

- An alternative approach is **arbitrage pricing**, where we do not assume anything about the ‘real world’ probability distribution of future returns.
- Arbitrage pricing is **more frequently used** in practice than expectation pricing.
- Arbitrage pricing enforces market prices therefore it is a **more robust** pricing result.

Arbitrage

- **Definition (arbitrage opportunity)**: An arbitrage opportunity arises when the investor can construct a zero investment portfolio that will yield a **sure** profit.
- In other words, the exploitation of security mispricing in such a way that risk-free economic profits may be earned is called arbitrage.

Arbitrage

- **Assumption**: In order to be able to construct a zero investment portfolio, one has to be able to sell short at least one asset and use the proceeds to purchase (to go long on) one or more assets.
- Borrowing may be considered as a short position in the risk-free asset.
- Even a small investor using short positions can take a large dollar / euro position in such a portfolio.

- **It involves the simultaneous purchase and sale of equivalent securities in order to profit from discrepancies in their price relationship, and so it is an extension of the law of one price.**
- The concept of arbitrage is central to the theory of financial markets.
Arbitrage

- A critical property of a risk-free arbitrage portfolio is that any investor, regardless of risk aversion or wealth, will want to take an infinite position in it so that profits will be driven to an infinite level.
- Because those large positions will force prices up or down until the opportunity vanishes, we can derive restrictions on security prices that satisfy the condition that no arbitrage opportunities are left in the marketplace.

Difference between arbitrage and expectation arguments

- Expectation pricing builds on investors’ opinion about future returns, while arbitrage pricing uses the price discrepancies among different assets.
- Therefore, we may say that expectation pricing leads to “absolute prices” and arbitrage pricing derives “relative prices”.

Difference between arbitrage and expectation arguments

- There is another important difference between arbitrage and expectation arguments in support of equilibrium price relationships.
- When an expectation argument holds on the market and the equilibrium price relationship is violated, many investors will make portfolio changes.

Difference between arbitrage and expectation arguments

- In an expectation pricing model, each individual investor will make a limited change, though, depending on his or her degree of risk aversion.
- Aggregation of these limited portfolio changes over many investors is required to create a large volume of buying or selling, which in turn restores equilibrium prices.

Difference between arbitrage and expectation arguments

- However, when arbitrage opportunities exist, each investor wants to take as large position as possible.
- Therefore, it will not take many investors to bring about price pressures necessary to restore equilibrium.
- For this reason, implications for prices derived from no-arbitrage arguments are stronger than implications derived from a risk-versus-return dominance argument.

DERIVATIVES PRICING
PRICING DERIVATIVES

- Derivatives are usually priced by arbitrage pricing models in practice.
- In this section, we present two alternative pricing approaches used for derivatives:
 2. Black-Scholes formula

BINOMIAL APPROACH

- Binomial derivatives pricing is in discrete time: Financial transactions and payoffs occur at discrete points of time \(t=1,2,\ldots,T \).
- We present the binomial approach in two steps:
 1. Two-state framework: \(t=1,2 \)
 2. Multi-state framework: \(t=1,2,\ldots,T \)

BINOMIAL APPROACH

- The binomial approach:
 1. Applies to derivatives with different payoff functions. (For example, it can be applied to price some exotic derivatives.) and
 2. Does not assume any particular probability structure for the evolution of the price of the underlying. (We do not assume anything about the probability of price increase or price decrease.)

TWO-STATE FRAMEWORK

- Suppose that the price of the underlying asset moves along the following binomial tree over two-states \(t=1,2 \):

\[
\begin{align*}
S & \quad \quad S \exp(u) \\
S \exp(d) & \quad S
\end{align*}
\]

where \(u>0 \) and \(d<0 \) are the log-returns of the underlying asset over the two states:

\[
\text{log-return} = \ln \left(\frac{S \exp(u)}{S} \right) = \ln[\exp(u)] = u
\]
A REMARK ABOUT DISCOUNTING

- There are two alternative definitions of the discount factor that we use in this course:
 1. DF that uses “traditional returns”:
 \[DF(r, T) = \frac{1}{(1 + r)^T} \]
 2. DF that uses “log-returns”:
 \[DF(r, T) = \exp(-rT) \]
- In the derivatives pricing section, we use (2) to discount future cash flows.

TWO-STATE FRAMEWORK

- In the binomial tree approach, we do not need to assume anything about the probability of price increase or price decrease.
- The only assumption we make about the evolution of \(S \) is that it goes along a binomial tree. (That is in every period it goes up or down with certain log-return \(u \) or \(d \).)

TWO-STATE FRAMEWORK

- We are interested in determining the price, \(f \) of a derivative whose payoff is a function of the price of the underlying asset:

\[f \]

\[\begin{array}{c}
\Delta u \\
\Delta d \\
\end{array} \]

where \(f \) is the price of the derivative at \(t=1 \) and \(f_u \) and \(f_d \) are the payoffs of the derivative at \(t=2 \).

TWO-STATE FRAMEWORK

- First, we determine the value of \(\Delta \) that makes the portfolio risk-free.
- The portfolio is risk-free when its value is the same either \(S \) goes up or down:
 \[\Delta S \exp(u) - f_u = \Delta S \exp(d) - f_d \]
- From this equation, we get the number of underlying assets that we need to buy to have a risk-free portfolio:
 \[\Delta = \frac{f_u - f_d}{\Delta S \exp(u) - \Delta S \exp(d)} \] (1)

TWO-STATE FRAMEWORK

- As the portfolio is risk-free, the price of the portfolio at \(t=1 \) is equal to the present value of its payoff at \(t=2 \) computed using the risk-free rate, \(r \):
 \[\Delta S - f = \exp(-r) [\Delta S \exp(u) - f_u] \]
- From this equation, we get the price of the derivative, \(f \):
 \[f = \Delta S - \exp(-r) [\Delta S \exp(u) - f_u] \] (2)
TWO-STATE FRAMEWORK

- We can get an alternative formula for the price of the derivative, \(f \), in the following way:
- Substitute (1) into (2). Then, we get:

\[
f = \exp(-r) \left[pf_u + (1-p) f_d \right]
\]
where \(p \) is defined as

\[
p = \frac{\exp(r) - \exp(d)}{\exp(u) - \exp(d)}
\]

TWO-STATE FRAMEWORK

- Suppose that \(d \leq r \leq u \). (This is a reasonable assumption because \(d \) is negative, \(r \) is the risk-free rate and \(u \) is the rate of the risky underlying asset.)
- Then, it follows from equation (4) that \(0 \leq p \leq 1 \).
- Therefore, \(p \) can be interpreted as a probability.

TWO-STATE FRAMEWORK

- If we interpret \(p \) in equation (4) as the probability that the price of \(S \) goes up then equation (3) has a clear meaning:
- The price of the derivative is the present value, discounted by the risk-free rate, of the expected payoff of the derivative, where the expected value is computed using the probabilities \(p \) and \(1-p \).

TWO-STATE FRAMEWORK

- Remark: Risk neutral pricing has nothing to do with expectation pricing because in risk neutral pricing we use risk neutral probabilities to compute the expected payoff of the derivative whereas in expectation pricing we use the real world probabilities for the same computation.

TWO-STATE FRAMEWORK

- This pricing approach is very important in derivatives pricing.
- It is called risk-neutral pricing and the probability \(p \) is called risk-neutral probability.

TWO-STATE FRAMEWORK

- It is important to understand that the price of the derivative we have already obtained in equation (2) before introducing the concept of the risk-neutral probability.
- Then, why did we introduce risk-neutral probability?
- Because equation (3) has a more clear and intuitive meaning than (2): The price of the derivative is the present value of its expected payoff.
TWO-STATE FRAMEWORK

- Nevertheless, the present value is computed using the risk-free rate and the expected value is computed using the risk-neutral probability.
- Thus, when we use equation (3) to compute the price f then we are in an artificial world called the ‘risk-neutral world’.

EXAMPLE

- Compute the price of a call option on a stock with strike price $X=21$ if:
 - The risk-free rate is 3% and
 - The evolution of the stock price is according to the following tree:

 $S = 20$
 $S \exp(u) = 22$
 $S \exp(d) = 18$

- First, write the payoff of the call option as a function of the stock price:

 $f_u = \max\{S \exp(u) - X, 0\} = \max\{22 - 21, 0\} = \max\{1, 0\} = 1$
 $f_d = \max\{S \exp(d) - X, 0\} = \max\{18 - 21, 0\} = \max\{-3, 0\} = 0$

EXAMPLE

- Second, compute $\exp(u)$ and $\exp(d)$ from the tree of the stock price:

 $S \exp(u) = 22$
 $20 \exp(u) = 22$
 $\exp(u) = \frac{22}{20}$
 $S \exp(d) = 18$
 $20 \exp(d) = 18$
 $\exp(d) = \frac{18}{20}$

EXAMPLE

- Third, compute the value of Δ:

 $\Delta = \frac{f_u - f_d}{S \exp(u) - S \exp(d)} = \frac{1 - 0}{22 - 18} = 0.25$

 Δ is interpreted as follows:

 - For each unit of the call option need to buy 0.25 units of the stock in order to make the portfolio (1) 1 unit short call and (2) 0.25 units long underlying risk-free.
Next, we compute the value of the call option using formula (2):

\[f = \Delta S - \exp(-r) [\Delta S \exp(u) - f_u] = 0.25 \times 20 - \exp(3\%) \times [0.25 \times 22 - 1] = 5 - 4.367 = 0.6330 \]

So the price of the call option is 0.6330.

Alternatively, we can compute the price of the call option using the risk-neutral pricing of equation (3):

\[f = \exp(-r) [p f_u + (1-p) f_d] \]

To do this, first, we need to compute \(p \):

\[p = \frac{\exp(r) - \exp(d)}{\exp(u) - \exp(d)} = \frac{\exp(3\%) - 18/20}{22/20 - 18/20} = 0.652 \]

Now, we can compute equation (3):

\[f = \exp(-r) [p f_u + (1-p) f_d] = \exp(-3\%) \times [0.652 \times 1 + (1-0.652) \times 0] = 0.6330 \]

So we get the same price for the call option as before: 0.6330.

In the two-state methodology presented before we assumed that:

- There are only two-states \(t=1,2 \) and that
- There are only two possible outcomes of the price of the underlying asset (up or down).

However, it would be more realistic if we would have \(T \)-states \(t=1,2,\ldots,T \) and more outcomes for the price of the underlying.

Therefore, we generalize the previous two-step framework to a multi-step setup.

We may decide to model the price process of the underlying asset according to the following two trees:

1. Recombining tree
2. Non-recombining tree
MULTI-STATE FRAMEWORK

- We can see that the non-recombining tree allows more outcomes, i.e. it is more general.
- The pricing approach to be discussed applies to both types of trees.
- However, it is computationally easier to work with the recombining tree.
- In the followings, we focus on the recombining tree to compute prices.

MULTI-STATE FRAMEWORK

- If we think of the multi-state tree as the sum of several two-state trees then we can easily apply the approach introduced in the two-state slides for the multi-state tree.
- To show how to do it in practice we consider three states:

MULTI-STATE FRAMEWORK

Notice that the multi-state tree is simply the sum of two-state trees.
This is the tree of prices and payoffs of the derivative to be priced.

The objective is to determine the value f. We do it backward: we start with the last nodes of the tree. (See the upper right box on the graph.)

In the first step, we determine the payoffs f_{uu} and f_{ud} of the last state. Then, we use the two-state framework to compute the value f_u.

Then, we focus on the lower right rectangle of the figure. (See on the graph.)

In the second step, we determine the payoffs f_{ud} and f_{dd} of the last state. Then, we use the two-state framework to compute the value f_d.

Once we have computed f_u and f_d, we focus on the final rectangle presented on the graph.
In the third step, we compute f using the two-stage framework.

The approach presented for $t=1,2,3$ is straightforward to extend to any $t=1,\ldots,T$.

- It can be applied for recombining and for non-recombining trees as well.
- It can be applied to price many financial derivatives (derivatives with complicated payoffs).
- Therefore, it is a quite general approach of derivatives pricing.

BLACK-SCHOLES FORMULA

- The Black-Scholes (BS) formula is one of the most applied formulas in finance.
- It is applied daily in order to price derivatives in financial markets.
- It was developed by Fisher Black, Myron Scholes and Robert Merton.
- In 1997, Scholes and Merton received Nobel Prize in Economics.

The BS formula is used to price European call or European put options.

- The BS model assumes that the price of the underlying asset, S follows a continuous time 'geometric Brownian motion':
 \[dS = \mu S dt + \sigma S dz \]
- μ and σ are two parameters of the price process of S.

The differential equation

\[dS = \mu S dt + \sigma S dz \]

can be rewritten as

\[dS/S = \mu dt + \sigma dz \]

where dS/S can be interpreted as the return of the underlying asset.
BLACK-SCHOLES FORMULA

- Two components of the return process:
 1. μdt is the determinant trend component with slope μ
 2. σdz is the random noise component with standard deviation σ.
- Therefore, the return process is simply a noise around a deterministic trend.
- To present this, we graph the return process described by $dS/S = \mu dt + \sigma dz$ as follows:

BLACK-SCHOLES FORMULA

- Notice that:
 1. BS assumes a particular 'real world' probability structure of the price process S,
 2. the BS model is formulated in continuous time, and
 3. the BS formula applies only to a limited number of derivatives: European call and put options.

BLACK-SCHOLES FORMULA

Notation:
- S_0: price of the underlying asset at $t=0$.
- X: strike price of the option.
- r: risk-free rate.
- T: time-to-expiration of the option.
- σ: standard deviation of the return of the underlying asset ("volatility").
- $N(\cdot)$: cumulative distribution function of the standard normal distribution.

BLACK-SCHOLES FORMULA

- The BS price of a European call option:
 \[
 c = S_0 N(d_1) - X \exp(-rT) N(d_2)
 \]
 \[
 d_1 = \frac{\ln \left(\frac{S_0}{X} \right) + \left(r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}
 \]
 \[
 d_2 = d_1 - \sigma \sqrt{T}
 \]

BLACK-SCHOLES FORMULA

- The BS price of a European put option:
 \[
 p = X \exp(-rT) N(-d_2) - S_0 N(-d_1)
 \]
 \[
 d_1 = \frac{\ln \left(\frac{S_0}{X} \right) + \left(r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}
 \]
 \[
 d_2 = d_1 - \sigma \sqrt{T}
 \]
BLACK-SCHÖLES FORMULA

Notation:
- S_0: price of the underlying asset at $t=0$.
- X: strike price of the option.
- r: risk-free rate.
- T: time-to-expiration of the option.
- σ: standard deviation of the return of the underlying asset ("volatility").
- $N(\cdot)$: cumulative distribution function of the standard normal distribution.

A REMARK ABOUT TIME SCALE

- Notice that the
 1. risk-free rate, r
 2. time-to-expiration, T
 3. volatility, σ

 are time scale dependent variables.
- In the BS formula, one needs to use annual scale for these variables. (annual risk-free rate; T measured in years and standard deviation of annual returns, σ.

A REMARK ABOUT VOLATILITY

- Notice that in the BS formula one of the parameters is volatility of the return of the underlying asset.
- However, the slope of the deterministic trend, μ is not in the formula.
- The presence of σ in the BS formula means that the ‘real world’ probability structure of the underlying price process influences the BS option price.
- Remember that in the binomial tree approach it is not like this!!

VOLATILITY ESTIMATION

Annual volatility estimation

- In the BS formula, we need the volatility of annual returns.
- However, consistent estimation of σ from annual data series is not possible due to small sample size.

Annual volatility estimation

- One solution is to use a higher frequency data, for example daily returns,
 1. Estimate volatility of daily returns, then
 2. Rescale daily volatility to annual volatility.
- We can do this in the following way:
Annual volatility estimation

Suppose that:

1. We estimate daily volatility, σ_{1day}, as follows:
 \[\sigma_{\text{1day}} = \sqrt{\frac{1}{n-1} \sum_{t=1}^{n} (y_t - \overline{y})^2} \]
 where y_t is daily return, \overline{y} is the mean of y_t, and n is the sample size.
2. There are 250 trading days during a year.
3. Daily returns are independent random variables.

Then, the annual volatility can be rescaled from daily volatility as follows:

\[\sigma_{\text{1year}} = \sigma_{\text{1day}} \sqrt{250} \]

Advantages of this methodology:

1. The sample size can be large, therefore the statistical estimation is reliable.
2. We use ‘relatively recent’ return data to estimate annual volatility.

Disadvantage of this methodology:

- Daily returns are not independent random variables!
- There exist more sophisticated dynamic models of volatility showing this fact. (See the GARCH model for example).

COMPUTING THE VALUE OF N(\cdot)

The cumulative distribution of $N(0,1)$ is given in tables. See the table of $N(\cdot)$ left in the copy shop.

Be familiar about how to obtain a value of $N(x)$ based on that table!

In Excel, there is a function for the cumulative distribution function of $N(0,1)$:

- NORMSDIST(x) - in English Excel
- DISTR.NORM.ESTAND(x) – in Spanish Excel

A REMARK ABOUT N(\cdot)

- See the table for using the table for $x \geq 0$:
 \[N(0.6278) = N(0.62) + 0.78[N(0.63) - N(0.62)] \]
 \[= 0.7324 + 0.78(0.7357 - 0.7324) \]
 \[= 0.7350 \]

EXERCISE OF N(\cdot)

- The cumulative distribution of $N(0,1)$ is given in tables.
- See the table of $N(\cdot)$ left in the copy shop.
- Be familiar about how to obtain a value of $N(x)$ based on that table!
- In Excel, there is a function for the cumulative distribution function of $N(0,1)$:
 - NORMSDIST(x) - in English Excel
 - DISTR.NORM.ESTAND(x) – in Spanish Excel
EXERCISE OF $N(\cdot)$

- See the table for using the table for $x \leq 0$:

 $N(-0.1234) = N(-0.12) - 0.34[N(-0.12) - N(-0.13)]$

 $= 0.4522 - 0.34(0.4522 - 0.4483)$

 $= 0.4509$

EXERCISE OF $N(\cdot)$

- Use the table of the $N(0,1)$ distribution to compute $N(x)$ for the next values of x:

 (a) $x = 0.0521$

 $N(0.0521) = N(0.05) + 0.21[N(0.06) - N(0.05)]$

 $= 0.5199 + 0.21[0.5239 - 0.5199]$

 $= 0.5207$

 (b) $x = 0.1367$

 $N(0.1367) = N(0.13) + 0.67[N(0.14) - N(0.13)]$

 $= 0.5517 + 0.67[0.5557 - 0.5517]$

 $= 0.5544$

 (c) $x = 2.4701$

 $N(2.4701) = N(2.47) + 0.01[N(2.48) - N(2.47)]$

 $= 0.9932 + 0.01[0.9934 - 0.9932]$

 $= 0.9932$

 (d) $x = -0.0012$

 $N(-0.0012) = N(-0.00) - 0.12[N(-0.00) - N(-0.01)]$

 $= 0.5 - 0.12[0.5 - 0.4960]$

 $= 0.4995$
(e) $x = -1.5419$

- $N(-1.5419) = N(-1.54) - 0.19[N(-1.54) - N(-1.55)] = 0.0618 - 0.19[0.0618 - 0.0606] = 0.0616$

(f) $x = -2.3177$

- $N(-2.3177) = N(-2.31) - 0.77[N(-2.31) - N(-2.32)] = 0.0104 - 0.77[0.0104 - 0.0102] = 0.0102$

RISK MANAGEMENT OF OPTIONS CONTRACTS

In the previous section, we priced options in a static setup:
- We computed the price of derivatives at time $t = 0$.
- However, in the reality we are in a dynamic setup: $t = 0, ..., T$.
- This means that investors are interested in the evolution of the prices in their portfolios over time.

RISK MANAGEMENT OF OPTIONS

- In this section, we are going to analyze the risks associated to European option contracts in the BS framework.
- Remember from the BS formulas that the price of an option is determined by the next five elements:
 1. Strike price, X
 2. Time to expiration, T
 3. Risk-free interest rate, r
 4. Spot price of the underlying asset, S_0
 5. Volatility of the underlying asset return, σ
Notice that in a dynamic setup \(X \) and \(T \) are fixed in the option contract at time \(t = 0 \). Thus, they do not change over time.

However, also notice that \(r \), \(S_0 \), and \(\sigma \) change over time. These are the risk factors of option prices.

(Remark: The \(S_0 \) notation may be misleading. It denotes that actual price of the underlying asset. Thus, as time is passing in a dynamic setup, the price of the underlying asset also changes.)

In the remaining part of this section, for simplicity, we are going to assume that \(r \) and \(\sigma \) are constant over time.

We will focus only on the impact of changing \(S_0 \) on the option price.

For a portfolio manager, it is important to know the sensitivity of option prices to the price of the underlying asset in order to

(1) measure the risk of option and

(2) construct risk-free portfolios of options and underlying assets.

We have seen in the BS formulas that the price of an option depends on the price of the underlying asset, \(S_0 \).

The sensitivity of \(c \) and \(p \) to \(S_0 \) can be approximated by the partial derivatives of the \(c(S_0) \) and \(p(S_0) \) functions with respect to \(S_0 \).

Notice that the option price in the BS formulas in a non-linear function of \(S_0 \).

Therefore, if one considers only the first derivative of \(c(S_0) \) and \(p(S_0) \) to measure the sensitivity of the option price (i.e., we do a linear approximation), we shall not be precise.

This fact is presented on the following figure:
SENSITIVITY OF OPTION PRICE

- We can see on the figure that using the first derivative approximation we conclude that the change of the option price is (1).
- However, the total change of the option price is (3).
- Thus, when we approximate using the first derivative the error we have is (2).
- We can also see that the first derivative approximation is only precise when the change of S_0 is small.

OPTION PRICE AS A FUNCTION OF S_0

- On the following slides, we present the non-linearity of call and put option BS prices on figures.
- See the calculation of these figures in the corresponding Excel file.

OPTION PRICE AS A FUNCTION OF S_0: CALL

Notice that the BS price of the call is always higher than its final payoff.

In the figure, we also present the lower bound of the call option price, which is given by:

$$\text{Lower bound call}(S_0) = S_0 - X \exp(-rT)$$

OPTION PRICE AS A FUNCTION OF S_0: PUT

Notice that the BS price of the put is lower than its final payoff when the put option is very much in-the-money.

In the figure, we also present the lower bound of the call option price, which is given by:

$$\text{Lower bound put}(S_0) = X \exp(-rT) - S_0$$
SENSITIVITY OF OPTION PRICE

- In the followings, we shall proceed in two steps:
 - First, we shall use the first derivative to measure option price sensitivity.
 - Second, we will employ both the first and second derivatives to approximate the sensitivity of option prices.

1. DELTA OF THE OPTION: DELTA HEDGE

1. DELTA

- The first derivative of the option price with respect to the price of the underlying asset is called delta and is denoted by \(\Delta \).

\[
\Delta_c = \frac{\partial c}{\partial S_0} \approx N(d_1) > 0
\]
\[
\Delta_p = \frac{\partial p}{\partial S_0} \approx -N(-d_1) = N(d_1) - 1 < 0
\]

where \(d_1 \) is computed as before:

\[
d_1 = \frac{\ln \left(\frac{S_0}{X} \right) + \left(r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}
\]

and \(N(\cdot) \) is the cumulative distribution function of \(N(0,1) \).

1. DELTA

- Notice that on the previous slide we only show an approximate result for the deltas.
- This is because to exact derivative of the \(c(S_0) \) and \(p(S_0) \) functions are not the reported ones.
- In fact, reviewing the BS formulas, we see that both \(d_1 \) and \(d_2 \) also depend on \(S_0 \), which should be differentiated too to get the exact formula.

1. DELTA

- However, the presented approximations of delta are precise enough to be used in practice.
1. DELTA

- Notice that the delta of the call option is positive while the delta of the put option is negative.
- This means that if the price of the underlying product increases then the price of the call option will increase.
- In addition, if the price of the underlying product increases then the price of the put option will decrease.

1. DELTA: CALL OPTION SENSITIVITY

- The change of the call option price in the BS model can be approximated by delta as follows:
 \[dc = \frac{\partial c}{\partial S_0} dS = \Delta dS \approx [N(d_1)]dS \]
 where \(dc = c_1 - c_0 \) are \(dS = S_1 - S_0 \) the changes of the option price and underlying asset price between \(t = 0 \) and \(t = 1 \), respectively.

1. DELTA: PUT OPTION SENSITIVITY

- The change of the put option price in the BS model can be approximated by delta as follows:
 \[dp = \frac{\partial p}{\partial S_0} dS = \Delta dS \approx [N(d_1) - 1]dS \]
 where \(dp = p_1 - p_0 \) are \(dS = S_1 - S_0 \) the changes of the option price and underlying asset price between \(t = 0 \) and \(t = 1 \), respectively.

1. DELTA: SENSITIVITY OF OPTION PRICE

- Why is it useful to compute the delta of the option price?
 - It is useful because:
 1. The \(|\Delta|\) can be seen as a risk measure of the option price.
 2. The \(|\Delta|\) defines the so-called hedge ratio of the option.

1. DELTA HEDGE: CALL OPTION

- The hedge ratio of an option tells us how to construct a delta neutral portfolio from (1) the underlying asset and (2) the option.
- When we use the hedge ratio to construct a delta neutral portfolio then we do a so-called delta hedge.
- On the next slides, we consider delta hedge for European call and put options.

1. DELTA HEDGE: PUT OPTION

- Consider the following portfolio:
 1. Buy \(|\Delta|\) units of the underlying asset and
 2. Sell 1 unit of a call option on the underlying asset.
- This portfolio is not sensitive to small changes of the price of the underlying asset.
- (Remember that the price of the call option is increasing in the price of the underlying asset. See previous figure.)
1. DELTA HEDGE: PUT OPTION

- Consider the following portfolio:
 1. Buy $|\Delta|$ units of the underlying asset and
 2. Buy 1 unit of a put option on the underlying asset.
- This portfolio is not sensitive to small changes of the price of the underlying asset.
- (Remember that the price of the put option is decreasing in the price of the underlying asset. See previous figure.)

1. THE DELTA HEDGE RATIO FORMULA

Disadvantage:
- One can hedge only small changes of the underlying asset price.

Advantage:
- The formula includes terms known at time $t = 0$.
- In other words, the risk manager can compute this hedge ratio using information observed at time $t = 0$.

1. DELTA HEDGE

- We shall see an example later for the computation of delta and delta hedge.

2. GAMMA OF THE OPTION: DELTA-GAMMA HEDGE

2. GAMMA: MOTIVATION

- As we have seen before, the price of an option is non-linear function of S_0 in the BS formulas.
- This means that the first derivative is only a linear approximation of the total change of option price for the change of S_0 and works only if the change of S_0 is small.

- A more reliable, non-linear approximation of the sensitivity of option price to S_0 is obtained when we take into account the second partial derivative of the option price as well.
- First, we will present how to compute the second derivative, called gamma, of an option in the BS framework.
- Then, we shall approximate the sensitivity of option price using both delta and gamma.
2. GAMMA: DEFINITION

- The second derivative of \(S_0 \) is called **gamma** and denoted by \(\Gamma \).
- In the Black-Scholes model, the **gammas** of call and put options are equal and are computed as follows:

\[
\Gamma = \frac{\partial^2 c}{\partial S_0^2} = \frac{\partial^2 p}{\partial S_0^2} = \frac{N'(d_1)}{S_0 \sigma \sqrt{T}}
\]

2. DELTA-GAMMA

- On the following slides, we focus on the delta-gamma approximation of option price sensitivity using the first two terms of the Taylor series of \(c(S_0) \) and \(p(S_0) \).

2. DELTA-GAMMA: CALL OPTION SENSITIVITY

- Writing the first two terms of the Taylor formula for the \(c(S_0) \) function we have:

\[
dc \simeq \frac{\partial c}{\partial S_0} dS + \frac{1}{2} \frac{\partial^2 c}{\partial S_0^2} (dS)^2
\]

- Substituting the definitions of delta and gamma into this equation we obtain:

\[
dc \simeq \Delta dS + \frac{1}{2} \Gamma (dS)^2
\]

2. DELTA-GAMMA: PUT OPTION SENSITIVITY

- Writing the first two terms of the Taylor formula for the \(p(S_0) \) function we have:

\[
dp \simeq \frac{\partial p}{\partial S_0} dS + \frac{1}{2} \frac{\partial^2 p}{\partial S_0^2} (dS)^2
\]

- Substituting the definitions of delta and gamma into this equation we obtain:

\[
dp \simeq \Delta dS + \frac{1}{2} \Gamma (dS)^2
\]
2. DELTA-GAMMA: PUT OPTION SENSITIVITY

- In the previous formula, dS is the change of the price of the underlying asset between $t = 0$ and $t = 1$:

 $$dS = S_1 - S_0$$

- Δ is computed at $t = 0$
- Γ is computed at $t = 0$
- dp is the approximation of the price change of the put option between $t = 0$ and $t = 1$:
 $$dp = p_1 - p_0$$

2. DELTA-GAMMA: OPTION SENSITIVITY

- Call option:
 $$dc = N(d_1)dS + \frac{1}{2} S_0 \sigma \sqrt{T} (dS)^2$$

- Put option:
 $$dp = [N(d_1) - 1]dS + \frac{1}{2} S_0 \sigma \sqrt{T} (dS)^2$$

2. ALTERNATIVE HEDGE RATIO

- The formula for the alternative hedge ratio is obtained rewriting the equations of the delta-gamma approximation of the call and put options:
 $$1dc = \Delta dS + \frac{1}{2} \Gamma (dS)^2 = \left(\Delta + \frac{1}{2} \Gamma dS \right) dS$$
 $$1dp = \Delta dS + \frac{1}{2} \Gamma (dS)^2 = \left(\Delta + \frac{1}{2} \Gamma dS \right) dS$$

2. DELTA-GAMMA: SENSITIVITY OF OPTION PRICE

- Why is it useful to compute the gamma of the option price?
- It is useful because:
 (1) The $|\Delta + 0.5 \times \Gamma \times dS|$ value can be used as an alternative risk measure of the option price.
 (2) The $|\Delta + 0.5 \times \Gamma \times dS|$ value defines an alternative hedge ratio of the option.

2. DELTA-GAMMA: SENSITIVITY OF OPTION PRICE

- The hedge ratio of an option tells us how to construct a delta-gamma neutral portfolio from
 (1) the underlying asset and
 (2) the option.

- When we use this alternative hedge ratio to construct a delta-gamma neutral portfolio then we do a so-called delta-gamma hedge.

- On the next slides, we consider delta-gamma hedge for European call and put options.
2. DELTA-GAMMA HEDGE: CALL OPTION

- Consider the following portfolio:
 1. Buy $\Delta + 0.5 \times \Gamma x dS/$ units of the underlying asset and
 2. Sell 1 unit of a call option on the underlying asset.
- This portfolio is not sensitive to large changes of the price of the underlying asset.
- (Remember that the price of the call option is increasing in the price of the underlying asset.)

2. DELTA-GAMMA HEDGE: PUT OPTION

- Consider the following portfolio:
 1. Buy $\Delta + 0.5 \times \Gamma x dS/$ units of the underlying asset and
 2. Buy 1 unit of a put option on the underlying asset.
- This portfolio is not sensitive to large changes of the price of the underlying asset.
- (Remember that the price of the put option is decreasing in the price of the underlying asset.)

2. THE DELTA-GAMMA HEDGE RATIO FORMULA

Advantage:
- One can hedge large changes of the underlying asset price.

Disadvantage:
- The formula includes the $dS=S_t-S_0$ term and S_t is not known at time $t=0$.
- Thus, the risk manager needs to suppose a future price for the underlying asset.

OPTION RISK MANAGEMENT: TWO EXAMPLES

- You are a financial risk manager of BBVA.
- You have to
 1. Compute the delta and gamma of a European call and a European put option and approximate the future change of the option prices using these values.
 2. Form a delta neutral and a delta-gamma neutral portfolio from the options and their underlying asset.

OPTION RISK MANAGEMENT: TWO EXAMPLES

- On the next slides, we solve these two tasks in examples 1 and 2.

EXAMPLE 1: DELTA-GAMMA APPROXIMATION

1. Compute the delta and gamma of a European call and a European put option and approximate the future change of the option prices using these values.
EXAMPLE 1: DELTA-GAMMA APPROXIMATION

• In part (1a), the delta and gamma values are computed for European call option using the BS model.

• In part (1b), the delta and gamma values are computed for European call put option using the BS model.

(1a) DELTA AND GAMMA COMPUTATION FOR CALL

• The delta and gamma values are computed for European call option using the BS model.

• We shall use the next initial data for both options:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_0</td>
<td>X</td>
<td>r</td>
<td>T</td>
</tr>
<tr>
<td>S</td>
<td>100</td>
<td>105</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>X</td>
<td>110</td>
<td>110</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>r</td>
<td>110</td>
<td>110</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>σ</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
</tbody>
</table>

(1a) DELTA AND GAMMA COMPUTATION FOR CALL

Next, we calculate d_1, d_2, $N(d_1)$, $N(d_2)$ and $N'(d_1)$:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t=0$</td>
<td>$t=1$</td>
<td>$t=0$</td>
<td>$t=1$</td>
</tr>
<tr>
<td>d_1</td>
<td>-0.6</td>
<td>0.17</td>
<td>-0.5</td>
<td>0.27</td>
</tr>
<tr>
<td>d_2</td>
<td>-0.27</td>
<td>-0.04</td>
<td>-0.4</td>
<td>-0.27</td>
</tr>
<tr>
<td>$N(d_1)$</td>
<td>0.48</td>
<td>0.57</td>
<td>0.4</td>
<td>0.57</td>
</tr>
<tr>
<td>$N(d_2)$</td>
<td>0.39</td>
<td>0.48</td>
<td>0.39</td>
<td>0.48</td>
</tr>
<tr>
<td>$N'(d_1)$</td>
<td>0.40</td>
<td>0.39</td>
<td>0.4</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Finally, we compute the values of BS call price, delta, gamma and the corresponding true and approximated changes:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t=0$</td>
<td>$t=1$</td>
<td>dc</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>6.92</td>
<td>9.53</td>
<td>2.61050</td>
<td>True change: $dc=c_1-c_0$</td>
</tr>
<tr>
<td>Δ</td>
<td>0.4759</td>
<td>0.5673</td>
<td>2.37962</td>
<td>Δ approx.: Δds</td>
</tr>
<tr>
<td>Γ</td>
<td>0.0188</td>
<td>0.0177</td>
<td>2.61427</td>
<td>$\Delta-\Gamma$ approx.: $\Delta ds + \frac{1}{2}\Gamma(ds)^2$</td>
</tr>
</tbody>
</table>

(1b) DELTA AND GAMMA COMPUTATION FOR PUT

• The delta and gamma values are computed for European call put option using the BS model.

• We shall use the next initial data for both options:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_0</td>
<td>X</td>
<td>r</td>
<td>T</td>
</tr>
<tr>
<td>S</td>
<td>120</td>
<td>105</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>X</td>
<td>110</td>
<td>110</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>r</td>
<td>110</td>
<td>110</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>σ</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Remark: When we compute the approximations in the previous table, we should use the values of delta and gamma for $t = 0$ (marked by bold letters).

In other words, we only use current, known values to approximate the option price change.
Next, we calculate d_1, d_2, $N(d_1)$, $N(d_2)$ and $N'(d_1)$:

<table>
<thead>
<tr>
<th>$t=0$</th>
<th>$t=1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>-0.06</td>
</tr>
<tr>
<td>d_2</td>
<td>-0.27</td>
</tr>
<tr>
<td>$N(d_1)$</td>
<td>0.52</td>
</tr>
<tr>
<td>$N(d_2)$</td>
<td>0.61</td>
</tr>
<tr>
<td>$N'(d_1)$</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Note: Again, when we compute the approximations in the previous table, we should use the values of delta and gamma for $t=0$ (marked by bold letters).

In other words, we only use current, known values to approximate the option price change.

Finally, we compute the values of BS call price, delta, gamma and the corresponding true and approximated changes:

<table>
<thead>
<tr>
<th>$t=0$</th>
<th>$t=1$</th>
<th>dc</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>10.51</td>
<td>8.12</td>
</tr>
<tr>
<td>Δ</td>
<td>-0.5241</td>
<td>-0.4327</td>
</tr>
<tr>
<td>Γ</td>
<td>0.0188</td>
<td>0.0177</td>
</tr>
<tr>
<td>True change: $dp=p_{t}-p_{t-1}$</td>
<td>-2.38950</td>
<td>8.12</td>
</tr>
<tr>
<td>Δ approx.: Δds</td>
<td>-2.62038</td>
<td></td>
</tr>
<tr>
<td>$\Delta + \Gamma$ approx.: $\Delta ds + \frac{1}{2}\Gamma(ds)^2$</td>
<td>-2.38573</td>
<td></td>
</tr>
</tbody>
</table>

In part (2a), we shall consider the hedge of a European short call position by a long underlying asset position.

In part (2b), we will review the hedge of a European long put position by a long underlying asset position.

In both parts, we form two alternative portfolios: (*) delta neutral and (**) delta-gamma neutral.

We use the data from Example 1.

(2a) Hedge of a European short call position by a long underlying asset position

(*) The next table presents a delta neutral portfolio:

<table>
<thead>
<tr>
<th>asset</th>
<th>units</th>
<th>Δ</th>
<th>units</th>
<th>true change</th>
</tr>
</thead>
<tbody>
<tr>
<td>short call</td>
<td>-1</td>
<td>-1</td>
<td>-2.6105</td>
<td></td>
</tr>
<tr>
<td>long underlying asset</td>
<td>Δ</td>
<td>0.4759</td>
<td>2.3796</td>
<td></td>
</tr>
<tr>
<td>PORTFOLIO</td>
<td></td>
<td></td>
<td>-0.2309</td>
<td></td>
</tr>
</tbody>
</table>
(2a) Hedge of a European short call position by a long underlying asset position

- (**) The next table presents a delta-gamma neutral portfolio:

<table>
<thead>
<tr>
<th>asset</th>
<th>units</th>
<th>units</th>
<th>true change</th>
</tr>
</thead>
<tbody>
<tr>
<td>short call</td>
<td>-1</td>
<td>-1</td>
<td>-2.6105</td>
</tr>
<tr>
<td>long underlying asset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta + 0.5 x \Gamma x dS$</td>
<td>0.5229</td>
<td>2.6143</td>
<td></td>
</tr>
<tr>
<td>PORTFOLIO</td>
<td></td>
<td></td>
<td>0.0038</td>
</tr>
</tbody>
</table>

(2b) Hedge of a European long put position by a long underlying asset position.

- (*) The next table presents a delta neutral portfolio:

<table>
<thead>
<tr>
<th>asset</th>
<th>units</th>
<th>units</th>
<th>true change</th>
</tr>
</thead>
<tbody>
<tr>
<td>long put</td>
<td>1</td>
<td>1</td>
<td>-2.3895</td>
</tr>
<tr>
<td>long underlying asset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ</td>
<td>0.5241</td>
<td>2.6204</td>
<td></td>
</tr>
<tr>
<td>PORTFOLIO</td>
<td></td>
<td></td>
<td>0.2309</td>
</tr>
</tbody>
</table>

SWAPS

- The swap market is a huge component of the derivatives market.
- Swaps are multi-period extensions of forward contracts.
- These contracts provide a means to quickly, cheaply, and anonymously restructure the balance sheet.
- Therefore, swaps are very frequently used in risk management in practice.

SWAPS

- There are two main types of swap contracts:
 1. **Foreign exchange swap**
 2. **Interest rate swap**
FOREIGN EXCHANGE SWAP

Rather than agreeing to exchange two currencies at forward price at one single future date, a foreign exchange swap (FES) is an exchange of two currencies at a fixed exchange rate on several future dates.

This fixed exchange rate is called swap rate.

Thus, FES is a sequence of currency futures contracts.

Example:

Two parties might exchange USD 2 million for GBP 1 million in each of the next 5 years.

In this swap, the USD/GBP exchange rate is fixed for 5 years at 1 GBP = 2 USD that is USD/GBP = 0.5.

Let \(F^* = 0.5 \text{ USD/GBP} \) denote this constant exchange rate called swap rate.

The investor receiving GBP is going to receive GBP 1 million in each of the next 5 years.

Similarly, the investor receiving USD is going to receive USD 2 million in each of the next 5 years.

We shall investigate whether the \(F^* = 0.5 \) USD/GBP swap rate in this example is a correct value or not.

In order to find the fair swap rate, \(F^* \) we exploit the analogy between a swap agreement and a sequence of futures contracts.

The fair value of \(F^* \) in a \(T \)-period swap is given by the next formula:

\[
\frac{F_1}{(1+y_1)} + \frac{F_2}{(1+y_2)^2} + \cdots + \frac{F_T}{(1+y_T)^T} = \frac{F^*}{(1+y_1)} + \frac{F^*}{(1+y_2)^2} + \cdots + \frac{F^*}{(1+y_T)^T}
\]

where \(F_t \) denotes the futures exchange rate for date \(t \) and \(y_t \) denotes the risk-free rate for date \(t \).
SWAPS - Foreign exchange swap

• To determine the fair value of \(F^* \), the investor needs to substitute the actual futures prices, \(F_t \), and the risk-free rates, \(y_t \), into the previous equation.

• Then, he needs to solve the equation in order to find \(F^* \).

SWAPS - Foreign exchange swap

• Data: To find \(F^* \), we need data on the futures exchange rates for the next 5 years and the risk-free spot yield curve:

<table>
<thead>
<tr>
<th>(t)</th>
<th>Futures price USD/GBP</th>
<th>Risk-free spot yield curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>3%</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
<td>3.20%</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>3.50%</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>3.80%</td>
</tr>
<tr>
<td>4</td>
<td>0.65</td>
<td>4%</td>
</tr>
</tbody>
</table>

SWAPS - Foreign exchange swap

• Then, we evaluate the previous swap formula for \(F = 0.5 \) USD/GBP:

<table>
<thead>
<tr>
<th>(t)</th>
<th>Futures price USD/GBP</th>
<th>Risk-free spot yield curve</th>
<th>DF((t,y))</th>
<th>PV(futures price)</th>
<th>PV((F^*))</th>
<th>squared error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.971</td>
<td>0.485</td>
<td>0.485</td>
<td>0.485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.939</td>
<td>0.563</td>
<td>0.469</td>
<td>0.563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.902</td>
<td>0.496</td>
<td>0.451</td>
<td>0.496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.861</td>
<td>0.517</td>
<td>0.431</td>
<td>0.517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.922</td>
<td>0.534</td>
<td>0.411</td>
<td>0.534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>2.586</td>
<td>2.248</td>
<td>12.14%</td>
<td></td>
</tr>
</tbody>
</table>

SWAPS - Foreign exchange swap

• We can see in the table that the two sides of the equation are not equal and we make a squared error of 12.14%.

• In order to find, the fair swap rate \(F^* \), we need to choose \(F^* \) such that the two sides of the equation are equal.

• This we can do using solver in Excel.

SWAPS - Foreign exchange swap

• Employing Solver we get the following result:

<table>
<thead>
<tr>
<th>(t)</th>
<th>Futures price USD/GBP</th>
<th>Risk-free spot yield curve</th>
<th>DF((t,y))</th>
<th>PV(futures price)</th>
<th>PV((F^*))</th>
<th>squared error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>3%</td>
<td>0.971</td>
<td>0.485</td>
<td>0.485</td>
<td>0.561</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>3.20%</td>
<td>0.699</td>
<td>0.563</td>
<td>0.542</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.55</td>
<td>3.50%</td>
<td>0.602</td>
<td>0.496</td>
<td>0.521</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>3.80%</td>
<td>0.661</td>
<td>0.517</td>
<td>0.497</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.65</td>
<td>4%</td>
<td>0.622</td>
<td>0.534</td>
<td>0.475</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>2.506</td>
<td>2.595</td>
<td>0.00%</td>
<td></td>
</tr>
</tbody>
</table>

SWAPS - Foreign exchange swap

• Conclusion:

• The fair swap rate is given by 0.5775 USD/GBP.
INTEREST RATE SWAP

SWAPS - Interest rate swap

- Interest rate swaps (IRS) call for the exchange of a series of cash flows proportional to a fixed interest rate for a corresponding series of cash flows proportional to a floating interest rate.
- The fixed interest rate is called swap rate.
- In other words, IRS exchange a fixed interest rate payment for a floating interest rate payment.

Example:

- One party might exchange a variable cash flow equal to EUR 1 million times a short-term interest rate (for example EURIBOR) for EUR 1 million times a fixed interest rate of 8% for each of the next 5 years.
- Let $F^* = 8\%$ denote the constant interest rate and call it swap rate.

We shall investigate whether the $F^* = 8\%$ constant interest rate in this example is a correct value or not.

In order to find the fair swap rate, F^*, we exploit the analogy between a swap agreement and a sequence of futures contracts.

The fair value of F^* in a T-period swap is given by the next formula:

$$\frac{F_1}{(1+y_1)^T} + \frac{F_2}{(1+y_2)^T} + \ldots + \frac{F_T}{(1+y_T)^T} = \frac{F^*}{(1+y_1)^T} + \frac{F^*}{(1+y_2)^T} + \ldots + \frac{F^*}{(1+y_T)^T}$$

where F_t denotes the EURIBOR futures interest rate for date t and y_t denotes the risk-free rate for date t.
To determine the fair value of \(F^* \), the investor needs to substitute the actual futures prices, \(F_t \) and the risk-free rates, \(y_t \) into the previous equation. Then, he needs to solve the equation in order to find \(F^* \).

Data: To find \(F^* \), we need data on the EURIBOR futures rates for the next 5 years and the risk-free spot yield curve:

<table>
<thead>
<tr>
<th>(t)</th>
<th>EURIBOR futures rates</th>
<th>Risk-free spot yield curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>1</td>
<td>4.20%</td>
<td>3.20%</td>
</tr>
<tr>
<td>2</td>
<td>4.10%</td>
<td>3.50%</td>
</tr>
<tr>
<td>3</td>
<td>4.40%</td>
<td>3.80%</td>
</tr>
<tr>
<td>4</td>
<td>4.70%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Then, using the data we evaluate the previous swap formula for \(F^* = 8\% \):

<table>
<thead>
<tr>
<th>(t)</th>
<th>(DF(t,y))</th>
<th>(PV(\text{futures price}))</th>
<th>(PV(F^*))</th>
<th>Squared error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-0</td>
<td>0.971</td>
<td>0.039</td>
<td>0.078</td>
<td></td>
</tr>
<tr>
<td>1-1</td>
<td>0.939</td>
<td>0.039</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>0.902</td>
<td>0.037</td>
<td>0.072</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>0.861</td>
<td>0.038</td>
<td>0.069</td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>0.822</td>
<td>0.039</td>
<td>0.066</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td></td>
<td>0.192</td>
<td>0.360</td>
<td>2.82%</td>
</tr>
</tbody>
</table>

Using Solver we get the following result:

<table>
<thead>
<tr>
<th>(t)</th>
<th>EURIBOR futures rates</th>
<th>(F^*)</th>
<th>Risk-free spot yield curve</th>
<th>(DF(t,y))</th>
<th>(PV(\text{futures price}))</th>
<th>(PV(F^*))</th>
<th>Squared error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4%</td>
<td>4.27%</td>
<td>3%</td>
<td>0.971</td>
<td>0.039</td>
<td>0.039</td>
<td>0.041</td>
</tr>
<tr>
<td>2</td>
<td>4.20%</td>
<td>4.27%</td>
<td>2.20%</td>
<td>0.902</td>
<td>0.037</td>
<td>0.037</td>
<td>0.038</td>
</tr>
<tr>
<td>3</td>
<td>4.10%</td>
<td>4.27%</td>
<td>3.50%</td>
<td>0.861</td>
<td>0.038</td>
<td>0.038</td>
<td>0.033</td>
</tr>
<tr>
<td>4</td>
<td>4.40%</td>
<td>4.27%</td>
<td>3.80%</td>
<td>0.822</td>
<td>0.039</td>
<td>0.039</td>
<td>0.029</td>
</tr>
<tr>
<td>5</td>
<td>4.70%</td>
<td>4.27%</td>
<td>4%</td>
<td></td>
<td>0.192</td>
<td>0.192</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Conclusion:

The fair fixed interest rate is given by 4.27%.
A NOTE ON TRADITIONAL RETURN AND LOG-RETURN

INTRODUCTION
- There exist two alternative ways to account for return / interest:
 1. Traditional return
 2. Log-return or continuous return
- When we compute the future value of a cash flow using these ways of accounting returns, we have two alternative formulas.

FUTURE VALUE
- Consider the following cash flow during 1 year:
 \[
 \begin{array}{c|c}
 \text{t=0} & \text{t=1} \\
 \hline
 \text{CF} & \text{FV(CF)} \\
 \end{array}
 \]
- For this cash flow, we have two alternative formulas to compute FV:

FUTURE VALUE FORMULAS
- For traditional return:
 \[
 FV_1(CF, r, n) = CF \left(1 + \frac{r}{n}\right)^n
 \]
 where \(n \) denotes the number of times interest is paid during one year and \(r \) denotes the “traditional” interest rate.
- Note that this formula assumes that we reinvest \(n \) times the interest payment.

FUTURE VALUE FORMULAS
- Continuous return:
 \[
 FV_2(CF, r) = CF \exp(r)
 \]
 where \(r \) denotes the continuous return.
- We will show that this formula implicitly assumes that interest is paid continuously and is reinvested continuously.

PRESENT VALUE
- Consider the following cash flow during 1 year:
 \[
 \begin{array}{c|c}
 \text{t=0} & \text{t=1} \\
 \hline
 \text{PV(CF)} & \text{CF} \\
 \end{array}
 \]
- For this cash flow, we have two alternative formulas to compute PV:
PRESENT VALUE FORMULAS

- The present value formulas can be obtained easily for both cases:
 - Traditional return:
 \[PV_1(CF, r, n) = CF \left(1 + \frac{r}{n} \right)^{-n} \]
 - Continuous return:
 \[PV_2(CF, r) = CF \exp(-r) \]

RELATIONSHIP BETWEEN THE TWO RETURNS

- The two formulas can be related using the following equation:
 \[\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = \exp(r) \]
 - This equation means that if the number of interest payments and interest reinvestments during the year goes to infinity then FV(CF) and PV(CF) are equal.

RELATIONSHIP BETWEEN THE TWO RETURNS

- Thus, we can write the next result:
 \[\lim_{n \to \infty} FV_1(CF, r, n) = FV_2(CF, r) \]
 and
 \[\lim_{n \to \infty} PV_1(CF, r, n) = PV_2(CF, r) \]

WHY DO WE USE CONTINUOUS RETURNS?

- In finance, we use continuous returns because it has some mathematical properties that make it easier to use when we do computation or modeling in finance.
 - We use it because in many cases it is easier to work with continuous return than with the traditional one.
The major financial statements

Three major financial statements are:
1. Income statement
2. Balance sheet
3. Statement of cash flows

Income statement

- The income statement is a summary of the profitability of the firm over a period of time, such as a year.
- It represents revenues generated during the operating period, the expenses incurred during that same period, and the company's net earning or profits, which are simply the difference between revenues and expenditures.
Income statement

- In this class, we shall see relatively simple income statements that contain few accounts.
- In general, an income statement of a large firm may contain thousands of accounts.

Example: The following table presents the income statement of Hewlett-Packard for the year 2009:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net sales</td>
<td>101,358</td>
</tr>
<tr>
<td>Other income</td>
<td>631</td>
</tr>
<tr>
<td>Operating revenues</td>
<td>102,289</td>
</tr>
<tr>
<td>Cost of goods sold</td>
<td>66,523</td>
</tr>
<tr>
<td>Selling, general and administrative expenses</td>
<td>11,266</td>
</tr>
<tr>
<td>Research and development expenses</td>
<td>3,591</td>
</tr>
<tr>
<td>Other expenses</td>
<td>814</td>
</tr>
<tr>
<td>Income taxes</td>
<td>993</td>
</tr>
<tr>
<td>Taxable income</td>
<td>17,323</td>
</tr>
<tr>
<td>Extraordinary result</td>
<td>(96)</td>
</tr>
<tr>
<td>Financial result</td>
<td>249</td>
</tr>
<tr>
<td>Financial revenues</td>
<td>175</td>
</tr>
<tr>
<td>Financial expenses</td>
<td>249</td>
</tr>
<tr>
<td>Depreciation and amortization</td>
<td>2,353</td>
</tr>
<tr>
<td>EBIT</td>
<td>17,440</td>
</tr>
<tr>
<td>Financial expenses</td>
<td>(814)</td>
</tr>
<tr>
<td>Financial revenues</td>
<td>175</td>
</tr>
<tr>
<td>Extraordinary result</td>
<td>(96)</td>
</tr>
<tr>
<td>Taxable income</td>
<td>17,323</td>
</tr>
<tr>
<td>Income taxes</td>
<td>993</td>
</tr>
<tr>
<td>Net income</td>
<td>16,330</td>
</tr>
</tbody>
</table>

Some abbreviations:

- **EBITDA** = Earnings before interest, taxes, depreciation and amortization
- **EBIT** = Earnings before interest and taxes

What is the difference between amortization and depreciation?

Amortization usually refers to spreading an intangible asset’s cost over that asset’s useful life.

- For example, a patent on a piece of medical equipment usually has a life of 17 years. The cost involved with creating the medical equipment is spread out over the life of the patent, with each portion being recorded as an expense on the company's income statement.

Depreciation, on the other hand, refers to prorating a tangible asset’s cost over that asset’s life.

- For example, an office building can be used for a number of years before it becomes run down and is sold. The cost of the building is spread out over the predicted life of the building, with a portion of the cost being expensed each accounting year.

A remark:

- It is important to note that in some places, such as Canada, the terms amortization and depreciation are often to used interchangeably to refer to both tangible and intangible assets.
The balance sheet is the list of the firm’s assets, liabilities and shareholders’ equity at a moment.

The first section of the balance sheet gives a listing of the assets of the firm.
- Current assets are presented first.
- Current assets are cash and other items (accounts receivable, inventories, etc.) that will be converted into cash within 1 year.

Next comes the part of fixed assets.
- Within fixed assets there is a listing of long-term or fixed tangible assets, which usually consists primarily of the company’s property, plant, and equipment.
- Another part of fixed assets are intangible fixed assets such as goodwill, patents or software.

Goodwill is an accounting term used to reflect the portion of the book value of a business entity not directly attributable to its assets and liabilities.
- It normally arises only in case of an acquisition.
- It reflects the ability of the entity to make a higher profit than would be derived from selling the tangible assets.
- Goodwill is considered an intangible asset.

Example: The following table presents the assets in Hewlett-Packard’s balance sheet for dates 01/01/2009 and 12/31/2009:
Balance: A remark about long-term investments

● Long-term investments are considered as long-term financial investments like bonds, stocks held for more than 1 year.

Balance: LIABILITIES AND EQUITY

The liability and shareholders’ equity section is arranged similarly to assets:

● First come short-term or current liabilities such as accounts payable, accrued taxes, and debts that are due within 1 year.

● Following this is long-term liabilities such as debt and other liabilities due in more than 1 year.

Balance: Deferred liabilities definition

Deferred liabilities:

● Debt where the payment made is postponed beyond the present date.

● An example is deferred taxes.
A remark about retained earnings and net income

- Retained earnings or reserves accumulate the net incomes of past years:
- \(\text{Retained earnings}(t) = \text{Retained earnings}(t-1) + \text{Net income}(t-1) \)

BALANCE SHEET VERSUS INCOME STATEMENT

- While **income statement** provides a measure of profitability **over time**, the **balance sheet** provides a “snapshot” of the financial condition of the firm at a particular moment.
- For example, we have HP’s income statement for year 2006 and balance sheets from dates 01/01/2009 and 12/31/2009.

STATEMENT OF CASH FLOWS

- The income statement and balance sheets are based on accrual methods of accounting, which means that revenues and expenses are recognized at the time of a sale even if no cash has been exchanged.
- In contrast, the statement of cash flows tracks the cash implications of transactions.

STATEMENT OF CASH FLOWS

- For example, if goods are sold now, with payment due in 60 days, the **income statement** will treat the revenue as generated when the sale occurs, and the **balance sheet** will be immediately augmented by accounts receivable, but the **statement of cash flows** will **not show** an increase in available cash until the bill is paid.

STATEMENT OF CASH FLOWS

- The statement of cash flows provides evidence on the well-being of a firm.
- If a company cannot pay its dividends and maintain the productivity of its capital stock out of cash from operations, this is a serious warning that the firm cannot maintain the dividend payout at its current level in the long run.
- The statement of cash flows will reveal this developing problem.
Another use of the statement of cash flows is in company valuation. In the discounted cash flow valuation technique, the researcher gives and estimation of future cash flows available for stockholders and creditors. Then, these cash flow forecasts are discounted at appropriate interest rates in order to determine the company's present value.

In this class, we shall study the construction of statements of cash flows that can be used for company valuation purposes. We remark that the accounting law of every country defines the components and the structure of the statement of cash flows.

Although there is an international convergence of national accounting laws, the financial statements are different among countries and more importantly they are created not only for valuation purposes.

In order to get the cash flow statement for a given period (for example year 2009), one needs the following three accounting documents:
- Income statement of the period (year 2009)
- Balance sheet of the first day of the period (date 01/01/2009)
- Balance sheet of the last day of the period (date 12/31/2009)

The reason why we need these three documents is that the values presented in the income statement are flow type values that can included directly in the statement of cash flows.

However, the values in the balance are snapshots taken on specific dates (i.e., stock type values).

In order, to get flow type values presented in the cash flow statement from the balance sheet one needs to compute the difference between the values of last and the first days of the period.
STATEMENT OF CASH FLOWS

- The general structure of the cash flow statement is presented in the next table:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Cash provided by operations</td>
</tr>
<tr>
<td>(2)</td>
<td>Cash flows from investments</td>
</tr>
<tr>
<td>(3)</td>
<td>Extraordinary cash flow</td>
</tr>
<tr>
<td>(1+2+3)</td>
<td>FCFF = Free cash flow to firm</td>
</tr>
<tr>
<td>(4)</td>
<td>Cash flow from financing activities</td>
</tr>
<tr>
<td>(1+2+3+4)</td>
<td>FCFE = Free cash flow to equity</td>
</tr>
</tbody>
</table>

(1) Cash provided by operations
- This is the cash flow directly coming from the firm’s operations.
- For example, in the case of Volkswagen car manufacturer company, the cash provided by operations is the cash flow related to car production, salary payments, and the sale of Volkswagen Polo cars.
- This cash flow under normal circumstances has positive value.

(2) Cash flows from investments
- This is the cash flow related to the firm’s investments in fixed non-financial assets.
- For example, in case of Volkswagen, this is the cash flow related to purchase of machines related to car production, plants, properties, and other tangible assets.
- This cash flow under normal circumstances has negative value.

(3) Extraordinary cash flow
- This cash flow is related to extraordinary events occurred during the year.
- For example, these extraordinary events can be labor accidents, natural disasters or other events that are not directly related to the normal operations of the firm.

FCFF = Free cash flow to firm
- The sum of (1), (2) and (3) is called free cash flow to firm (FCFF).
- FCFF is an important cash flow category because it represents the cash available to:
 (1) Shareholders who finance the company by purchasing equity (stocks) and
 (2) Creditors who finance the firm through liabilities (short- and long-term debts).
- FCFF should be positive normally.

(4) Cash flow from financing activities
- This is the cash flow related to financial assets and liabilities and financial results of the company.
- The cash flow from financing activities reflect the changes of the value of financial assets and liabilities and the profit or loss of financial operations.
- Under normal conditions, the cash flow from financing activities is negative due to the interest payments to creditors.
FCFE = Free cash flow to equity

- The sum of FCFF and (4) Cash flow from financing activities is called free cash flow to equity (FCFE).
- FCFE is also an important cash flow category because it represents the cash available to:
 (1) Shareholders who finance the company by purchasing equity (stocks).
 (2) The FCFE normally should be positive.

MORE DETAILED CASH FLOW STATEMENT

More detailed structure of the Cash flow statement

- The first row in the cash flow statement is always EBIT.
- In the second row, we subtract the tax payment to compute after-tax EBIT.
- The tax payment can be defined in various ways and as a consequence we have different cash flow statements depending on how do we compute the tax payment.

More detailed structure of the Cash flow statement

- On the following slides, two alternative cash flow statements are presented:
 CF1: Cash flow where Income taxes are subtracted from EBIT
 CF2: Cash flow where Tax due to operating result is subtracted from EBIT
- We do this to compute the Net Operating Profit Less Adjusted Taxes (NOPLAT).

More detailed structure of the Cash flow statement

- The difference between these two alternatives is that CF1 are CF2 are two alternatives to compute tax.
- In CF1, all the income tax presented in the income statement is subtracted from EBIT.
- In CF2, only a proportion of the income tax is subtracted from EBIT. This portion is the tax that corresponds to the operating activity and it is called ‘Tax due to operating result’.

More detailed structure of the Cash flow statement

- The CF2 can be seen as a better cash flow because in CF1 we not only subtract the tax corresponding to the operating activity from EBIT but also subtract the taxes that correspond to the extraordinary events and financial operations that have nothing to do with the basic operations of the firm.
More detailed structure of the Cash flow statement

- Therefore, when we do CF2, we decompose to tax payment into the following parts:
 1. Tax due to operating result
 2. Tax due to extraordinary result
 3. Tax due to financial result

Computation tax payments in CF2:

\[
\text{Tax due to operating result} = \text{EBIT} \times \frac{\text{Income taxes}}{\text{Taxable income}}
\]

\[
\text{Tax due to extraordinary result} = \text{Extraordinary result} \times \frac{\text{Income taxes}}{\text{Taxable income}}
\]

\[
\text{Tax due to financial result} = \text{Financial result} \times \frac{\text{Income taxes}}{\text{Taxable income}}
\]

More detailed structure of the Cash flow statement

- On the following slides, both CF1 and CF2 cash flow statements are presented.
- Afterwards, some remarks about the construction of the cash flow statements will be presented.

REMARKS

1. Notice that all accounts in the cash flow, which come from the balance sheet start with the Δ notation.
 - The Δ means the we include the change of the value of the account in the cash flow.
 - For example:
 \[
 \Delta \text{Current liabilities} = \text{Current liabilities}(t) - \text{Current liabilities}(t-1)
 \]
REMARKS

2. Notice that when we compute Δ Current assets, we do not take into account the Cash and marketable securities account from the balance sheet.
 • This means that
 Δ Current assets = Δ Receivables + Δ Inventories + Δ Other current assets
 • This is because Δ Cash and marketable securities are presented in the last row of the cash flow table.

REMARKS

3. Related to remark 2, notice that the last two rows of the cash flow statement are Δ Cash and marketable securities two times.
 • The first row is a result of the previous rows of the table (see the computation in the first column).
 • The second row directly comes from the balance sheet by
 Δ Cash and marketable securities = Cash and marketable securities(t) - Cash and marketable securities($t-1$).
 • These two rows provide a verification of the cash flow calculation. If everything has been done well, these two rows should be equal.

REMARKS

4. Notice that the cost of depreciation and amortization is removed from cash provided by operations and included in cash flows from investments.
 • This is due to the fact that depreciation is a cost related to the firm’s investments in fixed assets and not to its operations.

REMARKS

5. Notice that an increase in the value of any the assets, i.e.
 Δ Asset = Asset(t) - Asset($t-1$) > 0
always has negative impact on the cash flow. (See the first column of the cash flow tables for this.)
 • This is because more assets mean more investments of the firms.

REMARKS

6. Notice that an increase in the value of any the liabilities or equity, i.e.
 Δ Liability = Liability(t) - Liability($t-1$) > 0
or
 Δ Equity = Equity(t) - Equity($t-1$) > 0
always has positive impact on the cash flow. (See the first column of the cash flow tables for this.)
 • This is because more equity/liability means more financing of the firm.

REMARKS

7. Notice that revenues have positive while costs have negative impact on the firm’s cash flow. (See the first column of the cash flow tables for this.)
RATIO ANALYSIS

INTRODUCTION
- The major financial statements give an important financial and economic information of a firm’s situation.
- However, these documents contain a large amount of information that is difficult to overview.
- Therefore, in the practice analysts and company managers use several financial ratios to summarize the main accounting documents of the company.

INTRODUCTION
- These financial ratios are typically used in order to compare
 1. Different firms at a given point of time. (For example, compare the profitability of two competitor firms in 2009 using a profitability ratio.)
 2. Different years of the same firm. (For example, to study the evolution of the profitability of Hewlett-Packard during 2000-2009.)

Remark:
- When the following financial ratios include one item from the income statement, which covers a period of time, and another from the balance sheet, which is a “snapshot” at a particular time, the practice is to take the average of the beginning and the end-of-year balance sheet figures.

INTRODUCTION
- We shall classify the financial ratios in the next groups:
 1. Leverage ratios
 2. Asset utilization ratios
 3. Liquidity ratios
 4. Profitability ratios
 5. Market price ratios

LEVERAGE RATIOS
LEVERAGE RATIOS

- The following ratios will be presented:
 1. **Interest burden**
 2. **Interest coverage**
 3. **Leverage**
 4. **Compound leverage factor**

1. **Interest burden**

\[
\text{Interest burden} = \frac{\text{EBIT} - \text{Interest expense}}{\text{EBIT}}
\]

- We shall explain this ratio later.

2. **Interest coverage**

\[
\text{Interest coverage} = \frac{\text{EBIT}}{\text{Interest expense}}
\]

- A high coverage ratio indicates that the likelihood of bankruptcy is low because annual earnings are significantly greater than annual interest obligations.
- It is widely used by both lenders and borrowers in determining the firm’s debt capacity and is a major determinant of the firm’s **bond rating**.

3. **Leverage**

\[
\text{Leverage} = \frac{\text{Assets}}{\text{Equity}} = 1 + \frac{\text{Debt}}{\text{Equity}}
\]

- We shall explain this ratio later.

4. **Compound leverage factor**

\[
\text{Compound leverage factor} = \text{Interest burden} \times \text{Leverage}
\]

- We shall explain this ratio later.

ASSET UTILIZATION RATIOS
ASSET UTILIZATION RATIOS

- The following ratios will be presented:
 1. Total asset turnover
 2. Fixed asset turnover
 3. Inventory turnover
 4. Days receivables

1. Total asset turnover

\[
\text{Total asset turnover} = \frac{\text{Sales}}{\text{Average total assets}}
\]

- This ratio measures sales per EUR of the firm’s money tied up in assets.

2. Fixed asset turnover

\[
\text{Fixed asset turnover} = \frac{\text{Sales}}{\text{Average fixed assets}}
\]

- This ratio measures sales per EUR of the firm’s money tied up in fixed assets.

3. Inventory turnover

\[
\text{Inventory turnover} = \frac{\text{Cost of goods sold}}{\text{Average inventories}}
\]

- The numerator of this ratio is the cost of goods sold instead of sales revenue because inventory is valued at cost.
- This ratio measures the speed with which inventory is turned over.

4. Days receivables

\[
\text{Days receivables} = \frac{\text{Average accounts receivable}}{\text{Annual sales}} \times 365
\]

- This ratio is also called average collection period.
- It is the number of days’ worth of sales tied up in accounts receivable.
- An alternative interpretation of this ratio:
- It is the average lag between the date of sale and the date payment is received.

LIQUIDITY RATIOS
LIQUIDITY RATIOS

- The following ratios will be presented:
 1. Current ratio
 2. Quick ratio
 3. Cash ratio

1. Current ratio

\[
\text{Current ratio} = \frac{\text{Current assets}}{\text{Current liabilities}}
\]

- This ratio measures the ability of the firm to pay off its current liabilities by liquidating its current assets.

2. Quick ratio

\[
\text{Quick ratio} = \frac{\text{Cash} + \text{ Marketable securities} + \text{Receivables}}{\text{Current liabilities}}
\]

- This ratio is also called the acid test ratio.
- The quick ratio is a better measure of liquidity than the current ratio for firms whose inventory is not readily convertible into cash.

3. Cash ratio

\[
\text{Cash ratio} = \frac{\text{Cash} + \text{ Marketable securities}}{\text{Current liabilities}}
\]

- A company’s receivables are also less liquid than its holdings of cash and marketable securities.
- Therefore, the cash ratio is a better measure than quick ratio for firms whose receivable may not be obtained in the future.

PROFITABILITY RATIOS

- The following ratios will be presented:
 1. Return on assets (ROA)
 2. Return on equity (ROE)
 3. Return on sales (ROS) = Profit margin
1. Return on assets (ROA)

\[
\text{Return on assets} = \frac{\text{EBIT}}{\text{Average total assets}}
\]

2. Return on equity (ROE)

\[
\text{Return on equity} = \frac{\text{Net income}}{\text{Average stockholders' equity}}
\]

3. Return on sales (ROS)
 \((= \text{Profit margin}) \)

\[
\text{Return on sales (Profit margin)} = \frac{\text{EBIT}}{\text{Sales}}
\]

ROE versus ROA

- ROE and ROA can be related by the following formula:

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

- On the following slides, this formula is demonstrated:

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]

\[
\text{ROE} = (1 - \text{Tax rate}) \left[\text{ROA} + (\text{ROA} - \text{Interest rate}) \frac{\text{Debt}}{\text{Equity}} \right]
\]
Implications of the previous ROE vs ROA relationship

If there is no debt or the ROA equals the interest rate on the firm’s debt:
- ROE will simply equal \((1 - \text{Tax rate}) \times \text{ROA}\).

If there is debt:
- If ROA exceeds the interest rate then its ROE will exceed \((1 - \text{Tax rate}) \times \text{ROA}\) by an amount that will be greater the higher the debt-to-equity ratio.
- If the interest rate exceeds ROA then its ROE will be lower than \((1 - \text{Tax rate}) \times \text{ROA}\) by an amount that will be greater the higher the debt-to-equity ratio.

These results make intuitive sense:
- If ROA exceeds the interest rate, the firm earns more than it pays out to creditors. The surplus earnings are available to the firm’s equityholders, which increases ROE.
- If, on the other hand, ROA is less than the interest rate then ROE will decline by an amount that depends on the debt-to-equity ratio.

DuPont system

This kind of decomposition is often called the **DuPont system**.
- (The name comes from the name of the chemical company, which has made it popular.)
- One useful decomposition to 5 factors is presented on the following slide:

\[
\text{ROE} = \frac{\text{Net income}}{\text{Taxable income}} \times \left(\frac{\text{Taxable income}}{\text{EBIT}} \times \frac{\text{EBIT}}{\text{Sales}} \times \frac{\text{Sales}}{\text{Assets}} \times \frac{\text{Assets}}{\text{Equity}} \right)
\]

(Factor 1)

(Factor 2)

(Factor 3)

(Factor 4)

(Factor 5)
Factor 1

\[
\text{Factor 1} = \frac{\text{Net income}}{\text{Taxable income}}
\]

- Factor 1 is called the **tax burden ratio**.
- Its value reflects both the government’s tax code and the policies pursued by the firm in trying to minimize its tax burden.

Factor 2

\[
\text{Factor 2} = \frac{\text{Taxable income}}{\text{EBIT}} = \frac{\text{EBIT} - \text{Interest expense}}{\text{EBIT}}
\]

- Factor 2 is called **interest-burden ratio**.
- The firm’s pretax profits will be the greatest when there are no interest payments to be made to debtholders.
- Its highest possible value is 1.

Factor 3

\[
\text{Factor 3} = \frac{\text{EBIT}}{\text{Sales}}
\]

- Factor 3 is known as the firm’s operating **profit margin** or **return on sales** (ROS).

Factor 4

\[
\text{Factor 4} = \frac{\text{Sales}}{\text{Assets}}
\]

- Factor 4, the ratio of sales to total assets, is known as **total asset turnover (ATO)**.
- It indicates the efficiency of the firm’s use of assets in the sense that it measures the annual sales generated by each EUR of assets.

Factor 5

\[
\text{Factor 5} = \frac{\text{Assets}}{\text{Equity}} = 1 + \frac{\text{Debt}}{\text{Equity}}
\]

- Factor 5 is called the **leverage ratio**.
- It is a ‘direct’ measure of the firm’s financial leverage.
- However, in the previous discussion about the relationship between ROE and ROA, we have seen that leverage helps boost ROE only if ROA is greater than the interest rate.

Factor 5

- How is this ‘indirect’ fact reflected in the DuPont system?
- To measure the full impact of leverage the analyst must take the product of the **interest burden** and **leverage** ratios (i.e., Factors 2 and 5).
- This product is called **compound leverage factor**:

\[
\text{Compound leverage factor} = \text{Interest burden} \times \text{Leverage}
\]
DuPont system

- We can summarize the DuPont system decomposition of ROE using the previous ratio definitions as follows:

\[
\text{ROE} = \frac{\text{Profit margin} \times \text{Total asset turnover}}{\text{Interest burden} \times \text{Leverage}}
\]

An alternative decomposition can be obtained by considering the facts that:

\[
\text{ROA} = \text{Profit margin} \times \text{Total asset turnover} = \text{Factor 3} \times \text{Factor 4}
\]

\[
\text{Compound leverage factor} = \text{Interest burden} \times \text{Leverage} = \text{Factor 2} \times \text{Factor 5}
\]

MARKET PRICE RATIOS

- The following ratios will be presented:
 1. Market-to-book (P/B)
 2. Price-earnings ratio (P/E)
 3. Earnings yield
1. Market-to-book (P/B)

\[
\text{Market-to-book} = \frac{\text{Price per share}}{\text{Book value per share}}
\]

- The market-book-value ratio (P/B) equals the market price of a share of the firm’s common stock divided by its book value.
- Remark: Book value is shareholders’ equity in the Balance sheet.

- Analysts sometimes consider the stock of a firm with a low P/B value to be a “safer” investment, seeing the book value as the “floor” supporting the market price.

1. Market-to-book (P/B)

- Analysts presumably view book value as the level below which market price will not fall because the firm always has the option to liquidate, or sell, its assets for their book value.
- However, this view is questionable.
- Nevertheless, low P/B ratio is seen by some as providing a “margin of safety,” and some analysts will screen out or reject high P/B ratio firms in their stock selection process.

1. Market-to-book (P/B)

- An alternative interpretation of the P/B ratio is as a measure of growth opportunities.
- Empirically, firms with greater growth opportunities tend to exhibit higher multiples of P/B.

2. Price-earnings ratio (P/E)

\[
\text{Price-earnings ratio} = \frac{\text{Price per share}}{\text{Earnings per share}}
\]

- Remark: Earnings = Net income
- While low P/E stocks allow you to pay less per EUR of current earnings, high P/E stocks may still be better bargain if its earnings are expected to grow quickly.
- Nevertheless, most analysts believe that low P/E stocks are more attractive than high P/E stocks.

3. Earnings yield (E/P)

\[
\text{Earnings yield} = \frac{\text{Earnings per share}}{\text{Price per share}}
\]

- Remark: Earnings = Net income
Relationship among ROE, P/B and P/E ratios

- We have the following relationship among ROE, P/B and P/E:

\[
\text{ROE} = \frac{\text{Earnings}}{\text{Book value}} = \frac{\text{Market price}}{\text{Book value}} \times \frac{\text{Market price}}{\text{Earnings}} = \frac{\text{P/B}}{\text{P/E}}.
\]

Relationship among ROE, P/B and E/P ratios

- Rearranging the previous equation we get that earnings yield can be expressed by ROE divided by the market-book-value ratio:

\[
\frac{\text{E}}{\text{P}} = \frac{\text{ROE}}{\text{P/B}}.
\]

- Thus, a company with high ROE can have relatively low earnings yield because its P/B ratio is high.
INTRODUCTION

The objective of this class is to present some commonly applied techniques of firm valuation.

After the introduction, we present four valuation methods:

1. DCF valuation
2. Economic value added (EVA) model
3. Relative valuation – multiples
4. Contingent claim valuation

We will talk more about the DCF method.

Valuation methods will be presented in a general setup. Therefore, they can be applied for several enterprises in many industries.

INTRODUCTION - What do we value?

In the balance sheet, the total value of assets is equal to the sum of equity and liabilities.

Therefore, we may value either

1. **Equity**
2. **Assets = Equity + Debt**

The **stockholders** of the firm are interested in maximizing the value of the **equity**.

In other words, investors who buy the company’s stocks on the financial market are interested in the value of equity.
INTRODUCTION - What do we value?

- The creditors, for example banks, who provide external financing to the company are interested in both the value of the debt and the total value of assets.
- For example, many credits are secured by specific assets of the firm (collateral). In this case, the bank is interested in the value of these assets.

FIRM VALUATION METHODS

We review four approaches to firm valuation:

1. DCF valuation ("mark-to-model")
2. Economic value added (EVA) model
3. Relative valuation – multiples ("mark-to-market")
4. Contingent claim valuation (using option pricing models, firms are "real options")

1. DCF valuation - STRUCTURE

a) Introduction
b) Cost of capital calculation
c) Analyze historical performance
d) Forecasting cash flow
e) Present value of free cash flow

1. DCF valuation - Introduction

- This method is based on computing the present value of future CFs generated by the company.
- When we use this method we need to analyze historical performance, value drivers and predict future CFs.
- This CF can be either (1) CF to firm (FCFF) or (2) CF to equity (FCFE).
1. DCF valuation - Introduction

- The estimation of CFs using the balance sheets and income statement, we have already seen in the Financial Statements section.
- In order to compute the value of firm or equity, we have to discount FCFF and FCFE, respectively.
- To do this, we need a discount rate (cost of capital), which is different for FCFF and FCFE.

1. DCF valuation - Introduction

The DCF method can be applied easily when:
1. We value firms with currently positive CF that can be estimated with reliability for future periods.
2. A proxy for risk that can be used to obtain discount rates is available.

1. DCF valuation - Introduction

- The further we get from this idealized setting, the more difficult DCF valuation becomes.
- Some examples when DCF valuation may be problematic:

(a) Firms in trouble:
- A distressed firm generally has negative earnings and CFs currently and expects to lose money for some time in the future.
- For these firms estimating future CFs is difficult to do, since there is a strong probability of bankruptcy.
- For firms which are expected to fail, DCF valuation does not work very well since it looks at firms as providing positive CFs.

(b) Cyclical firms:
- The earnings and CFs of cyclical firms tend to follow the economy – rising during economic booms and falling during recessions.
- If DCF valuation is used for these firms, expected future CFs are usually smoothed out, unless the analyst undertakes the task of predicting the time and duration of economic recessions and recoveries.

(c) Firms with unutilized assets:
- DCF valuation reflects the value of all assets that produce CFs.
- If a firm has assets that are unutilized (i.e., do not produce any CFs), the value of these assets will not be reflected in DCF valuation.
- Nevertheless, the value of these assets can be obtained externally and then added to the value obtained by the DCF method.
1. DCF valuation - Introduction
(d) Firms with patents or product options:
- Firms often have unutilized patents or product options that do not produce any current CFs and are not expected to produce CFs in the near future, but nevertheless are valuable.
- If this is the case, the DCF value will understate the true value of the firm.
- Again we can overcome this problem by valuing externally then adding to the DCF.

(e) Firms in the process of restructuring:
- Firms in the process of restructuring often sell some of their assets, acquire other assets, and change their capital structure and dividend policy. Some of them also change their ownership structure.
- Each of these changes makes the estimation of future CFs difficult.
- However, if future CFs and discount rates reflect the effects of these changes, DCF may be useful.

(f) Firms involved in acquisitions:
- There are at least two specific issues to be take into account when using DCF method to value target firms:
 1. Is there synergy in the merger and its value can be estimated?
 2. (Especially in hostile takeovers,) What is the effect of changing management on CFs and discount rates?

(g) Private firms:
- The biggest problem of using DCF method to value private firms is estimating the discount rates, since most risk-return models require that parameters be estimated from historical prices on the asset being analyzed. Since securities on private firms are not traded this is not possible.
- A solution is to look at the risk of comparable firms publicly traded.

1. DCF valuation – Cost of capital

- In the financial statements section, we have already seen how to get different kinds of CFs from the income statement and two consecutive balance sheets.
- However, we also need a discount factor to compute the present value of CF.
- For different types of CF different interest rates are needed for the discount factor.
1. DCF valuation – Cost of capital

1. The FCFE is discounted using the cost of capital of equity (also called expected return on equity), \(r_E \).
2. The FCFF is discounted using the Weighted Average Cost of Capital (WACC) after taxes.

1. DCF valuation – Cost of capital

COST OF CAPITAL OF EQUITY

The cost of capital of equity can be estimated in several ways:
1. Capital asset pricing model (CAPM)
2. Arbitrage pricing theory (APT)
3. Dividend growth model

1. DCF valuation – Cost of capital

1. CAPM

- The CAPM determines the expected return of equity as follows:
 \[r_E = r_f + \beta_E (r_M - r_f) \]
 where
 - \(r_f \) is the risk-free rate (for example the yield to maturity of Treasury bills or Treasury bonds) and
 - \(r_M \) is the expected return of the stock market (for example the return of the market index like S&P500 or IBEX).

- As \(\beta_E \) is different for each company, it can be considered as a risk measure of the firm’s equity.
- \(\beta_E \) measures how the stock market return affects the stock return of firm \(E \).
- \(\beta_E \) can be either positive or negative:
 1. If the market index increases and \(\beta_E > 0 \) then the stock price increases.
 2. If the market index increases and \(\beta_E < 0 \) then the stock price decreases.

1. DCF valuation – Cost of capital

2. APT

- Another popular model of expected stock return is the APT.
- It is formulated as follows:
 \[r_E = c + \beta_{E1} F_1 + ... + \beta_{EN} F_N \]
 where \(F_i \) denotes the \(i \)-th risk factor of the stock return.
- APT can be seen as an extension of CAPM because CAPM is a one-factor model where the factor is the market risk premium.
1. DCF valuation – Cost of capital
 Estimation of CAPM and APT

- The parameters of CAPM and APT can be estimated by ordinary least squares (OLS) using the following linear regressions:
 - CAPM:
 \[r_{Et} = r_{ft} + \beta_E (r_{Mt} - r_{ft}) + \epsilon_{Et} \]
 - APT:
 \[r_{Et} = c + \beta_{E1} F_{1t} + \ldots + \beta_{EN} F_{Nt} + \epsilon_{Et} \]

- Where the variables are observed over \(t=1,...,T \) and \(\epsilon_{Et} \) is the i.i.d error term with \(E[\epsilon_{Et}]=0 \) and \(\text{Var}[\epsilon_{Et}]=\sigma^2 \).

3. Dividend growth model

- This approach is based on the DCF model that can be used to value a firm in stable growth.
- For a firm, which has a stable growth rate in earnings and dividends, the present value of CFs on a share of equity can be written as follows:

\[
S_0 = \frac{DIV_1}{r_E - g}
\]

- Where \(S_0 \) is the price of a stock today, \(DIV \) are dividends per share next year, \(r_E \) is the expected yield on equity, and \(g \) is the growth rate of dividends.
- Notice that this formula is the present value of a growing perpetuity.

1. DCF valuation – Cost of capital
 COST OF CAPITAL OF FIRM

- The cost of capital of firm is the weighted average of the costs of the different components of financing.
- We shall focus on two components of financing: (1) equity and (2) debt.
- Define the WACC after taxes as follows:
1. DCF valuation – Cost of capital

WACC after taxes = \(\frac{r_E E}{E + D} + \frac{r_D (1 - T_c) D}{E + D} \)

where

\(r_D \) = pretax expected return of debt
\(r_D (1 - T_c) \) = after-tax expected return of debt
\(T_c \) = corporate tax rate
\(r_E \) = expected return of equity
\(D \) = market value of debt
\(E \) = market value of equity

1. DCF valuation – Cost of capital

WACC: Cost of debt

- The value of the firm’s debt equals the present value of the CF to the debt holders, discounted at a rate that reflects the riskiness of that CF.
- The discount rate should equal the current market rate on similar-risk debt with comparable terms.
- The **after-tax expected return of debt**, \(r_D (1 - T_c) \), measures the current cost to the firm of borrowing funds to finance projects.

1. DCF valuation – Cost of capital

WACC: Why market value is used?

- The cost of capital measures the cost of issuing securities and these securities are issued at **market value**, not at **book value**.
- Some say that book value is more reliable because it is more stable than market value, i.e., it is not so volatile.
- However, this is more a weakness of book value measure because the true value of firms changes as firm-specific and market-wide information is revealed.

1. DCF valuation – Cost of capital

Example 1

- The annual yield to maturity of Spanish treasury bonds is 3%. The annual return of IBEX is 15%. The “beta” of the firm is 2.
- Use the CAPM to compute the expected return of equity of firm E!

Solution:

\[r_E = r_f + \beta (r_M - r_f) = \]

\[3\% + 2(15\%-3\%) = \]

\[3\% + 2x12\% = \]

\[3\% + 24\% = 27\% \]
1. DCF valuation – Cost of capital

Example 2

Using the expected return of equity obtained in example 1, compute the WACC after taxes knowing that:

- The yield of the debt is 6%.
- The corporate tax rate is 15%.
- The market value of debt of firm E is 10 Millions EUR.
- The stock market capitalization of firm E is 20 Millions EUR.

Example 2

Solution:

\[
\text{WACC after taxes} = \frac{r_D (1-T_c) D}{D+E} + \frac{r_E E}{D+E} = \frac{6\% (1-15\%) 10m}{10m+20m} + \frac{27\% \times 20m}{10m+20m} = \frac{6\% \times 85\% \times 10m}{30m} + \frac{27\% \times 20m}{30m} = 1,7\% + 18\% = 19,7\%
\]

1. DCF valuation – Analyze historical performance

The first step in valuing a business is analyzing its historical performance.

- A sound understanding of the company’s past cash flows provides an essential perspective for developing and evaluating forecasts of future cash flows.

- Historical performance analysis should focus on the key drivers of cash flow. (See the value drivers section later in the EVA section.)

Once we have calculated the determinants of historical cash flow, we analyze the results looking for trends and making comparisons with other companies in the same industry.

- We can assemble this analysis into an integrated perspective, which combines the financial analysis with an analysis of the industry structure and qualitative assessment of the company’s strengths and vulnerabilities.
1. DCF valuation - Analyze historical performance

- Developing this integrative perspective is not a mechanical process, so it is difficult to generalize.
- While it is impossible to provide a comprehensive checklist for understanding a company’s historical performance, here are some things to keep in mind:

1. Look back in time as far as possible (at least ten years). This will help to understand whether the company and the industry tend to revert to some normal level of performance over time and whether short-term trends are likely to be permanent breaks from the past.

2. Go as deep into the value drivers as you can, getting as close to operational performance measures as possible.

3. If there are any radical changes in performance, identify the source of the change and determine whether it is real or perhaps just an accounting effect and whether any change is likely to be sustained.

4. The final step in the historical analysis is understanding the financial health of the company from a credit perspective.

- Here we are not concerned with value creation itself, but with how the company has been financing its value creation.
- To explain the company’s financial health from a credit perspective we need to answer to the following questions:

 - Is the company generating or consuming cash?
 - How much debt does the company employ relative to equity?
 - What margin of safety does the company have with respect to its debt financing?

1. DCF valuation – Forecasting
1. DCF valuation – Forecasting

Once we have analyzed the company’s historical performance, we can move on to forecasting its future performance.

While we cannot provide specific forecasting rules, we can consider the following basic steps when developing forecasts:

1. Evaluate the company’s strategic position, considering both the industry characteristics as well as the company’s competitive advantages or disadvantages. This will help to assess the company’s growth potential and its ability to earn returns above its cost of capital.

2. Develop performance scenarios for the company and its industry that describe qualitatively how the company’s performance will evolve and the critical events that are likely to impact that performance.

3. Forecast individual income-statement and balance-sheet line items based on the scenarios. These line items will then be aggregated to forecast free cash flow.

4. Check the overall forecast for reasonableness, particularly the key determinants of value (i.e., value drivers).

On the following slides some details of the previous points are presented.

(1) Evaluate strategic position
1. DCF valuation – Forecasting
Evaluate strategic position

- In order to earn returns on capital in excess of the opportunity cost of capital, companies must develop and exploit a competitive advantage.
- Without a competitive advantage, competition would force all the companies in the industry to earn only their cost of capital.

Therefore, to develop a point of view about a company's ability to earn an attractive profit on capital invested, we must identify the company's potential for generating competitive advantage, given the nature of the industry in which it competes and its own assets and capabilities.

Competitive advantages that influence positively the value of the company can be categorized into three types:

1. Providing superior value to the customer through a combination of price and product attributes that cannot be replicated by competitors.
2. Achieving lower cost than competitors.
3. Utilizing capital more productively than competitors.

A competitive advantage must ultimately be expressed in terms of one or more of these characteristics. Describing competitive advantages this way also helps to begin to shape the financial forecast.

Two techniques for identifying competitive advantages are:

1. Customer segmentation analysis
2. Industry structure analysis

On the following slides we review these techniques.

The purpose of customer segmentation analysis is to help estimate potential market share by explicitly identifying why customers will choose one company’s products over others. It also tells us how difficult it will be for a competitor to differentiate itself and helps to identify how profitable each type of customer is likely to be.
1. DCF valuation – Forecasting
Customer segmentation analysis

- Customer segmentation analysis segments customers from two perspectives (1) the customer and (2) the producer.

1. DCF valuation – Forecasting
Customer segmentation analysis

- From the customer perspective, product attributes have different importance to different groups of customers.
- For example, after-sale service may be more important to a small manufacturing customer than a large customer with its own in-house maintenance staff.
- In addition, different competitors may include different attributes in their product offering and deliver different benefits to customer groups.

1. DCF valuation – Forecasting
Customer segmentation analysis

- A customer segment is a group of customers to whom similar product attributes provide similar benefits.
- Segmenting customers forces the analyst to understand why competitive market share may differ across customer groups and to find opportunities for differentiation to segments.

1. DCF valuation – Forecasting
Customer segmentation analysis

- For example, in the overnight package delivery business, detailed billing information on each package is important to some customers, while others are content with summary data.
- Some customers want to be able to know instantaneously where a package is at any point in time, while other customers can wait for the information.

1. DCF valuation – Forecasting
Customer segmentation analysis

- From the producer perspective, different customers have different costs to serve.
- For example, in the salt industry, distance to the customer has a major impact on the cost on the cost to serve because of salt’s low value-to-weight characteristics.
- Accordingly, some customers may be simply too far away too serve if competitors are much closer.

1. DCF valuation – Forecasting
Customer segmentation analysis

- By segmenting customers according to both the customer and producer attributes, and then comparing a company’s ability to satisfy those customers relative to competitors, we can begin to identify current or potential competitive advantages.
1. DCF valuation – Forecasting
Industry structure analysis

- In company valuation, it is useful to analyze competitors of the firm that we want to value.
- A useful methodology of industry analysis is the Porter five forces model.
- It was suggested by Michael Porter in 1979.
- The Porter model has the following five elements:

PORTER’S FIVE FORCES:

1. The threat of substitute products or services
2. The threat of the entry of new competitors
3. The intensity of competitive rivalry
4. The bargaining power of customers (buyers)
5. The bargaining power of suppliers

1. DCF valuation – Forecasting
Industry structure analysis

1. The threat of substitute products or services

- A market is not attractive for a company when substitute products or services exist outside the market.
- The situation is even more complicated when these substitute products are technologically more advanced or have lower prices than actual products on the market.

2. The threat of the entry of new competitors

- Profitable markets that yield high returns, will draw firms.
- This results in many new entrants, which eventually will decrease profitability.
- Unless the entry of new firms can be blocked by incumbents, the profit rate will fall towards a competitive level (perfect competition).

3. The intensity of competitive rivalry

- For most industries, the intensity of competitive rivalry is the major determinant of the competitiveness of the industry.
- It is more difficult to compete on a market where there are many competitors that create entry barriers and fixed costs are high.

3. The intensity of competitive rivalry

- If intensity of competition is high then the firm will face price wars, aggressive advertising campaigns of competitors or entrance of new products.
1. DCF valuation – Forecasting Industry structure analysis

4. The bargaining power of customers (buyers)
 ● The bargaining power of customers is also described as the market of outputs: the ability of customers to put the firm under pressure, which also affects the customer’s sensitivity to price changes.
 ● Well-organized buyers can ask for price reductions, higher quality of products and services decreasing the company’s profit margin.

5. The bargaining power of suppliers
 ● The bargaining power of suppliers is also described as the market of inputs.
 ● Suppliers of raw materials, components, labor, and services (such as expertise) to the firm can be a source of power over the firm, when there are few substitutes.
 ● Suppliers may refuse to work with the firm, or, e.g., charge excessively high prices for unique resources.

Summary:
 ● A detailed analysis of these five forces can give the analyst a complex picture of the firm’s industry.
 ● It can help to identify the value drivers that affect future CFs and cost of capital of the firm.
 ● Therefore, it can help in CF prediction and present value calculation as well.

(2) Develop performance scenarios

Example: Consider a high tech company that is developing a new product.
 ● By using scenarios we acknowledge that forecasting financial performance is at best an educated guess.
 ● The best we can do is narrow down the range of likely future performance.

Example: Consider a high tech company that is developing a new product.
 ● If the company successfully develops the product, its competitive advantage will be a product that delivers superior value to customers.
 ● Accordingly, its growth and returns on capital are likely to be huge.
 ● If it fails to develop the product, it will likely go out of business.
1. DCF valuation – Forecasting
Develop performance scenarios

● A scenario that projects moderate growth and returns is highly unlikely, even though it could be considered “most likely” from a statistical perspective.
● It is better to develop a number of scenarios for a company, and to understand the company’s value under each scenario, than to build a single “most likely” forecast and value.

Once the scenarios are developed and valued, an overall value of the company can be estimated as a weighted average of the values of the independent scenarios, assigning probabilities to each scenario.

1. DCF valuation – Forecasting
Forecasting individual line items

(3) Forecasting individual line items

● Before forecasting individual line items we must decide on the structure of the forecast.
● The structure of the forecast is the order in which they relate to each other.
● The best forecast structure begins with an integrated income statement and balance sheet forecast.
● The free cash flow can then be derived from them.

It is possible to forecast free cash flow directly rather than going through the income statement and balance sheet.

If we do not construct the balance sheet, it is easy to lose sight of how all the pieces fit together.

The balance sheet also helps to identify the financing implications of the forecast:

● If we forecast free cash flow first, we must still construct the balance sheet to properly evaluate the relationships between the cash flow or income statement items and the balance sheet accounts.

It shows how much capital must be raised or how much excess cash will be available.
1. DCF valuation – Forecasting
Forecasting individual line items

- Forecasts of individual line items should draw upon a careful analysis of industry structure and a company’s internal capabilities.
- Analyzing the historical levels of valuation variables is a useful starting point.
- Once these levels have been calculated, several questions will help gain insights into the future level of each valuation variable:

 (a) What characteristics of the industry have had the greatest impact on value drivers in the past?

 (b) What company-specific capabilities have had the greatest impact on historical value drivers?

(c) Are industry characteristics and company capabilities expected to maintain historical patterns in the future? If not, what is expected to change?

(d) What must change in the industry or the company to cause a significant shift in the historical level of the company’s value drivers?

1. DCF valuation – Forecasting
Check overall forecast for reasonableness

The final step in the forecasting process is to construct the free cash flow and value drivers from the income statements and balance sheets and to evaluate the forecast.

To understand how cash flow and value drivers are expected to behave, we may ask the following questions:

(1) Is the company’s performance on the key value drivers consistent with the company’s economics and the industry competitive analysis?

(2) Is revenue growth consistent with industry growth?
1. DCF valuation – Forecasting
Check overall forecast for reasonableness

● (3) If the company’s revenue is growing faster than the industry’s, which competitors are losing share? Will they retaliate?
● (4) Does the company have the resources to manage that rate of growth?
● (5) Is the return on capital consistent with the industry’s competitive structure?
● (6) If entry barriers are coming down, shouldn’t expected returns decline?

● (7) If customers are becoming more powerful, will margins decline?
● (8) Conversely, if the company’s position in the industry is becoming much stronger, should one expect increasing returns?
● (9) How will returns and growth look relative to the competition?
● (10) How will technology changes affect returns? Will they affect risk?

1. DCF valuation – Forecasting
Check overall forecast for reasonableness

● (11) Can the company manage all the investment it is undertaking?
● (12) Will the company have to raise large amounts of capital? If so, can it obtain the financing? Should it be debt or equity?
● (13) If the company is generating excess cash, what options does it have for investing the cash or returning it to shareholders?

Three additional topics

Inflation

It is recommended that financial forecasts and discount rates be estimated in nominal rather than real currency units.

For consistency, both the free cash flow forecast and the discount rate must be based on the same expected general inflation rate.
1. DCF valuation – Forecasting Inflation

- Individual line items, however, could have specific inflation rates that are higher or lower than the general rate, but they should still drive off the general rate.
- We can derive the expected general inflation rate that is consistent with the discount rate from the term structure of interest rates.
- The term structure is based on yields to maturity of government bonds.

1. DCF valuation – Forecasting Inflation

- We can derive the expected general inflation rate that is consistent with the discount rate from the term structure of interest rates.
- The term structure of interest rates provides a market-based estimate of expected inflation over time.
- This should be the best estimate for valuation purposes for three reasons:
 1. Most economics', or econometric, forecasts of inflation rarely extend beyond one or two years, far too short a period for valuation.
 2. Market-based estimates provide a broader consensus view (with investors’ money at stake) than individual forecasts.
 3. Empirical analysis suggests that market-based estimates are the least biased.

The next figure shows an example of the term structure of interest rates at different points of time in the U.S.:

On the previous figure we can see that in December 1981 the market expected that future inflation will be lower than near-term inflation. On the other hand, in June 1988 and December 1992 the market expected that future inflation will be higher than near-term inflation.
1. DCF valuation – Forecasting Inflation

- The expected inflation rate over a given period can be derived from the term structure of interest rates as follows:
 1. Determine the nominal risk-free rate of interest for the time period over which we want to estimate inflation.
 2. Estimate the real rate of interest. This is a controversial issue and different researchers suggest different ways to do it:
 - For example, Copeland et al (2000) suggests using the long-term growth rate in GDP, which is 2-3 percent for the U.S. economy.
 3. Use the Fisher equation that relates nominal interest rate and real interest rate as follows:
 \[(1+\text{nominal rate}) = (1+\text{expected inflation}) \times (1+\text{real rate})\]
 From this equation we can express the inflation rate as follows:
 \[
 \text{Expected inflation} = \frac{(1 + \text{Nominal rate})}{(1 + \text{Real rate})} - 1
 \]

1. DCF valuation – Forecasting Length of forecast

- For practical purposes, most forecasts should be divided into two periods:
 1. an explicit forecast period (say, ten years) and
 2. the remaining life of the company (year 11 on) = continuing value period.

1. DCF valuation – Forecasting Length of forecast

- A detailed forecast is done for the first period.
- Free cash flow from the second, more distant, period is valued using the perpetuity valuation formula.
- The explicit forecast period should be long enough so that the company reaches a steady state by the end of the period.

1. DCF valuation – Forecasting Length of forecast

- The steady state can be described as follows:
 1. The company earns a constant rate of return on all new capital invested during the continuing value period.
 2. The company earns a constant rate of return on its base level of invested capital.
 3. The company invests a constant proportion of its earnings back into the business each year.
1. DCF valuation – Forecasting

Length of forecast

● The most common approach is to make the forecast period as long as you expect the company to have sustainable rates of return on new investment above the company's cost of capital.

● Microeconomic analysis suggests that over time, competition will drive the returns in many industries to the level of the cost of capital.

● Once the company's returns have converged on its cost of capital, it is relatively simple to estimate the company's continuing value.

● Therefore, forecasting until convergence simplifies the continuing value problem.

● If we use this approach, the forecast periods should be for as long as returns above the WACC are sustainable.

When in doubt, make a longer rather than shorter forecast.

We would rarely use a forecast period of less than seven years.

The forecast period should never be determined by the company's own internal planning period.

Just because the company forecasts out only three years does not justify using three years for valuation.

If a company is in a cyclical industry, it is important that your forecast capture complete cycle.

Failure to do so may result in wildly unrealistic continuing value assumptions, because the up or down phase of the cycle may be projected to last forever.

It is best to put long-run forecasts (averaging out cyclical effects) into the continuing value assumptions.

Financial documents always contain some extraordinary events that are partly reflected in the extraordinary result of the income statement.

The extraordinary elements of financial documents are recommended to be excluded from all financial documents before forecasting free cash flow.

1. DCF valuation – Present value of free cash flow
1. DCF valuation – Present value of free cash flow

- After forecasting the free cash flow, we compute the present value of FCFE and FCFF to get the value of the firm.
- The present value of FCFE is the value of equity.
- The present value of FCFF is the value of equity + value of debt (i.e., the value of total assets).

1. DCF valuation – Present value of free cash flow

- The FCFE values have to be discounted using the expected return on equity, \(r_E \).
- The FCFF values must be discounted using the Weighted Average Cost of Capital (WACC) after taxes.

1. DCF valuation – Present value of free cash flow

- For the first, explicit forecast period, we can use the next formulas in order to calculate the present value of free cash flows:

\[
PV(CF_t) = \frac{CF_t}{(1+r)^t}
\]

\[
PV(FCFE_t) = \frac{FCFE_t}{(1+r_E)^t}
\]

\[
PV(FCFF_t) = \frac{FCFF_t}{(1+WACC)^t}
\]

1. DCF valuation – Present value of free cash flow

- For the second, continuing value period we use the following formulas to value the cash flow of a growing perpetuity:

\[
\begin{align*}
&CF_1, CF_2, CF_3, \ldots \\
&CF_{t+1} = (1+g) \times CF_t
\end{align*}
\]

\[
PV(CF_t) = \frac{CF_1}{(1+r)^t}
\]

\[
PV(FCFE_t) = \frac{FCFE_t}{(1+r_E)^t}
\]

\[
PV(FCFF_t) = \frac{FCFF_t}{(1+WACC)^t}
\]

1. DCF valuation – Present value of free cash flow

- Suppose that in steady state the cash flow is a growing perpetuity:

\[
\begin{align*}
&t=0, \quad t=1, \quad t=2, \quad t=3, \ldots \ldots \\
&0 \quad CF_1 \quad CF_2 \quad CF_3
\end{align*}
\]

where the growth rate of the cash flow is \(g \):

\[
CF_{t+1} = (1+g) \times CF_t
\]
1. DCF valuation – Present value of free cash flow

The present value of a growing perpetuity at time $t=0$ is given by:

$$PV(\text{growing perpetuity with rate } g) = \frac{CF_1}{r-g}$$

where

- $CF_1 =$ cash flow at $t=1$
- $r =$ expected return
- $g =$ growth rate

Assuming that the continuing value period starts at year $t=6$, we have the next growing perpetuity:

Therefore, the present value of the free cash flow over the continuing value period is:

$$PV(\text{CF continuing value}) = \frac{CF_6}{(r-g)(1+r)^5}$$

Example:

Cash flow forecasts for the following 6 years (2009-2014):

<table>
<thead>
<tr>
<th>Year</th>
<th>FCFF</th>
<th>FCFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>75.7</td>
<td>73.1</td>
</tr>
<tr>
<td>2010</td>
<td>89.2</td>
<td>88.6</td>
</tr>
<tr>
<td>2011</td>
<td>105.0</td>
<td>107.5</td>
</tr>
<tr>
<td>2012</td>
<td>123.7</td>
<td>130.3</td>
</tr>
<tr>
<td>2013</td>
<td>145.7</td>
<td>158.6</td>
</tr>
<tr>
<td>2014</td>
<td>171.6</td>
<td>191.6</td>
</tr>
</tbody>
</table>

Suppose that the expected returns and perpetuity growth rate are:

- $r_e = 10\%$
- $g = 3\%$
- $WACC = 15\%$

The FCFE and FCFF values for 2009-2013 are discounted using the following formulas:

$$PV(\text{FCFE}) = \frac{FCFE_t}{(1+r_e)^t}$$
$$PV(\text{FCFF}) = \frac{FCFF_t}{(1+WACC)^t}$$

The cash flow for the continuing value period is discounted as follows:

$$PV(\text{continuing value}) = CF_6/[(r-g)(1+r)^5]$$

Continuing value

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2012</th>
<th>2011</th>
<th>2010</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1148.2</td>
<td>793.9</td>
<td>74.5</td>
<td>67.0</td>
<td>63.5</td>
</tr>
<tr>
<td>7</td>
<td>1918.5</td>
<td>1522.1</td>
<td>90.5</td>
<td>84.5</td>
<td>78.9</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>15.7</td>
<td>123.7</td>
<td>105.0</td>
</tr>
</tbody>
</table>

The total present value is computed using the next formulas:

$$PV(\text{TOTAL: FCFE}) = \sum_{t=1}^{6} \frac{FCFE_t}{(1+r_e)^t} + \frac{FCFE_6}{(r_e-g)(1+r_e)^6}$$

$$PV(\text{TOTAL: FCFF}) = \sum_{t=1}^{6} \frac{FCFF_t}{(1+WACC)^t} + \frac{FCFF_6}{(WACC-g)(1+WACC)^6}$$
1. DCF valuation – Present value of free cash flow

Solution:
- The value of equity of the firm is **1148.2 EUR**.
- The value of total assets is **1918.5 EUR**.

2. Economic value added (EVA)

2. EVA – Structure

- In this section, first we will introduce the concept of value drivers.
- Then, we define EVA and present the firm valuation model using EVA.
- Finally, we show that the value provided with DCF coincides with EVA valuation in our setup.

2. EVA – Value drivers

- To understand the idea of valuation by EVA we need to identify the underlying economic value drivers of the business.
- Since value is based on discounted cash flow, the underlying value drivers of the business must also be the drivers of free CF.

2. EVA – Value drivers

- There are two key drivers of free CF and, as a consequence, value:
 1. The **net investment rate** that the company invests from NOPLAT in each period to earn additional profits and
 2. The **return on (operating) invested capital** (ROIC)
- These value drivers are consistent with common sense:
 - A company that invests more (i.e., grows faster) will worth more than a company that invests less (i.e., grows slower) if they are both earning the same return on invested capital.
 - Similarly, a company that earns higher profits for every dollar invested in the business will worth more than a similar company that earns less profits for every dollar of invested capital.
2. EVA – Value drivers

ROIC
- We shall demonstrate how investment rate and ROIC actually drive CF.
- First, some definitions are needed:

\[
\text{ROIC} = \frac{\text{NOPLAT}}{\text{Operating invested capital}}
\]

where NOPLAT = Net operating profits less adjusted taxes. (We have seen this in the Financial statements section.)

Operating invested capital
- What is operating invested capital?
- Operating invested capital = Operating working capital + Net property, plant and equipment + Net other operating assets

Operating working capital
- \(\text{Operating working capital} = (1) \text{Operating current assets} - (2) \text{Noninterest bearing current liabilities}\)
- (1) Operating current assets = all current assets used in or necessary for the operations of the business
- (2) Noninterest bearing current liabilities = (accounts payable + accrued expenses + other noninterest bearing liabilities)

Other net operating fixed assets
- Net property, plant and equipment = The book value of the company’s property, plant and equipment related to the operations of the business net of noncurrent, noninterest bearing liabilities.
- Net other operating assets = other operating assets, net of other liabilities. Any other assets net of noninterest bearing liabilities that are related to the operations of the business.

Simplifying assumptions
- We present a simple example to show how the two value drivers impact CF and firm value.

Assumptions:
- Assume that the firm lives infinite periods.
- Assume that in the initial year NOPLAT = 100 Euros.
- Assume that net investment rate and ROIC are constant.

Simple CF statement
- We will work with the following simplified FCFF statement:

\[
\text{NOPLAT} - \text{Net investment (}\Delta\text{ operating invested capital)} = \text{FCFF}
\]

Remark: net investment is the change of the value of operating invested capital.
- First, we compute FCFF for several periods and show that the FCFF growth rate is the product of investment rate and ROIC.
2. EVA – Value drivers

- See the “Value drivers.xls” file for the demonstration of this fact for our setup.
- Remarks about computation:
 1. Net investment(t) = \(\text{NOPLAT}(t) \times \text{Net investment rate} \)
 2. FCFF(t) = NOPLAT(t) – Net investment(t)
 3. NOPLAT(t+1) = \(\text{NOPLAT}(t) + [\text{Net investment}(t) \times \text{ROIC}] \)

In the xls table, you can see that the growth rate of FCFF is given by:

\[\text{Growth rate} = \text{Net investment rate} \times \text{ROIC} \]

Next, we compute the present value of future FCFF to obtain the value of the firm, i.e., we use the DCF valuation approach.

Let WACC denote the cost of capital of the firm. We shall use WACC to discount future FCFF.

To compute the present value of CF, we use the PV formula for growing perpetuity:

\[\text{Value} = \frac{\text{FCFF}}{\text{WACC} - g} \]

where FCFF, is FCFF in the first year and \(g \) is the FCFF growth rate.

Although we imposed strong assumptions about the evolution and determinants of FCFF, this simple model helps to understand the effects of the two value drivers.
2. EVA – Value drivers

- In this simple setup, to increase its value, a company must do one or more of the followings:
 1. Increase initial NOPLAT
 2. Increase ROIC
 3. Increase Net investment rate as long as ROIC > WACC
 4. Reduce WACC

2. EVA definition

- The motivation of EVA comes from the following idea:
 - The value created by a company during any time period (its economic profit) must take into account not only the expenses recorded in its accounting records but also the opportunity cost of the capital employed in the business.
 - This idea dates back at least to the economist Alfred Marshall, to 1890.

2. EVA definition

- This idea in other words is the following:
 - The fact that net income is positive is not necessarily a good for the owners of the firm.
 - Net profit must be high enough to compensate the opportunity cost of capital employed in the business.

2. EVA definition

- EVA measures the value created in a company in a single period of time and is defined as follows:
 \[EVA = \text{Operating invested capital} \times (\text{ROIC} - \text{WACC}) \]
 Alternatively, we can also write:
 \[EVA = \text{NOPLAT} - \text{(Operating invested capital} \times \text{WACC}) = \text{NOPLAT} - \text{Capital charge} \]

2. EVA definition

- An advantage of the EVA model over the DCF model is that EVA is a useful measure for understanding a company’s performance in any single year, while free cash flow (FCF) is not:

- For example, you would not track a company’s progress by comparing actual and projected FCF, because FCF is determined by highly discretionary investments in fixed assets and working capital.
 - Management could easily delay investments simply to improve FCF in a given year at the expense of long term value creation.
2. Valuation with EVA

- The EVA model says that the value of a company equals the amount of capital invested, plus a premium or discount equal to present value of its predicted EVA:

- **Firm value** =
 - Operating invested capital +
 - Present value of predicted EVA

2. Valuation with EVA

- We follow the previous simple example to show that EVA valuation gives identical result to the DCF valuation presented before.
- See the file “EVA.xls” for the exercise.
- The initial NOPLAT = 100 and we impose the same assumptions as before:
- **Assumptions**: ROIC, WACC and Net investment rate are constant. Firm lives for infinite periods.

Example: DCF valuation: \(\text{Value} = \text{PV(FCFF)} \)

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPLAT</td>
<td>100.0</td>
<td>105.0</td>
<td>110.3</td>
<td>115.8</td>
<td>121.6</td>
</tr>
<tr>
<td>Net investment</td>
<td>25.0</td>
<td>26.3</td>
<td>27.6</td>
<td>28.9</td>
<td>30.4</td>
</tr>
<tr>
<td>FCFF</td>
<td>75.0</td>
<td>78.8</td>
<td>82.7</td>
<td>86.8</td>
<td>91.2</td>
</tr>
<tr>
<td>CF growth rate, (g)</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>Growing perpetuity</td>
<td>(\text{VALUE})</td>
<td>1071.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: EVA valuation: \(\text{Value} = \text{PV(EVA)} + \text{Operating invested capital} \)

- **Remark**: In the following table, operating invested capital is computed using the definition of ROIC:

 \[
 \text{ROIC} = \frac{\text{NOPLAT}}{\text{Operating invested capital}}
 \]

- Thus, Operating invested capital = NOPLAT / ROIC.

Table: EVA valuation

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPLAT</td>
<td>100.0</td>
<td>105.0</td>
<td>110.3</td>
<td>115.8</td>
</tr>
<tr>
<td>Net investment</td>
<td>25.0</td>
<td>26.3</td>
<td>27.6</td>
<td>28.9</td>
</tr>
<tr>
<td>Operating invested capital</td>
<td>500.0</td>
<td>525.0</td>
<td>551.3</td>
<td>578.8</td>
</tr>
<tr>
<td>EVA</td>
<td>40.0</td>
<td>42.0</td>
<td>44.1</td>
<td>46.3</td>
</tr>
<tr>
<td>EVA growth rate, (g)</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>Growing perpetuity</td>
<td>(\text{PV(EVA)})</td>
<td>571.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating invested capital</td>
<td>500.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{VALUE})</td>
<td>1071.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Valuation with EVA

- To compute the present value of EVA, we use the PV formula for growing perpetuity:

 \[
 \text{Value} = \frac{\text{EVA}_1}{(\text{WACC} - g)}
 \]

 where \(\text{EVA}_1 \) is EVA in the first year and \(g \) is the EVA growth rate.

- In the “EVA.xls” file, the EVA valuation for alternative values of ROIC, WACC, and Net investment rate are presented. We can see that always the same result is obtained as in the DCF valuation.
3. Relative valuation - multiples

In relative valuation, the value of an asset is derived from the pricing of comparable assets, standardized using a common variable such as earnings, CFs, book value, or revenues.

Example: Use the industry-average price/earnings ratio to value a firm, the assumption being that the other firms in the industry are comparable to the firm being valued and that the market prices these firms correctly.

3. Relative valuation - multiples

The following ratios are being used in relative valuation:

1. P/E = price/earnings ratio
2. Price/book value ratio
3. Price/sales ratio
4. Price/CF ratio
5. Price/dividends ratio
6. Market value/replacement value (Tobin’s Q)

3. Relative valuation – multiples

1. Using fundamentals

In this approach, we relate the multiple to fundamental variables like CFs, payout ratios and risk.

The advantage of this approach is that it shows the relationship between multiples and firm characteristics and allows us the explore how multiples change as these characteristics change:

\[(P/E)_t = \alpha + \beta(Fundamental\ variables)_t + \epsilon_t\]

2. Using comparables

The second approach estimates multiples for a firm by looking at a comparable firm.

The key issue in this approach is the definition of the comparable firm.

The analyst should control for all variables that can influence the multiple.

Controlling for these variables can be naive (industry averages) or more sophisticated (multivariate regressions):
3. Relative valuation – multiples
2. Using comparables

(a) Industry average approach:

$$\text{Multiple}_e = \frac{1}{k} \sum_{i=1}^{k} \text{Multiple}_i$$

where \(i = 1,\ldots,k\) are comparable firms in the sample (for example competitors).

(b) Regression approach:

Select \(n\) variables \(\{X_{1i},\ldots,X_{ni}\}\) for firm \(i\) that influence the value of the multiple. Then, estimate the next regression model:

$$\text{Multiple}_i = \alpha + \beta_1 X_{1i} + \ldots + \beta_n X_{ni} + \epsilon_i$$

where \(i = 1,\ldots,k\) are comparable firms in the sample (for example competitors).

3. Relative valuation - multiples

After estimating the multiple of firm \(e\) by approaches (a) or (b), one can compute the price of stock \(e\) for some multipliers in the following way:

1. \(P_e = (P/E)_e \times E_e\)
2. \(P_e = (P/BV)_e \times BV_e\)
3. \(P_e = (P/Sales)_e \times Sales_e\)

3. Relative valuation – multiples
Advantages

- It is relatively easy to use.

- Multiples can be used to obtain estimates of value quickly, and are particularly useful when there are a large number of comparable firms being traded on the financial market and the market is, on average, pricing these firms correctly.

Disadvantages

- Multiples are also easy to misuse and manipulate, especially when comparable firms are used.

- Given that no two firms are exactly similar in terms of risk and growth, the definition of comparable firms is a subjective one.

- A biased analyst can choose a group of comparable firms to confirm his/her biases about a firm’s value.
3. Relative valuation – multiples

Disadvantages

- While this potential for bias exists with DCF valuation as well, the analyst in DCF method is forced to be more explicit about the assumptions which determine the final value.
- With multiples, these assumptions are often left unstated.

3. Relative valuation - multiples

Example: What is the value of my book shop with monthly sales of 3000 EUR if during the last month another book shop with monthly sales of 2000 EUR has been sold for 200,000 EUR?

Answer: We use the Price/Sales multiple of the other shop to value our firm:

- Price/Sales = 200,000/2,000
- Value = 200,000/2,000 X 3,000 = 300,000 EUR

4. Contingent claim valuation

Introduction

- Much work has been done in the past in developing models that value options, and these option pricing models can be used to value any asset that have option-like features. (i.e., assets that pay off under certain contingencies).
- As equity can be viewed as an option, derivative pricing models like Cox-Ross-Rubinstein or Black-Scholes can be employed to price companies.

4. Contingent claim valuation

Introduction

- A limitation of the option pricing approach of firm valuation comes from the assumptions of the option pricing model.
- For example, volatility of the underlying asset is assumed to be constant, or other unrealistic assumptions build in errors in the pricing model.
- Thus, the final values obtained from these applications of option pricing models have much more estimation errors than more standard applications.
4. Contingent claim valuation

- On the remaining slides of this section, application of option pricing theory to equity valuation is presented.

4. Contingent claim valuation

The general framework

- The equity in a firm is a residual claim, that is, equity holders lay claim to all CFs left over after other financial claimholders (debt, preferred stock, etc.) have been satisfied.
- The principle of limited liability, however, protects equity investors in publicly traded firms if the value of the firm is less than the value of the outstanding debt, and they cannot lose more than their investment in the firm.

4. Contingent claim valuation

The general framework

- The payoff to equity investors, on liquidation, can be written as:

\[
\text{Payoff} = \begin{cases}
V - D & \text{if } V > D \\
0 & \text{if } V \leq D
\end{cases}
\]

where \(V \) = value of the firm, \(D \) = face value of the outstanding debt and other external claims.
- Notice that a call option with spot underlying price \(V \) and strike \(D \) has the same payoff.

4. Contingent claim valuation

The general framework

- If the debt is a single issue of zero-coupon bonds with a fixed lifetime and the firm can be liquidated by equity investors at any time prior, the life of the equity as a call option corresponds to the life of the bonds.

4. Contingent claim valuation

The general framework

- The next figure presents the payoff of equity as a function of the value of the firm at liquidation:
4. Contingent claim valuation

The general framework

![Graph showing Payoff on equity vs Value of firm vs Face value of debt]

Example

Assume a firm whose assets are currently valued at 100 million USD and that the standard deviation of this asset value is 40%.

Further, assume that the face value of debt is 80 million USD. (It is a zero-coupon debt with ten years left to maturity.)

Example

(a) If the ten-year Treasury bond rate is 10%, how much is the equity worth?

(b) What should the interest rate on debt be?

The use of the Black-Scholes option pricing approach provides a solution:

\[S_0 = \text{Value of the underlying asset} = \text{Value of firm} = 100 \text{ million USD} \]

\[X = \text{Exercise price} = \text{Face value of outstanding debt} = 80 \text{ million USD} \]

\[T = \text{Life of option} = \text{Life of zero-coupon bond} = 10 \text{ years} \]

\[\sigma = \text{Volatility of underlying asset} = \text{Volatility of firm value} = 40\% \]

\[r = \text{Risk-free rate} = \text{Treasury bond rate corresponding to option life} = 10\% \]

(a) Based upon these inputs, the Black-Scholes model provides the following value for the call:

\[d_1 = 1.5994 \quad N(d_1) = 0.9451 \]

\[d_2 = 0.3345 \quad N(d_2) = 0.6310 \]

\[\text{Value of call} = S_0 N(d_1) - X \exp(-rT)N(d_2) \]

\[= (100 \times 0.9451) - 80 \times \exp(-0.1 \times 10) \times 0.6310 \]

\[= 75.94 \text{ million} = \text{value of equity} \]

(b) Value of outstanding debt = 100 – 75.94 = 24.06 million

Interest on debt = \((80/24.06)^{1/10} - 1 = 12.77\%\)
4. Contingent claim valuation
Some valuable insights

- There are some valuable insights that can be obtained by viewing equity as a call option:
 1. Valuing equity in a troubled firm
 2. The conflict between bondholders and stockholders

4. Contingent claim valuation
Valuing equity in a troubled firm

- The first implication is that equity will have value, even if the value of the firm falls well below the face value of the outstanding debt.
- Such a firm will be viewed as troubled by investors, accountants, and analysts, but that does not mean that its equity is worthless.

4. Contingent claim valuation
Valuing equity in a troubled firm

- In fact, just as deep out-of-the-money traded options command value because of the possibility that the value of the assets may increase above the face value of the bonds before they come due.

4. Contingent claim valuation
The conflict between bondholders and stockholders

- Stockholders and bondholders have different objective functions, and this can lead to agency problems, where stockholders can expropriate wealth from bondholders.
- The conflict can manifest itself in a number of ways – for instance, stockholders have an incentive to take riskier projects than bondholders do.

4. Contingent claim valuation
The conflict between bondholders and stockholders

- This conflict between bondholders and stockholders can be illustrated dramatically using the option pricing model.
- Since equity is a call option on the value of the firm, an increase in the variance in the firm value, other things remaining equal, will lead to an increase in the value of equity.

4. Contingent claim valuation
The conflict between bondholders and stockholders

- It is therefore conceivable that stockholders can take risky projects with negative present values, which, while making them better off, may make the bondholders and the firm less valuable.
4. Contingent claim valuation

Main assumptions

Previously, we made some simplifying assumptions:
1. There are only two claimholders in the firm – debt and equity.
2. There is only one issue of debt outstanding, and it can be retired at face value.
3. The debt has a zero-coupon and no special features (convertibility, etc.)
4. The value of the firm and its variance can be estimated.

Practical use of this model

4. Contingent claim valuation

1. Value of the firm:
 ● The value of the firm can be obtained in two ways:
 ● (a) The market values of outstanding debt and equity are summed, assuming that all debt and equity are traded, to obtain firm value.
 ● (b) The market values of assets are estimated, either by discounting expected CFs at the WACC or by using prices from a market that exists for these assets.

4. Contingent claim valuation

2. Variance of firm value:
 ● The variance in firm value can be obtained directly if both stocks and bonds in the firm trade in the marketplace.

4. Contingent claim valuation

3. Maturity of debt:
 ● In contrast with the assumption that a firm has one zero-coupon bond outstanding, most firms have more than one debt issue on their books, and much of the debt comes with coupons.
 ● Since the option pricing model allows for only one input for the time to expiration, these multiple bonds issues and coupon payments have to be compressed into one measure.
4. Contingent claim valuation
Practical use of this model

● One solution is that take into account both the coupon payments and the maturity of the bonds is to estimate the duration of each debt issue and calculate a face-value-weighted average of the durations of the different issues.

● This value-weighted duration is then used as a measure of the time to expiration of the option.
COCA-COLA DCF VALUATION

COCOA-COLA DCF CASE

STRUCTURE:
(1) Introduction
(2) Company report of Coca-Cola
(3) Historical summary and ratio analysis
(4) Comparison with other firms
(5) Forecasting free cash flow
(6) Cost of capital estimation
(7) DCF valuation of equity and assets

(1) Introduction

Introduction

- In this class, the DCF valuation technique is applied for a private firm.
- We value a U.S. company: Coca-Cola.

Why Coca-Cola is selected?

- Coca-Cola has a homogenous product structure (soft drinks):
- Most of the sales is obtained by its main product: the Coca-Cola drink.
- This is a large company and main accounting documents necessary for DCF valuation are available.

Why Coca-Cola is selected?

- The ratio of operational costs/sales is stable over time (see later).
- The firm production is relatively simple from a technological point of view.
- Several accounts of the balance sheet maintain a stable proportion to total assets over time (see later).
- These last three points help in more precise forecasting of future CFs.
Why Coca-Cola is selected?

- Coca-Cola is publicly traded on the stock exchange. Therefore, the cost of capital can be computed using the capital asset pricing model (CAPM) or other valuation models of finance.
- Coca-Cola is an old, stable company. Therefore, we can reach the steady state continuous value period by forecasting only few explicit forecast periods.

A remark about financial documents

- In firm valuation, we always need the main accounting documents of the company.
- Suppose that we do not have a company report data base purchased.
- How can we get accounting document data on firms through internet?

A remark about financial documents

- For U.S. firms, one possibility is to go to the www.msn.com website.
- Select the link “Money”.
- Write the name of the firm or its quote symbol into the “Get quote” box.
- For the Coca-Cola, the quote symbol is “KO”.

A remark about financial documents

- In the “Fundamentals” section, we can choose the links:
 1) company report or
 2) financial results.
- In the (2) financial results part, there are Income statement, Balance sheet, Cash flow statement and key financial ratios available for the last five years.

A remark about financial documents

- Other web-based sources of U.S. Financial documents are
 1) www.google.com/finance
 2) www.yahoo.com
- Write the name of the firm or its quote symbol in the search box.
- Choose the link “Finance”
- Write the name of the firm or its quote symbol into the “Get quote” box.

(2) Company report of Coca-Cola
The Coca-Cola Company is the owner and marketer of nonalcoholic beverage brands. It also manufactures, distributes and markets concentrates and syrups used to produce nonalcoholic beverages.

The Company owns or licenses and markets more than 500 nonalcoholic beverage brands, primarily sparkling beverages but also a variety of still beverages, such as waters, enhanced waters, juices and juice drinks, ready-to-drink teas and coffees, and energy and sports drinks.

The Company manufactures, or authorizes bottling partners to manufacture, fountain syrups, which it sells to fountain retailers, such as restaurants and convenience stores, which use the fountain syrups to produce finished beverages for immediate consumption.

See more information on the company website: http://www.thecoca-colacompany.com/

On the following slides, some key financial figures of Coca-Cola are presented over the 2000-2009 period. First, we present some figures from the Income statement. Then, we look at some items of the Balance sheet of Coca-Cola.
Income Statement: 10 Year Summary
(in Millions USD)

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales</th>
<th>EBIT</th>
<th>Net Income</th>
<th>Tax Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>17,354</td>
<td>3,399</td>
<td>2,177</td>
<td>35.95</td>
</tr>
<tr>
<td>2001</td>
<td>17,545</td>
<td>5,670</td>
<td>3,979</td>
<td>29.82</td>
</tr>
<tr>
<td>2002</td>
<td>19,564</td>
<td>5,499</td>
<td>3,976</td>
<td>27.70</td>
</tr>
<tr>
<td>2003</td>
<td>20,857</td>
<td>5,495</td>
<td>4,347</td>
<td>20.89</td>
</tr>
<tr>
<td>2004</td>
<td>21,742</td>
<td>6,222</td>
<td>4,847</td>
<td>22.10</td>
</tr>
<tr>
<td>2005</td>
<td>23,104</td>
<td>6,690</td>
<td>4,872</td>
<td>27.17</td>
</tr>
<tr>
<td>2006</td>
<td>24,088</td>
<td>6,578</td>
<td>5,080</td>
<td>22.77</td>
</tr>
<tr>
<td>2007</td>
<td>28,857</td>
<td>7,919</td>
<td>5,981</td>
<td>23.89</td>
</tr>
<tr>
<td>2008</td>
<td>31,944</td>
<td>7,506</td>
<td>5,807</td>
<td>21.74</td>
</tr>
<tr>
<td>2009</td>
<td>30,990</td>
<td>8,946</td>
<td>6,824</td>
<td>22.80</td>
</tr>
</tbody>
</table>

We can see from these figures of Coca-Cola that sales and both alternative profit measures have been increasing during the past ten years.

Balance Sheet: 10 Year Summary
(in Millions USD)

<table>
<thead>
<tr>
<th>Year</th>
<th>Current Assets</th>
<th>Current Liabilities</th>
<th>Working Capital</th>
<th>Long Term Debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>20,834</td>
<td>11,518</td>
<td>9,316</td>
<td>835</td>
</tr>
<tr>
<td>2001</td>
<td>22,417</td>
<td>11,051</td>
<td>11,366</td>
<td>1,219</td>
</tr>
<tr>
<td>2002</td>
<td>24,406</td>
<td>12,606</td>
<td>11,800</td>
<td>2,701</td>
</tr>
<tr>
<td>2003</td>
<td>27,342</td>
<td>13,252</td>
<td>14,090</td>
<td>2,517</td>
</tr>
<tr>
<td>2004</td>
<td>31,441</td>
<td>15,506</td>
<td>15,935</td>
<td>1,157</td>
</tr>
<tr>
<td>2005</td>
<td>29,427</td>
<td>13,043</td>
<td>16,355</td>
<td>1,154</td>
</tr>
<tr>
<td>2006</td>
<td>29,427</td>
<td>13,043</td>
<td>16,355</td>
<td>1,154</td>
</tr>
<tr>
<td>2007</td>
<td>43,269</td>
<td>21,525</td>
<td>21,744</td>
<td>3,277</td>
</tr>
<tr>
<td>2008</td>
<td>40,519</td>
<td>20,047</td>
<td>20,472</td>
<td>2,781</td>
</tr>
<tr>
<td>2009</td>
<td>48,671</td>
<td>23,872</td>
<td>24,799</td>
<td>5,059</td>
</tr>
</tbody>
</table>
Summary of Balance sheet figures

- From the balance sheet figures, we can see that both current assets and liabilities have had a stable, increasing tendency during the last years.
- Moreover, working capital of Coca-Cola has been positive and increasing during the last decade.
- These are signs of a stable growth of the company’s operations.

Summary of Balance sheet figures

- On the last figure, we can see that the long-term financing of Coca-Cola has been increasing in general during the last years.
- There was an especially significant growth in long-term liabilities during the last four years (2006-2009).

(3b) Ratio analysis

- On the following slides, the historical evolution of several financial ratios of Coca-Cola is reviewed for the 2000-2009 period.
- We will see the evolution of
 (1) Market price ratios
 (2) Profitability ratios
 (3) Leverage ratios
(1) Market price ratios

<table>
<thead>
<tr>
<th>year</th>
<th>Average P/E</th>
<th>Price/Sales</th>
<th>Price/Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>63</td>
<td>8.7</td>
<td>16.25</td>
</tr>
<tr>
<td>2001</td>
<td>30.4</td>
<td>6.88</td>
<td>10.31</td>
</tr>
<tr>
<td>2002</td>
<td>31.1</td>
<td>5.56</td>
<td>9.18</td>
</tr>
<tr>
<td>2003</td>
<td>25</td>
<td>5.99</td>
<td>8.79</td>
</tr>
<tr>
<td>2004</td>
<td>23.3</td>
<td>4.65</td>
<td>6.3</td>
</tr>
<tr>
<td>2005</td>
<td>21</td>
<td>4.18</td>
<td>5.84</td>
</tr>
<tr>
<td>2006</td>
<td>20.3</td>
<td>4.71</td>
<td>6.61</td>
</tr>
<tr>
<td>2007</td>
<td>21</td>
<td>4.96</td>
<td>6.54</td>
</tr>
<tr>
<td>2008</td>
<td>21.6</td>
<td>3.31</td>
<td>5.11</td>
</tr>
<tr>
<td>2009</td>
<td>16.7</td>
<td>4.28</td>
<td>5.29</td>
</tr>
</tbody>
</table>

Summary of Market price ratios

- We can see that the P/E, P/Sales and P/Book value ratios of Coca-Cola have been decreasing during 2000-2009.
- Interpretation: Most analysts believe that low P/E stocks are more attractive than high P/E stocks because they allow the investor to pay less USD of current earnings.
- The same positive conclusion can be obtained looking at the P/Sales and P/Book value ratios.

(2) Profitability ratios

<table>
<thead>
<tr>
<th>year</th>
<th>ROE</th>
<th>ROA</th>
<th>ROS</th>
<th>EPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>23.40</td>
<td>10.40</td>
<td>0.20</td>
<td>0.88</td>
</tr>
<tr>
<td>2001</td>
<td>35.00</td>
<td>17.70</td>
<td>0.32</td>
<td>1.60</td>
</tr>
<tr>
<td>2002</td>
<td>33.70</td>
<td>16.30</td>
<td>0.28</td>
<td>1.60</td>
</tr>
<tr>
<td>2003</td>
<td>30.90</td>
<td>15.90</td>
<td>0.26</td>
<td>1.77</td>
</tr>
<tr>
<td>2004</td>
<td>30.40</td>
<td>15.40</td>
<td>0.29</td>
<td>2.00</td>
</tr>
<tr>
<td>2005</td>
<td>29.80</td>
<td>16.60</td>
<td>0.29</td>
<td>2.04</td>
</tr>
<tr>
<td>2006</td>
<td>30.00</td>
<td>17.00</td>
<td>0.27</td>
<td>2.16</td>
</tr>
<tr>
<td>2007</td>
<td>27.50</td>
<td>13.80</td>
<td>0.27</td>
<td>2.57</td>
</tr>
<tr>
<td>2008</td>
<td>28.40</td>
<td>14.30</td>
<td>0.23</td>
<td>2.49</td>
</tr>
<tr>
<td>2009</td>
<td>27.50</td>
<td>14.00</td>
<td>0.29</td>
<td>2.93</td>
</tr>
</tbody>
</table>
Summary of profitability ratios

- We can see that ROE and ROA have been decreasing and ROS has been relatively stable during 2000-2009.
- In the same time, EPS has been increasing significantly.
- The last point seems to be contradictory but remember the way ROE and EPS are computed:
 \[\text{ROE} = \frac{\text{Net income}}{\text{Equity}} \]
 \[\text{EPS} = \frac{\text{Net income}}{\# \text{ common shares}} \]

Summary of profitability ratios

- Previously, we saw that Coca-Cola net income increased very significantly from 2,177 Millions USD to 6,824 Millions USD.
- The evolution of ROE can be explained by the fact that the denominator of ROE (i.e., equity) was increasing faster than Net income.
- The significant evolution of EPS is also motivated by the fact that the denominator of EPS (i.e., number of common shares outstanding) was significantly decreasing.

Summary of profitability ratios

- The decreasing tendency of number of common shares can be explained by the fact that Coca-Cola repurchased own shares on the market during the last years.
- These shares are represented in the Equity section of Balance with negative values on the following account:
 - Treasury stock – Common (Millions USD):

31/12/2005	31/12/2006	31/12/2007	31/12/2008	31/12/2009
(19,644)	(22,118)	(23,375)	(24,213)	(25,398)

Summary of profitability ratios

- This own share repurchase resulted in a concentration of common shares among outstanding shareholders.
- It increased the net income per shares outstanding (i.e., EPS increased).
- Another consequence of repurchasing own shares has been the increasing book value per common share presented on the next figure:
Summary of leverage ratios

- The leverage ratio defined as
 \[\text{Leverage} = \frac{\text{Assets}}{\text{Equity}} = 1 + \frac{\text{Debt}}{\text{Equity}} \]
- We can see that Coca-Cola’s leverage has been decreasing during 2000-2005.
- However, during 2006-2009 the firm’s leverage increased.

Summary of leverage ratios

- From year 2000, the interest coverage of Coca-Cola has increased significantly until 2002.
- During the 2003-2006 period interest coverage has been relatively stable.
- After 2006, interest coverage of Coca-Cola has decreased significantly.
(4) Comparison with other firms

Comparison of financial ratios

- On the following slides, we compare several ratios of Coca-Cola to the (1) Industry average and (2) S&P500 firms' average.
- This way we can compare various aspects of Coca-Cola financial performance to that of its competitors and other firms in the U.S. economy represented by the S&P500 index.

Comparison of financial ratios

- We review several ratios in the following structure:
 1. Growth rates of some accounts of the Income statement
 2. Profitability ratios
 3. Profit margins
 4. Market price ratios
 5. Leverage and liquidity ratios
 6. Efficiency ratios

Comparison of financial ratios

- In the following tables, we can observe several ratios for each group.
- **Note:** When the exact time of the ratio is not specified clearly then it will mean the last year (2009) figures.

Growth rates (Income statement)

<table>
<thead>
<tr>
<th>Growth Rates %</th>
<th>Company</th>
<th>Industry</th>
<th>S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>5.4</td>
<td>6</td>
<td>10.7</td>
</tr>
<tr>
<td>Net Income</td>
<td>17.5</td>
<td>18.5</td>
<td>14.3</td>
</tr>
<tr>
<td>Sales (5-Year Annual Avg.)</td>
<td>7.35</td>
<td>8.84</td>
<td>7.75</td>
</tr>
<tr>
<td>Net Income (5-Year Annual Avg.)</td>
<td>7.08</td>
<td>8.99</td>
<td>8.24</td>
</tr>
<tr>
<td>Dividends (5-Year Annual Avg.)</td>
<td>10.4</td>
<td>8.93</td>
<td>4.97</td>
</tr>
</tbody>
</table>

Profitability ratios

<table>
<thead>
<tr>
<th>Investment Returns %</th>
<th>Company</th>
<th>Industry</th>
<th>S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROE</td>
<td>30.2</td>
<td>38.8</td>
<td>20.7</td>
</tr>
<tr>
<td>ROA</td>
<td>15.5</td>
<td>12.7</td>
<td>6.9</td>
</tr>
<tr>
<td>ROIC</td>
<td>22.4</td>
<td>18.5</td>
<td>9.4</td>
</tr>
<tr>
<td>ROE (5-Year Average)</td>
<td>29.8</td>
<td>22.5</td>
<td>16.2</td>
</tr>
<tr>
<td>ROA (5-Year Average)</td>
<td>15.7</td>
<td>12.3</td>
<td>7.6</td>
</tr>
<tr>
<td>ROIC (5-Year Average)</td>
<td>23</td>
<td>17.8</td>
<td>10.3</td>
</tr>
</tbody>
</table>
Profitability ratios

Definitions of profitability ratios:
- **ROE** = Net income / Equity
- **ROA** = EBIT / Total assets
- **ROIC** = return on operating invested capital = NOPLAT / Operating invested capital

Profit margins

Definitions of profit margins:
- **Gross margin** = EBIT / Sales
- **Pre-tax margin** = Pre-tax profit / Sales
- **Net profit margin** = Net income / Sales

Market price ratios

Definitions of market price ratios:
- **P/E** = price / earnings per share
- **P/Sales** = price / sales per share
- **P/Book value** = price / book value per share
- **P/Cash flow** = price / FCFE

Leverage and liquidity ratios

Definitions of market price ratios:
- **Debt/Equity Ratio**
- **Current Ratio**
- **Quick Ratio**
- **Interest Coverage**
- **Leverage Ratio**
- **Book Value/Share**

Profit margins

<table>
<thead>
<tr>
<th>Profit Margins %</th>
<th>Company</th>
<th>Industry</th>
<th>S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Margin</td>
<td>64.2</td>
<td>58.5</td>
<td>38.3</td>
</tr>
<tr>
<td>Pre-Tax Margin</td>
<td>28.9</td>
<td>22.9</td>
<td>14.2</td>
</tr>
<tr>
<td>Net Profit Margin</td>
<td>22.3</td>
<td>17.7</td>
<td>10.5</td>
</tr>
<tr>
<td>5Yr Gross Margin (5-Year Avg.)</td>
<td>64.6</td>
<td>58.8</td>
<td>37.9</td>
</tr>
<tr>
<td>5Yr Pre-Tax Margin (5-Year Avg.)</td>
<td>27.1</td>
<td>21.1</td>
<td>15.9</td>
</tr>
<tr>
<td>5Yr Net Profit Margin (5-Year Avg.)</td>
<td>20.7</td>
<td>16</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Market price ratios

<table>
<thead>
<tr>
<th>Price Ratios</th>
<th>Company</th>
<th>Industry</th>
<th>S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current P/E Ratio</td>
<td>18.8</td>
<td>18.8</td>
<td>21.7</td>
</tr>
<tr>
<td>Price/Sales Ratio</td>
<td>4.09</td>
<td>3.3</td>
<td>2.28</td>
</tr>
<tr>
<td>Price/Book Value</td>
<td>5.1</td>
<td>5.52</td>
<td>5.82</td>
</tr>
<tr>
<td>Price/Cash Flow Ratio</td>
<td>15.6</td>
<td>14.1</td>
<td>16.4</td>
</tr>
</tbody>
</table>

Leverage and liquidity ratios

<table>
<thead>
<tr>
<th>Financial Condition</th>
<th>Company</th>
<th>Industry</th>
<th>S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt/Equity Ratio</td>
<td>0.48</td>
<td>1.27</td>
<td>1.39</td>
</tr>
<tr>
<td>Current Ratio</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Quick Ratio</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Interest Coverage</td>
<td>NA</td>
<td>2.4</td>
<td>27.2</td>
</tr>
<tr>
<td>Leverage Ratio</td>
<td>2</td>
<td>3.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Book Value/Share</td>
<td>10.77</td>
<td>11.08</td>
<td>22.06</td>
</tr>
</tbody>
</table>
Leverage and liquidity ratios

Definitions of leverage and liquidity ratios:

- **Current ratio** = current assets / current liabilities
- **Quick ratio** = (cash + marketable securities + receivables) / current liabilities
- **Interest coverage** = EBIT / interest expense
- **Leverage** = assets / equity

Efficiency ratios

Definitions of efficiency ratios:

- **Receivable turnover** = Cost of goods sold / receivables
- **Inventory turnover** = Cost of goods sold / inventories
- **Asset turnover** = Sales / total assets

Forecasting FCF

- Using accounting information downloaded from www.msn.com, the Balance sheets and Income statements were constructed for the last five years: 2005-2009.

Efficiency ratios

<table>
<thead>
<tr>
<th>Management Efficiency</th>
<th>Company</th>
<th>Industry</th>
<th>S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net income/Employee</td>
<td>74,418</td>
<td>62,521</td>
<td>75,397</td>
</tr>
<tr>
<td>Sales/Employee</td>
<td>333.944</td>
<td>334.062</td>
<td>814.514</td>
</tr>
<tr>
<td>Receivable Turnover</td>
<td>9.1</td>
<td>10.2</td>
<td>14.4</td>
</tr>
<tr>
<td>Inventory Turnover</td>
<td>4.9</td>
<td>6.7</td>
<td>9.2</td>
</tr>
<tr>
<td>Asset Turnover</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

(5) Forecasting FCF

The following three slides show the structure of the:

- (1) Balance sheet: Assets
- (2) Balance sheet: Liabilities and equity
- (3) Income statement
Forecasting FCF

- We shall forecast the cash flow statement as follows:
- First, we forecast the Balance sheet and the Income statement for six years.
- The first five years define the explicit forecast period.
- The sixth year is the starting year of the continuing value period.

Forecasting Balance sheet

- To forecast the Balance sheet, we simply computed the percentage of each account to total assets during the past 5 years.
- Then, we identified the relatively stable percentages and computed the average percentage of the account over the stable period.

Forecasting Balance sheet

- Then, we assumed that the value of total assets will grow according to the GDP growth rate of the U.S.
- We assumed 3 percent for the U.S. growth rate and forecasted total assets for the next six years.
- Finally, we used the percentage averages of single accounts to compute the forecasted value of each account in the Balance sheet.
Forecasting Income statement

- In order to forecast the Income statement, we computed the following values from the Income statement:

<table>
<thead>
<tr>
<th>RATIO:</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total revenue/total revenue(-1)</td>
<td>0.04</td>
<td>0.20</td>
<td>0.11</td>
<td>0.03</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Cost of revenue/total revenue</td>
<td>0.35</td>
<td>0.34</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Other costs/Total revenue</td>
<td>0.38</td>
<td>0.39</td>
<td>0.39</td>
<td>0.37</td>
<td>0.37</td>
<td>0.38</td>
</tr>
<tr>
<td>Computed tax rate</td>
<td>0.27</td>
<td>0.23</td>
<td>0.24</td>
<td>0.23</td>
<td>0.24</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Forecasting Income statement

- In the previous table, the last column contains the average of the past five years.
- We used this table to forecast the income statement for the next six years.

Forecasting FCF

- Second, for each year of the forecast period, we compute the cash flow statement.
- We use the **type two** CF statement learned in the Financial Statements class.
- The structure of the CF statement is the following:

<table>
<thead>
<tr>
<th>EBIT</th>
<th>Tax due to operating result</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCFF</td>
<td>NOPLAT</td>
</tr>
<tr>
<td>Depreciation/Amortization</td>
<td>0</td>
</tr>
<tr>
<td>A Current asset</td>
<td>0</td>
</tr>
<tr>
<td>E Current Liability</td>
<td>0</td>
</tr>
<tr>
<td>Cash provided by operation</td>
<td>0</td>
</tr>
<tr>
<td>A Fixed assets/without financial</td>
<td>0</td>
</tr>
<tr>
<td>Depreciation/Amortization</td>
<td>0</td>
</tr>
<tr>
<td>Cash from investments</td>
<td>0</td>
</tr>
<tr>
<td>Extraordinary result</td>
<td>0</td>
</tr>
<tr>
<td>Tax due to extraordinary result</td>
<td>0</td>
</tr>
<tr>
<td>Extraordinary cash flow</td>
<td>0</td>
</tr>
<tr>
<td>FCFF</td>
<td>Cash from financing activities</td>
</tr>
<tr>
<td>Long-term financial liabilities</td>
<td>0</td>
</tr>
<tr>
<td>Extraordinary result</td>
<td>0</td>
</tr>
<tr>
<td>Financial result</td>
<td>0</td>
</tr>
<tr>
<td>Tax due to financial result</td>
<td>0</td>
</tr>
<tr>
<td>Cash from financing activities</td>
<td>0</td>
</tr>
<tr>
<td>FCFE</td>
<td>Cash from investing activities</td>
</tr>
<tr>
<td>A Equity</td>
<td>0</td>
</tr>
<tr>
<td>Net Income</td>
<td>0</td>
</tr>
<tr>
<td>Cash and Short Term investments</td>
<td>0</td>
</tr>
</tbody>
</table>

Forecasting FCF

- Once we have obtained the forecasts of FCFE and FCFF we can discount these estimates to compute the values of equity and total assets, respectively.

(6) Cost of capital
Cost of capital of equity

• First, we compute the cost of equity of Coca-Cola using the CAPM model:
 \[r_E = \alpha + \beta_E (r_M - \alpha) \]
• The analysts’ report on www.msn.com tells us that \(\beta = 0.6 \)
• We also evaluate the yield to maturity of U.S. T-bills and obtain an estimate of the risk-free rate: \(r_f = 5\% \)
• We take the annual S&P500 return as market return: \(r_m = 25\% \)

Cost of capital of equity

• Then, using the CAPM we get that the cost of capital of equity is \(r_E = 17\% \)

Cost of capital of firm

• Second, we compute after-tax WACC using the following formula:
 \[WACC_{after\ taxes} = r_E \frac{E}{E+D} + r_D (1-T_c) \frac{D}{E+D} \]
• We assume that the value of equity and debt in the Balance sheet represent market values.

Cost of capital of firm

• We use the tax rate in the WACC formula.
• To estimate the cost of capital of debt we compute the yield to maturity of publicly traded corporate bonds of Coca-Cola.
• We get that \(r_D = 13\% \) is the cost of capital of debt.
• Then, substituting in the WACC formula we get the cost of capital of the firm: \(WACC = 13.5\% \)

(7) DCF valuation of equity and assets

• We discount forecasted FCFF by WACC to get the value of total assets.
• We discount forecasted FCFE by \(r_E \) to get the value of equity.

DCF valuation
DCF valuation

- For the **explicit forecast period** the next present value formulas are used:

\[
PV(FCFE_t) = \frac{FCFE_t}{(1+r_E)^t}
\]

\[
PV(FCFF_t) = \frac{FCFF_t}{(1+WACC)^t}
\]

- For the **continuing value forecast period** we assume that CF forms a growing perpetuity.
- The growth rate, \(g\) is assumed to be 1.5%.
- We use the following formula to compute the present value of the growing perpetuities:

\[
PV(continuing \ value) = \frac{CF_0}{(r-g)(1+r)^g}
\]

DCF valuation: Summary

- As a summary, we present the present value formulas for the FCFE and FCFF cash flows:

\[
PV(TOTAL: FCFE) = \sum_{t=1}^{5} \frac{FCFE_t}{(1+r_E)^t} + \frac{FCFE_6}{(r_E-g)(1+r_E)^5}
\]

\[
PV(TOTAL: FCFF) = \sum_{t=1}^{5} \frac{FCFF_t}{(1+WACC)^t} + \frac{FCFF_6}{(WACC-g)(1+WACC)^5}
\]

- We can compare to DCF valuation result with the balance sheet items in the following table:

<table>
<thead>
<tr>
<th>SUMMARY</th>
<th>DCF</th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of equity</td>
<td>48,865</td>
<td>24,799</td>
</tr>
<tr>
<td>Value of assets</td>
<td>65,166</td>
<td>48,871</td>
</tr>
<tr>
<td>Value of debt</td>
<td>16,302</td>
<td>23,872</td>
</tr>
</tbody>
</table>