Facilitation of cholinergic transmission by combined treatment of ondansetron with flumazenil after cortical cholinergic deafferentation

Francisco J. Gil-Bea, Jon Domínguez, Mónica García-Alloza, Beatriz Marcos, Berta Lasheras, María J. Ramírez*

Department of Pharmacology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain

Received 23 September 2003; received in revised form 23 December 2003; accepted 19 March 2004

Abstract

We have studied the effects of concomitant blockade of 5-HT3 and GABAA receptors on acetylcholine (ACh) release in the frontal cortex of rats with a selective cholinergic lesion. Lesions were performed by microinjection of the cholinergic toxin 192 IgG-saporin into the nucleus basalis magnocellularis. Single treatment with either the 5-HT3 receptor antagonist ondansetron, 0.1 μg/kg, or the GABAA receptor benzodiazepine site antagonist flumazenil, 10 mg/kg, did not affect ACh release. However, the combined ondansetron + flumazenil administration significantly increased ACh release to a similar extent as a depolarising stimulus with K+, 100 mM, at both 7 and 30 days post-lesion. Cortical perfusion with the combined ondansetron + flumazenil treatment also increased [3H]ACh efflux “in vitro” 30 days after lesion, suggesting that local events within the frontal cortex may participate in the interaction of ondansetron with GABAergic neurons, modulating ACh release in situations of cholinergic hypoactivity. No differences in the expression of 5-HT3 and GABAA receptors in the frontal cortex were found after the cholinergic lesion. These results suggest that a combined ondansetron + flumazenil treatment would contribute to restoring a diminished cholinergic function and may provide a basis for using this treatment in the therapy of cognitive disorders associated with degeneration of the cholinergic system.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: 5-HT3 receptors; GABAA receptors; 192 IgG-saporin; Alzheimer’s disease; Nucleus basalis magnocellularis

1. Introduction

Disruption of basal forebrain cholinergic pathways and consequent cortical cholinergic denervation is one of the hallmarks of Alzheimer’s disease (AD) and other neurodegenerative conditions such as Parkinson’s disease, dementia with Lewy bodies or vascular dementia (Michaelis, 2003; Terry and Buccafusco, 2003). This cholinergic dysfunction in AD has been largely related to cognitive disturbances (Perry et al., 1999). The cholinergic hypothesis of memory has led to multiple studies attempting cholinergic replacement therapy in these neurodegenerative diseases, and nowadays, activation and restoration of cholinergic function remains a major objective in the development of pharmacological approaches towards the treatment of cognitive dysfunctions associated with aging and dementia (see review by Terry and Buccafusco, 2003).

There is a wide body of evidence to suggest that serotonin (5-HT) plays an important role in learning and memory processes (see review Buhot et al., 2000). Biochemical and anatomical studies have shown a functional interaction between serotonergic and cholinergic systems (Maura et al., 1992; Cassel and Jeltsch, 1995) and therefore, serotonergic receptors could modulate the activity of the cholinergic system to cooperate in the regulation of cognitive processes (Barnes et al., 1989; Cassel and Jeltsch, 1995). In particular, the involvement of 5-HT3 receptors in learning and memory has been repeatedly suggested and 5-HT3 receptor
antagonists, such as ondansetron, have been described as potential cognitive enhancers in the treatment of dementia (Costall and Naylor, 1997; Meneses, 1998). In addition to the effects on cognition, 5-HT₃ receptor antagonists have also been shown to be useful in the treatment of non-cognitive disorders, such as anxiety (Ye et al., 2001), that occur frequently in AD. Moreover, 5-HT₃ receptors seem to be preserved in the illness (Barnes et al., 1990).

Previous studies from our group have shown that the 5-HT₃ receptor antagonist ondansetron produces an enhancement in ACh release in the rat cerebral cortex and this effect is potentiated by GABAA receptor antagonists, such as bicuculline and flumazenil, both “in vitro” and “in vivo” (Ramirez et al., 1996; Diez-Ariza et al., 1998, 2002). Moreover, when evaluated for effects on cognition, a full reversal of the learning impairment induced by scopolamine was found after the combined treatment with ondansetron and flumazenil (Diez-Ariza et al., 2003).

It is hypothesised here that concomitant blockade of 5-HT₃ and GABAA receptors will be effective in facilitating ACh release in situations of cholinergic hypactivity. Therefore, in the present study, the ability of single or combined treatment with ondansetron and flumazenil to induce ACh release has been evaluated in rats with a selective cholinergic lesion. Possible mechanisms implicated in the releasing effect of these drugs have also been investigated.

2. Materials and methods

2.1. Drugs

The following compounds were used: ondansetron (Vita, Spain); flumazenil, neostigmine bromide, hemicholinium-3, acetylthiocholine iodide (Sigma, UK); [methyl-³H]choline chloride (86 Ci/mmol), [9-methyl-³H]BRL 43694 (81 Ci/mmol), (PerkinElmer, USA); 192 IgG Saporin (Chemicon International Inc., USA); [methylamine-³H]muscimol (7.4 Ci/mmol), (Amersham Pharmacia, UK). Inorganic salts and other reagents were from Merck and Sigma.

Ondansetron was dissolved in saline and flumazenil was dissolved by adding 0.1% Tween-80 and then adjusting the solution to its final volume with saline.

2.2. Animal housing

Male Wistar rats weighing 230–250 g were used. Animals were kept at constant room temperature (21 ± 1 °C) and relative humidity (55 ± 5 %) with a 12-h light/dark cycle (dark from 8 p.m.) and ad libitum access to food and water. All the experiments were carried out in strict compliance with the recommendations of the EU (DOCE L 358/1 18/2/1986) for the care and use of laboratory animals.

At the beginning of the study rats were allocated randomly to one of the experimental groups constituted by controls, sham-operated rats and rats with 192 IgG-saporin lesions.

2.3. Surgery

All surgical procedures were conducted under aseptic conditions. Rats were anaesthetised with a mixture of ketamine (10 mg/kg, i.p.; Ketasol, Parke-Davis, USA) and xylazine (0.3 mg/kg, i.p.; Rompun, Bayer, Germany) and placed in a stereotaxic frame (Kopf, USA), with the incisor bar set 3.5 mm below the interaural line. One microlitre of the immunotoxin 192 IgG-Saporin (0.067 μg/μl/hemisphere; Torres et al., 1994) was infused bilaterally into the nucleus basalis magnocellularis (NBM) of the basal forebrain at the following coordinates (from bregma): AP −0.9 mm, ML ± 2.9 mm, DV −6.5 mm, according to the atlas of Paxinos and Watson (1982). Sham animals received equivalent amounts of saline.

Post-lesion survival times were established at 7 and 30 days.

2.4. Verification of lesions

To assess the extent of the lesion, different cholinergic markers were measured in the frontal cortex. Acetylcholinesterase (AChE) activity was measured in the frontal cortex according to the colorimetric method described by Wang et al. (1999). The high-affinity choline uptake (HACU) system was determined according to the radiometric method of Lapchak and Hefti (1991). Choline acetyltransferase (ChAT) activity assay was performed according to the method of Ricceri et al. (2002).

Results are expressed as percentage of controls.

2.5. Acetylcholine release “in vivo”

Microdialysis probes were implanted into the right frontal cortex at the following coordinates: AP 3.2 mm, ML 0.5 mm, DV −3.5 mm. The dialysis probes, had a diameter of 250 μm and an exposed dialysis membrane (Cuprophan, Applied Neuroscience, UK) of 3 mm.

Dialysis experiments were conducted during daytime 24 h after probe implantation surgery. The probes were perfused at a constant flow rate of 1.0 μl/min, using a microperfusion pump (CMA, Sweden), with cerebrospinal fluid containing (in mM): NaCl 120, KCl 1.4, CaCl₂ 1.2, MgCl₂ 0.83, and NaHCO₃ 20, in a potassium phosphate buffer (1.3 mM; pH 7.4). The acetylcholinesterase inhibitor neostigmine bromide (1 μM)
was added to the perfusion solution in order to prevent degradation of ACh. Dialysate was discarded during the first 120-min equilibration period and then collected every 15 min. After collection of three baseline fractions, tested drugs were administered i.p. The doses of drugs used were selected according to previous experiments in non-lesioned animals (Diez-Ariza et al., 2002, 2003). In another set of experiments, animals were perfused with KCl (100 mM) through the dialysis probe. Animals were never used in more than one dialysis session. Following the dialysis experiments, the accurate placement of the probes was verified post-mortem by gross examination of coronal sections.

ACh content in the dialysis samples was determined using high-performance liquid chromatography (HPLC) with electrochemical detection as previously reported (Rosenblad and Nilsson, 1993). ACh content was calculated by comparing with a 1 pmol standard. The sensitivity limit (signal-to-noise ratio > 2) was 50 fmol.

2.6. Acetylcholine release “in vitro”

Induced K\(^+\)-evoked \([^{3}\text{H}]\)ACh efflux was measured as previously described (Ramirez et al., 1996). In brief, after labelling the tissue with \([^{3}\text{H}]\)choline (3 μl/ml, 81 Ci/mmol), aliquots (150 μl) of packed slices were added to each chamber of a Brandel Superfusion-1000 apparatus and superfused with Krebs-Ringer bicarbonate buffer containing the choline reuptake inhibitor hemicholinium-3 (1 μM). Fractions were collected at 3-min intervals for a total of 60 min. At 12 min (S1) and 45 min (S2) after equilibration, the slices were depolarised by changing the superfusion fluid for 6 min to a solution containing 20-mM KCl. Ondansetron and/or flumazenil were added 15 min before S2. Tritium content was assayed by liquid scintillation spectroscopy. S1 and S2 were calculated as K\(^+\)-stimulated tritium increase over basal efflux. Results were expressed as S2/S1 ratio.

2.7. Binding assays

All the measurements were assayed in duplicate and the data was subjected to Scatchard analysis in order to determine receptor density (B\(_{max}\)) and dissociation constant (K\(_d\)). The amount of protein in each tissue was assessed according to the method of Bradford (1976).

2.7.1. \([9\text{-methyl-}^{3}\text{H}]\)BRL 43694 binding to 5-HT\(_3\) receptors

Membranes were prepared according to the method of Nelson and Thomas (1989). BRL 43694 binding assays contained 20 μl of \([9\text{-methyl-}^{3}\text{H}]\)BRL 43694 (concentrations ranged from 0.1 to 3 nM) and BRL (100 μM) to determine non-specific binding. 100 μl of tissue preparation and 700 μl of 50 mM HEPES (pH 7.7) in 1-ml final volume. The assays were incubated for 10 min on ice and then rapidly filtered through Whatman GF/C glass fibre filters. Filters were measured by liquid scintillation spectroscopy.

2.7.2. \([\text{methylamine-}^{3}\text{H}]\)muscimol binding to GABA\(_A\) receptors

Membranes were prepared according to the method of Green et al. (1996). Muscimol binding assays contained 20 μl of [methylamine-\(^3\)H]muscimol (concentrations ranged from 2.5 to 50 nM), GABA (100 μM) to determine non-specific binding and 160 μl of tissue preparation (dilution 1:50) in 200-μl final volume. The assay was incubated for 10 min on ice and then rapidly filtered through Whatman GF/B glass fibre filters. Filters were measured by liquid scintillation spectroscopy.

2.8. Statistical analysis

Normality was checked using Shapiro-Wilks’s test (p > 0.05) prior to any other statistical analysis.

The effect of lesion on cholinergic markers (AChE, ChAT and HACU levels), binding parameters (B\(_{max}\), K\(_d\)) and \([^{3}\text{H}]\)ACh release was analysed using one-way ANOVA followed by Tukey’s tests. The same statistical analysis was used to compare control with sham (7 and 30 days) animals.

In microdialysis experiments, ACh content in each sample was presented as mean ± S.E.M. percentage of the average baseline level calculated from the first three samples in each animal group. Baseline levels of ACh release were compared using one-way ANOVA followed by Tukey’s test. The statistical analysis of the effect of 5-HT\(_3\) antagonist ondansetron (treatment 1) and GABA\(_A\) antagonist flumazenil (treatment 2) on ACh outflow was assessed using a two-way ANOVA (treatment 1 × treatment 2) with time as the repeated measure, followed by Tukey’s test.

Summed effects of treatment over the course of an experiment were measured by determining the area under the curve (AUC, GraphPad Prism v. 3.02). AUC values were compared using a one-way ANOVA followed by Fisher’s test for comparisons between control and experimental groups.

3. Results

3.1. Characterisation of the selective cholinergic lesion

Injection of 192 IgG-saporin into the NBM caused an overall decrease in the activity of the cholinergic markers in the frontal cortex. As summarised in Table 1, at both 7 and 30 days after lesion, ChAT and
AChE levels were significantly reduced to approximately 50% of the control values (one-way ANOVA, $F_{(3,117)} = 109.46$, $p < 0.001$; $F_{(3,33)} = 19.46$, $p < 0.001$, respectively). Significant decreases in HACU values were also found (one-way ANOVA, $F_{(3,18)} = 11.79$, $p < 0.001$). No statistical differences were found between control and sham groups in ChAT, AChE and HACU levels.

3.2. ACh release “in vivo” from the frontal cortex of lesioned rats

As shown in Table 1, rats with cholinergic lesion of NBM showed a significant decrease, at both 7 and 30 days post-lesion, in basal ACh efflux relative to control values (one-way ANOVA, $F_{(3,79)} = 10.73$, $p < 0.001$).

Seven days after a selective cholinergic lesion, the time course of ACh release after single or combined treatment with ondansetron and flumazenil is presented in Fig. 1 (top panel). Selective blockade of 5-HT$_3$ receptor after administration of ondansetron, 0.1 µg/kg i.p., did not affect the basal ACh outflow, although, a non-significant peak of 35% over baseline was observed. Similarly, systemic administration of a selective GABA$_A$ receptor antagonist, flumazenil, 10 mg/kg, i.p., also failed to significantly increase ACh efflux. However, combined treatment with ondansetron and flumazenil significantly enhanced ACh release (two-way ANOVA, $F_{(3,54)} = 2.91$, $p < 0.05$). Moreover, cumulating the release over fractions revealed (one-way ANOVA; $F_{(3,20)} = 2.97$, $p = 0.05$) a significant effect of the combined treatment compared to single administrations (2300.85 ± 336.60, 2355.02 ± 625.23, 3639.83 ± 391.99 fmol ACh/105 min, for ondansetron, flumazenil and the combined treatment, respectively).

Similarly, at longer post-lesion times (30 days), single administration of ondansetron or flumazenil did not modify ACh outflow from the frontal cortex of lesioned rats 30 days after the cholinergic lesion. However, the combined treatment of ondansetron+-
flumazenil enhanced the peak releasing effect (two-way ANOVA, $F_{(3,45)} = 3.66, p < 0.01$; Fig. 1, bottom panel). Total ACh release, expressed as AUC, was also significantly higher (one-way ANOVA, $F_{(2,13)} = 3.69, p = 0.05$) after the combined treatment ($5292 ± 1725$ fmol ACh/µl/min) vs. single treatment with ondansetron ($1837 ± 892$ fmol ACh/µl/min) or flumazenil ($1883 ± 398$ fmol ACh/µl/min). Cumulating release over fractions in the combined treatment group was also significantly increased (one-way ANOVA; $F_{(3,23)} = 3.86, p < 0.05$; 1519 ± 486, 2220 ± 225, 3236 ± 469 fmol ACh/105 min, for ondansetron, flumazenil and the combined treatment, respectively).

Infusion through the dialysis probe of a local stimulus of 100 mM KCl during 30 min produced significant increases in ACh outflow over basal values in control and lesioned rats (Fig. 2), both at 7 (two-way ANOVA, $F_{(3,54)} = 7.64, p < 0.01$) and 30 days after a selective cholinergic lesion ($F_{(3,44)} = 0.63, p < 0.01$). Peak increases in ACh release after the combined treatments were similar to those produced by a depolarizing stimulus with KCl.

3.3. Effect of ondansetron and flumazenil on K$^+$-evoked $[^3]$H$^+$ACh release

Basal $[^3]$H$^+$ACh release in lesioned rats was significantly diminished (Table 1) at both 7 and 30 days after the lesion (one-way ANOVA, $F_{(3,259)} = 57.49, p < 0.001$).

Three different concentrations of ondansetron (0.01, 0.1 and 1 µM) and flumazenil (1, 10 and 50 µM) were tested in their ability to release $[^3]$H$^+$ACh in lesioned animals.

Seven and 30 days after cholinergic lesion of NBM, none of the concentrations of ondansetron or flumazenil tested showed a significant intrinsic effect on the K$^+$-evoked $[^3]$H$^+$ACh efflux from frontal cortex slices (data not shown), although some concentrations showed a trend towards an increased ACh release, e.g., flumazenil (10 µM) increased S2/S1 ratio from 1.05 ± 0.08 (control) up to 1.30 ± 0.14 in 30 days lesioned animals. The concentrations of single treatments with ondansetron or flumazenil that yielded maximal, although non-significant $[^3]$H$^+$ACh release, were selected to check the effect of the combined treatment on “in vitro” ACh release.

The combined treatment with ondansetron (0.1 µM) and flumazenil (10 µM) yielded a non-significant increase in $[^3]$H$^+$ACh levels 7 days after the lesion. However, at the longer post-lesion time of 30 days, concomitant superfusion with ondansetron and flumazenil was able to significantly increase cortical ACh release in lesioned animals, and S2/S1 ratio raised from 1.05 ± 0.08 (control) to 1.53 ± 0.16 (combined treatment with ondansetron and flumazenil, one-way ANOVA, $F_{(3,85)} = 5.1, p < 0.001$; Fig. 3).

As illustrated in Table 2, cholinergic lesion of the NBM did not show any effect on $[^3]$H$^+$BRL 43694 binding in the frontal cortex (one-way ANOVA, ns).

Similarly, the selective cholinergic lesion of the NBM did not affect $[^3]$H$^+$Muscimol binding in the frontal cortex either 7 or 30 days after lesion (one-way ANOVA, ns), although a non-significant 19% increase in GABAA receptor density, expressed as B_{max}, relative to controls, was found 7 days post-lesion.
Effect of a selective cholinergic lesion in the NBM on 5-HT3 and GABA\textsubscript{A} receptor densities in the rat frontal cortex

<table>
<thead>
<tr>
<th>Animal group</th>
<th>[5-HT\textsubscript{3}]</th>
<th>[GABA\textsubscript{A}]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B_{max} (fmol/mg protein)</td>
<td>K_d (nM)</td>
</tr>
<tr>
<td>Control</td>
<td>23.95 ± 1.57</td>
<td>1.83 ± 0.24</td>
</tr>
<tr>
<td>SAPO 7 days</td>
<td>25.10 ± 2.00</td>
<td>2.29 ± 0.29</td>
</tr>
<tr>
<td>SAPO 30 days</td>
<td>18.66 ± 1.59</td>
<td>2.18 ± 0.70</td>
</tr>
</tbody>
</table>

SAPO, animals with a selective cholinergic lesion induced by injection of 192 IgG-saporin into the NBM. Data expressed as mean \pm S.E.M.; $n = 6-11$ per group. No differences were found between sham animals at either 7 or 30 days post-lesion and non-lesioned animals, therefore, for illustrative purposes only, these values have been combined in one Control group.

4. Discussion

Previous neurochemical and behavioural studies from our group support the notion that concomitant blockade of 5-HT\textsubscript{3} and GABA\textsubscript{A} receptors enhances learning in animal models of cognitive dysfunction through an enhancement of cholinergic neurotransmission (Ramirez et al., 1996; Diez-Ariza et al., 1998, 2002, 2003). In the present work it was found that combined treatment with 5-HT\textsubscript{3} and GABA\textsubscript{A} receptor antagonists was able to significantly increase ACh release in situations of cholinergic hypoactivity.

Cholinergic neurons in the NBM give rise to a dense network of cholinergic fibres innervating the entire cortical mantle (Wainer and Mesulam, 1990). Partial cortical cholinergic deafferentiation was achieved by intraparenchymal infusion of the selective cholinergic immunotoxin, 192 IgG-Saporin, into the NBM (Heckers et al., 1994; Torres et al., 1994). The post-lesion time of 7 days was used in this study because it has been described that 7 days after lesion, cholinergic damage is entirely achieved (Fadel et al., 1996). The post-lesion time of 30 days was also selected to allow for the possible development of long-term compensatory mechanisms acting to restore ACh levels after cholinergic lesions (Cossette et al., 1993). Under our experimental conditions, a significant decrease in cholinergic function was achieved, as reflected by significant decreases in cholinergic markers in the frontal cortex of lesioned animals similar to those previously described after this type of lesion (Wenk et al., 1994; Rossner et al., 1995; Lacalle et al., 1998).

As expected (Fadel et al., 1996), a decrease in basal cortical ACh level was found at both post-lesion times. However, ACh release “in vivo” is reduced after the lesion to a lesser extent than ChAT or AChE activity. These findings suggest that surviving cholinergic neurons may up-regulate ACh turnover “in vivo” to compensate for cholinergic denervation. It has been described that following partial destruction of afferent cholinergic fibres that innervate different brain regions, such as the hippocampus, residual cholinergic neurons are able to up-regulate their capacity to synthesise and store ACh “in vivo” (Lapchak et al., 1991) or even that incomplete lesions of the NBM produced increases in basal ACh release (Mcgaughy et al., 2002). The question about the responsiveness of neurons surviving lesions to the combined treatment was addressed next. The doses of drugs used were selected according to our previous studies, in which the combined treatment with ondansetron, 0.1 μg/kg, and flumazenil, 10 mg/kg, showed a maximal effect on cortical ACh release “in vivo” (Diez-Ariza et al., 2002) and was able to reverse scopolamine-induced learning (Diez-Ariza et al., 2003). Interestingly, and at both 7 and 30 days after lesion, concomitant administration of ondansetron with flumazenil significantly increased ACh release (expressed as maximum release, cumulated release or AUC) even though single treatment with either drug was ineffective. As might be expected, the increase in ACh release after the combined treatment in lesioned animals was lower than in control animals (Diez-Ariza et al., 2002). However, it should be noted that the releasing effect of the combined treatment was similar to the effect of a high depolarizing stimulus, such as KCl (100 mM), known to produce a maximal ACh release both in young or aged rats (Herzog et al., 2003) or after a cholinergic lesion (Rosenblad and Nilsson, 1993).

When considering the mechanisms responsible for the effects of the combined ondansetron + flumazenil treatment, it is possible to speculate that there is a blockade of the inhibitory influence of GABA neurons by ondansetron. GABA-type neurons in the basal forebrain have been found to be directly excited by 5-HT (Alreja, 1996) and the co-existence of 5-HT\textsubscript{3} transcripts in the telencephalon, including the basal forebrain, has also been reported (Morales and Bloom, 1997). This blockade might be produced on the soma of neurons originating from the NBM, but also on local intrinsic mechanisms within the cortex.

In an attempt to elucidate the contribution of local cortical mechanisms to the releasing effect of the treatment with ondansetron + flumazenil, ACh release induced by these drugs was studied “in vitro” in cortical slices from lesioned animals. The concentrations of ondansetron and flumazenil that produced maximal, although non-significant ACh release, were similar to...
those used in previous studies in non-lesioned animals (Diez-Ariz et al., 1998). A significant enhancement of ACh release after the combined treatment was found only at the post-lesion time of 30 days. In light of these observations it is possible to speculate that at short post-lesion times, the contribution of local events to the releasing effect is minimal. However, at longer post-lesion times, local compensatory mechanisms could be responsible for the significant effect on ACh release after ondansetron + flumazenil treatment. In relation to this idea, behavioural studies have hypothesised that, in situations of cholinergic hypoactivity, the serotonergic system could be involved in local mechanisms to compensate for the loss of cholinergic innervation (Richter-Levin and Segal, 1996; Harkany et al., 2000).

It is even possible to speculate about a regulation in the expression of 5-HT3 and GABA_A receptors as part of these compensatory mechanisms. However, cholinergic lesions failed to alter the density of these receptors, suggesting that 5-HT3 and GABA_A receptors are located in neurons, either extrinsically or intrinsically to the cortex, that survive the lesions (Eckenstein et al., 1988). Only a non-significant 15–20% increase in GABA_A receptor density in the frontal cortex was observed at 7 days post-lesion. Similar increases were found after a non-selective cholinergic lesion with ibotenic acid (Rossner et al., 1995) or intracerebroventricular infusion of 192 IgG-Saporin (Rossner et al., 1994).

Following the cholinergic hypothesis of dementia, it is possible to suggest that the combined treatment of ondansetron + flumazenil should be evaluated using a cognition test in animals with selective cholinergic lesions. However, even tough selective cholinergic damage has been described after 192 IgG-saporin lesions, no evidence of sprouting of the residual acetylcholine innervation in adult rat cortex has been reported (Torres et al., 1994; Baxter et al., 1996; Power et al., 2002). It has been speculated that cognitive mechanisms are mediated via cortical ACh, pointing to a role for this neurotransmitter system in the processing of behaviourally relevant sensory information e.g. attention and arousal. It has also been hypothesised that cortical ACh modulates the general efficacy of the cortical processing of sensory or associational information. Regardless of the mechanism, cholinergic replacement therapy nowadays remains the major strategy for the treatment of cognitive dysfunctions in AD (Michaelis, 2003; Terry and Buccafusco, 2003).

In conclusion, the present results show that the combined treatment with ondansetron and flumazenil is capable of significantly enhancing ACh release in situations of cholinergic hypoactivity, such as the initial phases of AD. Drugs such as 5-HT3 receptor antagonists, which are devoid of severe adverse side effects (Goodin and Cunningham, 2002), may provide a more effective treatment strategy, particularly in the elderly, than compounds acting directly on cholinergic transmission, which have proved to be disappointing as therapeutic agents, because of problematic side effects, narrow effective dose ranges and short duration of action (Inglis, 2002). Taken together, the present results might be of particular interest in the treatment of neurodegenerative diseases associated with a cholinergic dysfunction.

Acknowledgements

This work has been supported by a grant from Gobierno de Navarra (Spain). F.J. Gil-Bea has a scholarship form Gobierno de Navarra (Spain). M. Garcia-Alloza has a BEFI scholarship from ISCIII (Spain, expte 00/9479). The authors thank M.L. Muro and S. Lizaso for technical help.

References

ness of ondansetron on scopolamine-induced impairment of spatial learning in rats. Psychopharmacology (Berl) 169, 35–41.

