CD4⁺/CD25⁺ Regulatory Cells Inhibit Activation of Tumor-Primed CD4⁺ T Cells with IFN-γ
-Dependent Antiangiogenic Activity, as well as Long-Lasting Tumor Immunity Elicited by Peptide Vaccination

Noelia Casares, Laura Arribillaga, Pablo Sarobe, Javier Dotor, Ascensión Lopez-Diaz de Cerio, Ignacio Melero, Jesús Prieto, Francisco Borrás-Cuesta and Juan J. Lasarte

J Immunol 2003;171;5931-5939

References This article cites 50 articles, 28 of which can be accessed free at: http://www.jimmunol.org/content/171/11/5931.full.html#ref-list-1

Article cited in: http://www.jimmunol.org/content/171/11/5931.full.html#related-urls

Subscriptions Information about subscribing to *The Journal of Immunology* is online at http://www.jimmunol.org/subscriptions

Permissions Submit copyright permission requests at http://www.aai.org/ji/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at http://www.jimmunol.org/etoc/subscriptions.shtml/
CD4+/CD25+ Regulatory Cells Inhibit Activation of Tumor-Primed CD4+ T Cells with IFN-γ-Dependent Antiangiogenic Activity, as well as Long-Lasting Tumor Immunity Elicited by Peptide Vaccination

Noelia Casares, Laura Arribillaga, Pablo Sarobe, Javier Dotor, Ascensión Lopez-Diaz de Cerio, Ignacio Melero, Jesús Prieto, Francisco Borrás-Cuesta, and Juan J. Lasarte

CD25+ regulatory T (T reg) cells suppress the activation/proliferation of other CD4+ or CD8+ T cells in vitro. Also, down-regulation of CD25+ T reg cells enhances antitumor immune responses. In this study, we show that depletion of CD25+ T reg cells allows the host to induce both CD4+ and CD8+ antitumoral responses following tumor challenge. Simultaneous depletion of CD25+ and CD8+ cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4+ T cells, which emerged in the absence of CD25+ T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4+ T cells was dependent on IFN-γ production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25+ T reg cells is restored over time. However, CD25+ T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25+ T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25+ T reg on the induction of long-lasting cellular immune responses. The Journal of Immunology, 2003, 171: 5931–5939.

R egulatory T (T reg)3 cells have a key role in the maintenance of immune tolerance to both self- and foreign Ags. In particular, a minor population (10%) of CD4+ T cells, which coexpresses the IL-2R α-chain (CD25), has been described to be crucial for the control of autoreactive T cells in vivo (reviewed in Ref. 1). Thus, it has been shown that upon Ag stimulation, this CD4+/CD25+ cell population potently suppresses the activation/proliferation of other CD4+ or CD8+ cells in vitro (2, 3). The mechanism of suppression seems to be the inhibition of IL-2 transcription in the effector populations. Indeed, suppression can be abrogated by the addition of exogenous IL-2 or by enhancing endogenous IL-2 production by means of anti-CD28 Ab (4). However, the exact mechanism by which CD25+ T reg cells exert their suppressive effects remains unknown. Although some research groups have reported the need of cell-to-cell contact between suppressor and responder cells to exert the inhibitory function (3, 5) and that secreted cytokines are not required (6), other groups have reported that the suppressive effect of CD25+ T reg cells is mediated by soluble factors and do not require cell-to-cell contact (7, 8).

T cell-mediated immunotherapy represents a promising treatment for cancer. The absence of efficient tumor-specific immune responses in cancer patients can be related to a deficient APC function or to T cell tolerance/ignorance toward tumor Ags (9, 10). It has been postulated that CD4+/CD25+ immunoregulatory cells may be engaged in continuously up-regulating the activation thresholds of other T cells, thereby avoiding effective generation of tumor immunity while inhibiting autoimmunity (2, 3, 11, 12). Thus, breaking immunological tolerance may allow effective induction of tumor immunity. Several reports have documented the potential role of CD25+ T reg removal for the induction of tumor rejection (4, 13–15). Also, depletion of CD25+ T reg cells leads to the activation of otherwise silent tumor-specific CD8+ cells (4, 13, 14) as well as tumor-nonspecific CD4+CD8− NK-like effector cells (4). In addition, recent publications have documented that CD25+ T reg cells may contribute to the control of memory CD8+ T cell responses (16, 17). These reports suggest that inhibition of CD25+ T reg cell action might have a beneficial effect on the induction of antitumor immunity when combined with different strategies of vaccination.

In this work, we have investigated the effect of in vivo administration of anti-CD25 mAb on the induction of antitumor CD4+ and CD8+ T cell responses against the BALB/c colon cancer CT26 (18). We have also tested the efficacy of CD25+ T cell depletion in combination with peptide vaccination protocols using a cytotoxic T cell determinant (Tcd) (18) and Th cell determinants (Thd) (19), both of them derived from the sequence of murine leukemia

1 Abbreviations used in this paper: T reg, T regulatory cell; TCd, cytotoxic T cell determinant; THd, Th cell determinant; MuLV, murine leukemia virus.

2 Address correspondence and reprint requests to Dr. Juan J. Lasarte, Department of Internal Medicine, Medical School, University Clinic and Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Spain. E-mail address: jjlasarte@unav.es

3 Abbreviations used in this paper: T reg, T regulatory cell; TCd, cytotoxic T cell determinant; THd, Th cell determinant; MuLV, murine leukemia virus.
CD25+ T cell removal allows induction of antitumor T cells

Materials and Methods

Peptides

Peptide SPYVYYHQF (from now on AH1) containing a TCd expressed by CT26 cells and presented by H-2Ld MHC class I molecules (18) and LVQF3KD1S6VQA (from now on pS20–33) containing a Th epitope (19) for BALB/c MHC class II background, both derived from MuLV gp70 envelope protein, were synthesized by the solid phase method of Merrifield (20) using a manual multiple solid-phase peptide synthesizer as described in Ref. 21. At the end of the synthesis, peptides were cleaved, deprotected, and washed six times with diethyl ether. They were lyophilized and analyzed by HPLC. The purity of peptides was above 80% as judged by HPLC.

In vivo depletion experiments

In vivo depletion of CD25+ cells was conducted by i.p. injection of 0.3 mg of anti-CD25 Abs (obtained from rat anti-mouse hybridoma PC61 (American Type Culture Collection) as target cells in a conventional 51 Cr release reaction. The remaining lytic activity of spleen cells 3 days after a single injection of 0.3 mg of anti-CD4 and/or anti-CD8 Abs (obtained from rat anti-mouse hybridomas GK 1.5 and H53.17.2, respectively) on days −1, 0, 1, 6, and 10, as previously described (22), day 0 being the day of peptide immunization. The efficiency of depletions at the day of tumor challenge was assessed by flow cytometry using PBMC isolated from fresh heparinized blood and Ficoll-Hypaque centrifugation. In all cases, the levels of depletion were higher than 95%. Depletion of NK cells was conducted by i.p. administration of rabbit anti-Asialo GM1 antisera (Wako, Neuss, Germany) using 100 μg per dose on days −2, −1, and 3 after challenge with CT26 tumor cells. The efficiency of NK depletions was assessed, at the day of tumor challenge, by flow cytometry using anti CD3 and anti-CD5 Abs. Depletion of CD3+/DX5+ cells was in all cases above 95%. Also, the efficiency of NK depletion was assessed by measuring the remaining lytic activity of spleen cells 3 days after a single injection of rabbit anti-Asialo GM1 antisera. This was done using Yac-1 cells (American Type Culture Collection) as target cells in a conventional 3H thymidine incorporation assay (25). A single injection with 100 μg of Ab was able to completely abrogate NK activity (not shown).

Adaptive T cell transfer experiments

CD4+ cells were purified from naive mice or from CD25- and CD8- T cell-depleted mice by positive selection using anti-CD4 mAb coated to magnetic beads (Dynal Biotech, Oslo, Norway). Briefly, spleen cells from normal BALB/c mice were incubated with anti-CD4 coated Dynabeads for 1 h at 4°C following manufacturer’s instructions. After positive selection using a magnetic concentrator, beads were removed by using DETACHaBEAD (Dynal Biotech). After two washes in PBS, cells were counted and used for adoptive transfer experiments. In some experiments, CD4+/CD8- cells were purified from a CD4+-enriched cell preparation obtained from naive mice, by incubation of cells with anti-CD25 mAb followed by positive selection using anti-IgG-coated Dynabeads according to manufacturer’s instructions (Dynal Biotech). After detachment of beads by over-night incubation at 37°C, cells were washed and counted for adoptive transfer experiments.

Tumor challenge experiments

To measure the antitumoral capacity of the different treatments and/or immunization protocols, mice were challenged by s.c. injection in the right flank with 5 × 106 CT26 tumor cells at different time points. In some experiments animals were immunized with different combinations of peptides in IFA (Difco, Detroit, MI) or IFA alone as described previously (19). Tumor size was expressed as the square value of the small diameter of the tumor, times the value of its larger diameter. Mice were sacrificed when tumor size reached a volume greater than 8 cm3.

Recognition of CT26 tumor cell lysate by CD4+ T cells from mice exposed to CT26 tumor cells

The presence of antitumoral CD4+ cells was measured in mice 30 days after challenge with CT26 tumor cells. CD4+ T cells were purified from naive mice or from mice previously depleted from CD25+ and CD8+ cells as described above and stimulated in vitro (2 × 105 CD4+ cells/well and 4 × 105 mitomycin-treated spleen cells/well from naive mice) with or without different dilutions of cell extracts from CT26, MC38, P815, A20, NS1, or 18Neo cells. To obtain cell extracts, 106 tumor cells or 18Neo cells/ml were lysed by six cycles of freezing and thawing followed by sonication and centrifugation. CT26 colon cancer, MC38 adenocarcinoma, P815 mastocytoma, A20 lymphoma, and NS1 myeloma cells were obtained from the ATCC collection (American Type Culture Collection). 18Neo cells are derived from NIH 3T3 cells and were kindly provided by Dr. J. Berzofsky (National Institutes of Health, Bethesda, MD). Culture supernatants were collected after 48 h of culture to measure production of INF-γ, using a commercial ELISA kit (BD PharmaMingen, San Diego, CA) according to the manufacturer’s instructions. Cell proliferation was assayed after 3 days of culture by measuring [methyl-3H]thymidine incorporation. Briefly, the second day of culture 0.5 μCi [methyl-3H]thymidine were added to each well and incubated overnight. Cells were harvested (Filtermate, 06 harvester; Packard Instrument, Meriden, CT) and incorporated radioactivity was measured using a scintillation counter (Topcount; Packard Instrument).

PCR primers and RT-PCR

Cell extracts from CT26, MC38, P815, A20, NS1, or 18Neo cells were obtained as described above. Total RNA was isolated from cell extracts using Ultraspect RNA isolation kit (Biotex, Houston, TX) following manufacturer’s instructions. One microgram of RNA was reverse-transcribed as previously described (24) and the cDNA was amplified with Taq polymerase using specific primers for MuLV gp70 env (sense primer: ACCT TGTCCGAAATGACCC, antisense primer: GTACCAATCCTGTGTG GTCG, to amplify a 594-bp fragment as described (18)) or for β-actin (sense primer: TTCTAATTGACTCGTGTG, antisense primer: GGTTAATTCTCAGGAT, to amplify a 314-bp fragment as described (24)). Amplified cDNA was electrophoresed through 1% agarose and visualized under UV after ethidium bromide staining.

Matrigel angiogenesis assay

Angiogenesis assays were conducted by injecting 0.3 ml of ice-cold Matrigel (Collaborative Biomedical Products, Bedford, MA) containing 10 ng/ml vascular endothelial growth factor and 10 ng/ml basic fibroblast growth factor (Peprotech, London, U.K.) mixed with 5 × 105 CT26 cells to BALB/c mice: 1) untreated; 2) depleted of CD25+ and CD8+ T cells, 3) depleted of CD25+ and CD4+ T cells. To study the effect of INF-γ on angiogenesis, two subgroups of mice, depleted of CD25+ and CD8+ T cells or depleted of CD25+ and CD4+ cells, were injected with anti-INF-γ Ab at days 0, 2, and 5 after matrigel implantation (n = 6 in all groups). Matrigel injections were performed s.c. on the right flank of the mice. Nine days after implantation, plugs were harvested, surrounding tissue was dissected away, and the pellets were liquefied by incubation at 4°C overnight in 300 μl of PBS. The remaining pellets were further disrupted using a mecific homogenizer. Hemoglobin content was quantified by measuring absorbance of the samples at 410 nm and by comparing with the absorbance of standard hemoglobin solutions.

Statistics

Statistical analysis was conducted using the computer program SPSS for Windows (Chicago, IL). Evaluation of the antiangiogenic effect of CD25+ and CD8+ cell depletion and the differences in the INF-γ production between groups were done using the Shapiro-Wilk test followed by the Dunnett test.

References

Statistical analysis was conducted using the computer program SPSS for Windows (Chicago, IL). Evaluation of the antiangiogenic effect of CD25+ and CD8+ cell depletion and the differences in the INF-γ production between groups were done using the Shapiro-Wilk test followed by the Dunnett test.
Results

Effect of in vivo depletion of CD25+, CD4+, or CD8+ cells on the protection against CT26 tumor challenge

Immunization of BALB/c mice with AH1 (a TCd expressed by CT26 cells) is unable to induce a protective CTL response against challenge with CT26 tumor cells (18). This is due to the inability of AH1 to induce a competent Th response (19). However, when mice were depleted of CD4+ cells, immunization with AH1 protected all animals from tumor challenge (Ref. 19 and Table I), paradoxically suggesting that CD4+ T cells were not necessary, or might even be detrimental for the induction of CTL responses. This made us think that elimination of CD4+/CD25+ regulatory cells might be at the origin of this result. To study whether the protective effect of immunization with AH1, in mice depleted of CD4+ cells, was mediated by the elimination of CD4+/CD25+ cells, we selectively depleted this subpopulation by i.p. injection of anti-CD25 Abs previous to challenge with CT26 tumor cells. The efficiency of this depletion was in all cases above 95% (not shown), as assessed by flow cytometry. It was found that CD25+ cell depletion led to a full protection (6 of 6 mice) against tumor challenge (Table II). Interestingly, and in contrast to what was found in CD4+ cell-depleted mice, the protection observed after depletion of CD25+ cells did not require immunization with AH1. Thus, all CD25+ depleted and nonimmunized mice remained protected against CT26 tumor challenge, whereas all CD4+-depleted and nonimmunized mice developed tumors (compare Tables I and II).

To confirm the inhibitory role of CD25+ cells on the induction of a protective cellular immune response against CT26 tumor cell challenge, we conducted adoptive transfer of CD25+ cells. Thus, the same day of challenge with CT26 tumor cells, we infused 5 × 10^6 CD25+ cells (obtained from naive mice) to AH1-immunized animals, which had been depleted of CD4+ cells. It was found that adoptive transfer of CD25+ cells abrogated the protective effect observed following immunization of CD4+ cell-depleted mice with AH1 (Table III). This result suggests that at least in this model, CD25+ cells are the main inhibitors for the induction of antitumoral immune responses.

CD4+ and CD8+ cells are the main effector cells for the protection against CT26 tumor challenge after depletion of CD25+ cells

To identify the subpopulations of cells responsible for the protection against CT26 tumor grafting in mice depleted of CD25+ cells, we conducted the following experiments of combined cell depletion previous to tumor challenge: 1) CD25+ and CD4+, 2) CD25+ and CD8+, 3) CD25+ and CD4+ and CD8+, and 4) CD25+ and NK cells. It was found that depletion of CD4+ cells in mice depleted of CD25+ had a negative effect on protection against tumor challenge. Thus, only 4 of 12 mice (33%) remained free of tumors after this combined depletion. Similarly, depletion of CD25+ and CD8+ cells had a negative effect on protection, only 11 of 20 mice (55%) remained protected (Fig. 1). By contrast, protection after combined depletion of NK and CD25+ cells was similar to that found in mice depleted of CD25+ T cells only. Combined depletion of CD25+, CD4+, and CD8+ cells, completely abrogated protection (6 of 6 mice developed tumors) indicating that T cells are responsible for protection after depletion of CD25+ cells.

Interestingly, 55% of mice remained protected after combined depletion of CD8+ and CD25+ cells. This result suggests that CD4+ cells by themselves were able to protect mice against challenge with CT26 tumor cells, a tumor which does not expresses MHC class II molecules.

CD4+ cells, induced in the absence of CD25+ and CD8+ cells, produce IFN-γ in response to CT26 tumor Ags

As shown in Fig. 1, 55% of mice depleted of CD25+ and CD8+ cells remained free of tumor after challenge with CT26 tumor cells. However, combined depletion of CD25+, CD8+, and CD4+ cells completely abrogated protection suggesting that in the first case, protection is mediated by CD4+ cells. This fact prompted us to study the capacity of CD4+ cells, induced in the absence of CD25+ and CD8+ cells, to respond to CT26 tumor Ags. For this purpose, we purified CD4+ cells from: 1) unprotected undepleted mice (control group); 2) from CD25+ and CD8+ cell-depleted mice that remained protected after CT26 tumor challenge, and 3) from CD25+ and CD8+ depleted mice that developed tumors after CT26 tumor challenge. Cells from these three groups were cultured for 48 h in the presence of cell extracts from CT26 or 18Neo cells (see Materials and Methods) and the production of IFN-γ was measured by ELISA.

Table I. Effect of CD4+ and CD8+ cell depletion on the protection after challenge with CT26 tumor cells

<table>
<thead>
<tr>
<th>Immune with</th>
<th>In Vivo Treatment</th>
<th>Mice Protected</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH1</td>
<td>None</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>Anti-CD4</td>
<td>6/6</td>
</tr>
<tr>
<td>None</td>
<td>Anti-CD8</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>Anti-CD8</td>
<td>0/6</td>
</tr>
</tbody>
</table>

*Depletion of CD4+ or CD8+ cells was carried out by i.p. injection of anti-CD4 or anti-CD8 mAbs at days −3, −2, −1, day 0 being the day of immunization.

*Depletion of CD4+ or CD8+ cells was carried out by i.p. injection of anti-CD4 mAbs at days −3, −2, −1, day 0 being the day of immunization.

Table II. Effect of CD25+ cell depletion on the protection after challenge with CT26 tumor cells

<table>
<thead>
<tr>
<th>Immune with</th>
<th>In Vivo Treatment</th>
<th>Mice Protected</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH1</td>
<td>Anti-CD25</td>
<td>6/6</td>
</tr>
<tr>
<td>None</td>
<td>Anti-CD25</td>
<td>6/6</td>
</tr>
<tr>
<td>AH1</td>
<td>None</td>
<td>0/6</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>0/6</td>
</tr>
</tbody>
</table>

*Depletion of CD25+ cells was carried out by i.p. injection of anti-CD25 mAbs at day −4, day 0 being the day of immunization.

*Depletion of CD25+ cells was carried out by i.p. injection of anti-CD25 mAbs at day −4, day 0 being the day of immunization.

Table III. Effect of CD4+ cell depletion and adoptive transfer of CD25+ cells on the protection after challenge with CT26 tumor cells

<table>
<thead>
<tr>
<th>Immune with</th>
<th>Depletion</th>
<th>Adoptive transfer</th>
<th>Mice Protected</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH1</td>
<td>Anti-CD4</td>
<td>None</td>
<td>7/7</td>
</tr>
<tr>
<td>AH1</td>
<td>Anti-CD4</td>
<td>CD25+ cells</td>
<td>2/7</td>
</tr>
<tr>
<td>AH1</td>
<td>None</td>
<td>None</td>
<td>0/7</td>
</tr>
<tr>
<td>IFA</td>
<td>None</td>
<td>None</td>
<td>0/7</td>
</tr>
</tbody>
</table>

*Depletion of CD25+ cells was carried out by i.p. injection of anti-CD25 mAbs at days −3, −2, −1, day 0 being the day of immunization.

*Depletion of CD25+ cells was carried out by i.p. injection of anti-CD25 mAbs at days −3, −2, −1, day 0 being the day of immunization.
Materials and Methods

Levels of expression of MuLV gp70 by different cell lines as measured by RT-PCR. As indicated, mice from the group CD25+ cells are the only source of the determinants recognized by such antitumor CD4+ T cells.

Protective effect of adoptive transfer of CD4+ cells obtained from mice depleted of CD25+ and CD8+ cells: role of IFN-γ

To study the antitumoral effect of these CD4+ cells, we isolated CD4+ cells from mice depleted of CD25+ and CD8+ cells which remained protected after CT26 tumor challenge as well as from those mice which developed tumors. CD4+ cells from these two groups were depleted of CD25+ and CD8+ cells; or nondepleted. All groups were challenged with CT26 tumor cells. Thirty days after challenge, proliferation of CD4+ T cells to the cell extracts was dependent on the cell extract tested. Thus, it was found that response to CT26, MC38, A20, and NS1 was significant on the cell extract tested. Thus, it was found that response to CT26, MC38, A20, and NS1 was significantly higher that that observed for P815 or 18Neo (p < 0.05). Because the MuLV gp70 env transcript is expressed in a variety of tumor cells and has been described as a tumor Ag (18, 25–27), we tested the presence of gp70 RNA transcripts in the different cell lines by RT-PCR. As shown in Fig. 2B (upper panels), MuLV gp70 env is expressed by CT26, MC38, A20, and to a lesser extend by P815 cells. We were unable to detect MuLV env expression in NS1 cells, despite the capacity of CD4+ T cells to proliferate in response to tumor extracts from NS1. These data suggest that MuLV gp70 is not the only source of the determinants recognized by such antitumor CD4+ T cells.
groups were adoptively transferred (10^5 cells/mice) to BALB/c mice previously depleted from CD8^+ cells. As control, a group of mice depleted of CD8^+ was injected with saline. The same day of cell infusion, mice were challenged with 5 × 10^5 CT26 tumor cells. The evolution of tumors was assessed 30 days after. As shown in Table IV, two of the three mice depleted of CD8^+ cells that were adoptively transferred with CD4^+ cells from protected mice remained free of tumors, whereas all the mice infused with CD4^+ cells from unprotected mice or with saline developed tumors. To expand and reinforce these results in a slightly different setting, we adoptively transferred these antitumor CD4^+ cells in RAG2−/− mice. Three groups of RAG2−/− mice were adoptively transferred with: 1) antitumor CD4^+ cells (seven mice) obtained from mice depleted of CD25^+ and CD8^+ cells which remained protected after CT26 tumor challenge; 2) CD4^+ cells from naive mice (five mice) and 3) with saline only (three mice), the same day of CT26 tumor challenge. As shown in Table V, 5 of 7 mice infused with antitumor CD4^+ cells remained free of tumors (71% of protection) whereas only 1 of 5 mice infused with CD4^+ cells from naive mice was protected (20% of protection). None of the mice injected with saline were protected (0% of protection). To study the possible role of IFN-γ on this protective effect, a group of RAG2−/− mice adoptively transferred with antitumor CD4^+ cells (n = 4) was treated at days 0, 2, and 4 after CT26 tumor challenge, with three i.p. injections of 100 μl of ascitic fluid containing neutralizing anti-IFN-γ Abs. This treatment completely abrogated the protective effect of adoptive transfer of antitumor CD4^+ cells (4 of 4 mice developed tumors) (Table V).

Secretion of IFN-γ inhibits tumor angiogenesis

As shown in Fig. 3, CD4^+ cells induced in the absence of CD25^+ and CD8^+ cells, produce IFN-γ in response to CT26 tumor extracts. Because it has been recently described that CD4^+ T cells can inhibit tumor growth by inhibiting tumor angiogenesis, and that this inhibition is IFN-γ-dependent (28, 29), we conducted in vivo matrigel assays to measure the extent of angiogenesis stimulated by CT26 cells in the following groups of six mice: 1) mice doubly depleted of CD25^+ and CD8^+, 2) mice doubly depleted of CD25^+ and CD8^+ and treated with anti-IFN-γ Abs, 3) mice doubly depleted of CD25^+ and CD4^+, 4) mice doubly depleted of CD25^+ and CD4^+ and treated with anti-IFN-γ Abs, and 5) undepleted mice. All five groups of mice were injected with matrigel containing CT26 cells as described in Materials and Methods.

Depletion of CD25^+ cells facilitates the induction of antitumor memory T cell responses after peptide vaccination

As described above, depletion of CD25^+ cells allows mice to induce protective T cell immune response against challenge with CT26 tumor cells. However, this protective effect was observed when the challenge was done 10 days after depletion of CD25^+ cells from naive mice. As indicated, subgroups of mice depleted of CD25^+ and CD8^+ cells or of CD25^+ and CD4^+ cells were injected with anti-IFN-γ Abs at days 0, 2, and 5 after matrigel implantation. Nine days after implantation, plugs were harvested and hemoglobin content was used as a measure of angiogenesis (n = 6 in all groups). A similar result was obtained in another independent experiment.

Table IV. Effect of adoptive transfer of CD4^+ cells (BALB/c)^a

<table>
<thead>
<tr>
<th>Mice</th>
<th>Adoptive Transfer</th>
<th>Depletion</th>
<th>Mice Protected (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALB/c</td>
<td>CD4^+ from protected mice</td>
<td>CD8^+ depleted</td>
<td>2/3</td>
</tr>
<tr>
<td>BALB/c</td>
<td>CD4^+ from not protected mice</td>
<td>CD8^+ depleted</td>
<td>0/3</td>
</tr>
<tr>
<td>BALB/c</td>
<td>Saline</td>
<td>CD8^+ depleted</td>
<td>0/3</td>
</tr>
</tbody>
</table>

^a Effect of adoptive transfer of CD4^+ cells, from CD8^+ and CD25^+ depleted BALB/c mice which remained protected after challenge with CT26 tumor cells, to BALB/c mice depleted of CD8^+ cells.

^b Mice were challenged with CT26 tumor cells. Percentage of protection was determined 30 days after challenge. Similar results were obtained in two independent experiments.

Hemoglobin content of the matrigel plugs was quantified 9 days after implantation and this value was used as a measure of tumor angiogenesis.

As shown in Fig. 3, depletion of CD25^+ and CD8^+ cells significantly reduces angiogenesis induced by CT26 embedded in matrigel (p < 0.001). This inhibition is mediated by IFN-γ production because injection of Abs against IFN-γ is able to restore the levels of angiogenesis observed in nondepleted mice. However, double depletion of CD25^+ and CD4^+ cells did not have any effect on angiogenesis, suggesting that the main group of cells responsible for the observed antiangiogenic effect were CD4^+ T cells induced in the absence of CD25^+ cells.

FIGURE 3. IFN-γ-dependent inhibition of tumor angiogenesis in mice depleted of CD25^+ and CD8^+ cells. Different groups of depleted or nondepleted mice were injected s.c. with CT26 tumor cells embedded in matrigel as described in Materials and Methods. As indicated, subgroups of mice depleted of CD25^+ and CD8^+ cells or of CD25^+ and CD4^+ cells were injected with anti-IFN-γ Abs at days 0, 2, and 5 after matrigel implantation. Nine days after implantation, plugs were harvested and hemoglobin content was used as a measure of angiogenesis (n = 6 in all groups). A similar result was obtained in another independent experiment.
cells. As described previously, mice depleted of CD25⁺ cells following administration of anti-CD25 mAb Abs recover the normal level of CD25⁺ cells 35 days after this administration (15, 30). We then studied whether the protective effect following depletions of CD25⁺ cells was dependent on the period of time elapsed between depletions and challenge with CT26 tumor cells. Thus, we injected CT26 tumor cells at days 10, 20, 40, or 50 after CD25 depletion and challenge with CT26 cells. Protective immunity in response to CT26 tumor cells was 100% when the challenge was conducted at day 10 after depletion. However, the antitumor efficacy decreases to 50% or to 0% when the challenge with CT26 cells was performed at days 40 and 50 after depletion, respectively (Table VI).

Table VI. *Induction of long-lasting protection against challenge with CT26 tumor cells in mice depleted of CD25⁺ cells and vaccinated with AH1*

<table>
<thead>
<tr>
<th>Immunized with</th>
<th>In Vivo Treatment</th>
<th>Day of Challenge of CT26<sup>a</sup></th>
<th>Percent of Protection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Saline</td>
<td>10</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td>Anti-CD25</td>
<td>Saline</td>
<td>10</td>
<td>6/6 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>6/6 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>3/6 (50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td>AH1</td>
<td>Saline</td>
<td>10</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td>Anti-CD25</td>
<td>Saline</td>
<td>10</td>
<td>6/6 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>6/6 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>5/6 (83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>5/6 (83)</td>
</tr>
</tbody>
</table>

^a Mice were challenged at days 10, 20, 40, or 50 after treatment with saline or with anti-CD25 mAbs. Similar results were obtained in two separate experiments.

In a previous work from our group, it was observed that immunization of mice with peptide AH₁ (a TCd derived from MuLV gp70 envelope protein and expressed by CT26 cells (18)), did not induce a protective CD8⁺ T cell response despite its partial capacity to delay tumor growth (19). This delay was only observed if CT26 challenge was conducted 10 days after immunization, being undetectable if the challenge was done >20 days after immunization (not shown). However, if CD25⁺ T cell-depleted mice were immunized with AH1 peptide, 83% of mice remained free of tumors after challenge with CT26 cells, even when the challenge was conducted 50 days after immunization (Table VI). These results suggest that the absence of CD25⁺ regulatory cells may improve the efficacy of peptide immunization and the establishment of a memory T cell response.

In contrast to immunization with AH1 alone, joint immunization with AH1 and peptide p320–333, a THd peptide derived from MuLV gp70 envelope protein, is able to induce a protective antitumoral CD8⁺ T cytotoxic cell response against challenge with CT26 tumor cells (19). However, the protective effect induced by this joint immunization only lasts a short period of time. Indeed, we have found a protection of 90% if the challenge with CT26 tumor cells is conducted 10–15 days after immunization (19). By contrast, the protection decreased to only 0–10% if mice were challenged >20 days after immunization (not shown). Because CD25⁺ regulatory cells seemed to play a negative role in the induction of long-term antitumoral responses after immunization with AH1, we studied the protective effect of immunization of mice with AH1 alone, or in combination with peptide p320–333, under different degrees of depletions of CD25⁺ regulatory cells. Thus, five groups of mice were treated by i.p. injection of 0, 1, 10, 50, and 300 µg of anti-CD25 mAb Ab. The levels of depletion attained were 0 ± 5%, 33.8 ± 7.5%, 66.2 ± 8.4%, 95.5 ± 1.7%, and 99.3 ± 0.5%, respectively. These groups of mice were immunized with AH1 alone, AH1 plus p320–333 or with IFA only (see Materials and Methods). Fifty days after immunization, mice were challenged with CT26 cells before peptide vaccination, on the induction of a protective long-lasting antitumoral immune response. Groups of mice were treated by i.p. injection of 0, 1, 10, 50, and 300 µg of anti-CD25 mAb Ab. This afforded depletions of 0 ± 5%, 33.8 ± 7.5%, 66.2 ± 8.4%, 95.5 ± 1.7%, and 99.3 ± 0.5% CD25⁺ cells, respectively. Mice from these groups were immunized with AH1; AH1 plus p320–333; or with IFA alone, as described in Materials and Methods. Fifty days after immunization, mice were challenged with CT26 tumor cells and tumor size was measured 20 days after. A. The tumor size of each individual mouse, immunized under the condition shown, is represented with a dot, whereas in (B) each point represents the average tumor size from the six mice of each group, plotted against the degree of CD25⁺ cell depletion.
challenged with CT26 tumor cells and tumor size was measured 20 days after challenge. In Fig. 4A, we represent with a dot the tumor size in each individual mouse, whereas in Fig. 4B we represent the average tumor size from each group of mice against the degree of CD25+ cell depletion. As shown, immunization with AH1 alone, or with AH1 plus p320–333, after total depletion of CD25+ cells resulted in long-term protection levels of 83 and 100%, respectively.

It is interesting to note that protection induced by AH1 alone, requires the complete absence of CD25+ cells. Indeed, when mice were treated with 50 μg of anti-CD25 Ab, which depletes 95.5% of CD25+ cells, the remaining cells (4.5%) are still able to inhibit the induction of a protective cellular immune response. However, under the same level of depletion of CD25+ cells (95.5%), if AH1 was coimmunized with p320–333, a 100% protection was attained. Moreover, when mice treated with 1–10 μg of anti-CD25 Abs (depletion levels of 33.8 and 66.2%, respectively) were immunized with AH1 plus p320–333 the levels of protection were 33% in both cases. These results suggest that T cell help provided by p320–333 immunization overcomes, at least partially, the suppressive effect of CD25+ regulatory cells.

Discussion

CD4+ Th cells play an important role on the induction of CTL (23–34). However, it has also been described that depletion of CD4+ T cells may favor the induction of CTL responses (14, 22, 35), and enhance the therapeutic efficacy in tumor rejection (14, 35) suggesting that CD4+ T cells play a regulatory role. These results are in agreement with our finding that vaccination with AH1 alone is unable to protect mice from challenge with CT26 tumor cells (18, 19), whereas if this vaccination is conducted after depletion of CD4+ cells, mice are protected. Recent reports have shown that these CD4+ T reg cells express the CD25 marker (3, 11). Also, depletion of CD25+ T reg cells with Abs facilitates the induction of tumor immunity (4, 13–15), a result in agreement with our finding that mice depleted of CD25+ cells are able to reject CT26 tumor cells and that adoptive transfer of CD25+ T cells abrogates this protection. It is interesting to note that, in contrast to what is found after depletion of CD4+ cells, depletion of CD25+ cells permits tumor rejection without the need of a previous vaccination with AH1. It could be argued that absence of CD25+ regulatory cells enhances the immunogenicity of CT26 tumor cells by stimulating tumor-specific CD4+ Th cells, which are now capable of providing efficient T cell help for antitumor CTL induction. However, in the case of complete depletion of CD4+ cells, both T reg and Th cells are depleted. Under this condition, neither a Th response, nor a concomitant CTL response, can be elicited by CT26 tumor cells. However, vaccination with peptide AH1 can bypass the need for T cell help inducing a protective response by direct activation of CTL when their TCR recognize the complex AH1-MHC class I complexes at the surface of APCs.

It has been described that the Ab-mediated depletion of CD25+ T reg cells facilitates the induction of tumor immunity by favoring activation of tumor-specific CD8+ cells (4, 13, 14) as well as tumor nonspecific CD4+ CD8– NK-like effector cells (4). In the present publication, we show that depletion of CD25+ cells allows the induction of both antitumor CD4+ and CD8+ cells, a result in agreement with the recent publication by Golgher et al. (30). Indeed, simultaneous depletion of CD25+ and CD8+ T cells, or CD25+ and CD4+ T cells, but not triple depletion of CD25+, CD4+, and CD8+ T cells, permits rejection of CT26 tumor cells in an important number of animals. Combined depletion of NK cells and CD25+ cells did not abrogate protection, suggesting that NK cells do not play a determinant role in protection.

Many studies, including our own, have described the role of CD4+ T cells in providing help for the induction of CTLs (23–31, 34, 36). However, CD4+ T cells can coordinate other antitumor effector pathways independent of CTLs (37). We have found that CD4+ T cells, obtained from mice depleted from CD25+ and CD8+ cells that remained protected after CT26 tumor challenge, produced high amounts of IFN-γ in response to CT26 tumor Ags in vitro. However, it was also found that activated CD4+ T cells proliferated, not only in response to extracts from CT26, but also, in response to extracts from MC38, A20, P815, NS1, and 18Neo cells. Several interpretations might explain this finding: 1) first, depletion of CD25+ T reg cells might down-regulate the activation threshold of CD4+ T cells specific for Ags from the cell extracts. In other words, proliferations in response to cell extracts (Fig. 2B) might be the result of an in vitro induction of T cells by these extracts, and not of an in vivo induction after challenge with CT26 tumor cells. However, we do not favor this interpretation because when mice depleted of CD25+ and CD8+ T cells that rejected CT26 tumor cells were challenged with a second tumor (A20), once the level of CD25+ T reg cells was restored, these mice rejected the tumor, a result in agreement with that recently reported by Golgher et al. (30). 2) A second interpretation might be related to traces of other Ags from the FBS where CT26 tumor cells are grown. These Ags would induce a T cell response in vivo that would be expanded in vitro during the proliferation assays. If this were the case, a similar level of proliferation should be expected for all cell extracts. However, because proliferation of CD4+ T cells in response to CT26, MC38, A20, and NS1 cell extracts was significantly higher than that in response to extracts from P815 or 18Neo cells (p < 0.05), we do not favor this interpretation either. 3) A third possibility might be related to a cross-reaction between shared Ags. Thus, using RT-PCR, we studied if the gp70 env gene was an Ag shared by the cell lines used in our study. It was found that the gp70 gene was expressed in CT26, MC39, A20, and to a lesser extent in P815 cells, but not in NS1 or in 18Neo cells. Thus, gp70 alone cannot explain all the differences in proliferation, suggesting that besides gp70, other tumor Ags might be involved in tumor rejection mediated by CD4+ T cells. In summary, although we favor that the observed proliferation from Fig. 2B is mostly likely related to shared Ags between cells, additional experiments are needed to identify these shared Ags and to establish whether they are autoantigens shared by normal tissues.

Adoptive transfer of these antitumor CD4+ cells, conducted in the present study using BALB/c mice as well as in RAG2−/− mice, demonstrate that these T cells are able to protect mice against tumor challenge, and that this protective effect is mediated by IFN-γ. In agreement with results reported by other research groups (28, 37, 38). In this study, we show that in the absence of CD25+ T reg cells, an IFN-γ-producing antitumor CD4+ cell subpopulation emerges in response to tumor cells, exerting potent IFN-γ-dependent antiangiogenic effects.

Because IFN-γ has multiple biological activities, and its receptor (IFN-γR) is expressed in almost all cell types (39, 40), this cytokine might have direct effects on tumor cells such as: 1) inhibiting cell proliferation or sensitizing cells to apoptosis (41, 42); 2) up-regulating MHC class I expression and thereby increasing tumor cell lysis (43); 3) up-regulating MHC class II expression on tumor cells (44, 45), 4) stimulating NK activity (46), or 5) inducing the expression of angiogenesis inhibitors, like IFN-γ-inducible protein-10, by tumor and stromal cells (47). We have not found any inhibitory effect of IFN-γ on proliferation of CT26 tumor cells in vitro even at doses of 7500 U/ml (around 3 × 105 pg/ml) (not shown). Up-regulation of MHC class I molecules and the susceptibility to CTL-dependent lysis may not be the mechanisms of...
action of IFN-γ produced by CD4+ cells because mice were depleted of CD25+ and also of CD8+ T cells. Moreover, adoptive transfer of these CD4+ T cells to RAG2–/– (mice deficient in T and B cells) protected against tumor challenge. When we tested the expression of MHC class II molecules in CT26 cells after incubation with different concentrations of IFN-γ, it was found that even at 2000 IU/ml cytokine, CT26 cells did not acquire detectable MHC class II expression (not shown). In addition, when we measured the cytotoxic activity of purified CD4+ T cells from protected mice, against IFN-γ-treated CT26 cells, no activity was found even at an E:T ratio of 100:1 (not shown). Because alternative 1–4 do not seem to be relevant to explain the protective effect of IFN-γ produced by CD4+ cells, and as shown in Fig. 3, IFN-γ inhibits angiogenesis, we favor the hypothesis that IFN-γ-dependent antiangiogenic activity may constitute an important effector mechanism explaining the antitumor activity of these CD4+ T cells.

Depletion of CD25+ T reg cells per se allows the immune system to mount an efficient antitumoral immune response in mice against tumors that are poorly immunogenic (4, 14, 15, 30). However, when we conducted tumor challenge 50 days after depletion of CD25+ T cells, once the population of CD25+ T reg cells was restored, all challenged mice developed lethal tumors. Thus, the beneficial effect of depleting CD25+ T reg cells only takes place shortly after depletion of these cells, when their levels are still low, suggesting that vaccination immediately after depletion of CD25+ T reg cells might greatly enhance the ability of the host to mount a protective antitumoral immune response. This strategy might even permit to induce antitumoral responses using the class I epitope only, because as shown in our work, a single administration of anti-CD25 mAb before immunization with AH1 permits the induction of a long-lasting protective antitumoral immune response (83% of protection). However, in the absence of depletion of CD25+ cells, AH1 is unable to induce a protective capacity against challenge with CT26 tumor cells (18) due to the incapacity of this peptide to induce a competent Th response (19). Our results are in accordance with two recent publications suggesting that the presence of CD4+/CD25+ cells may restrict or control memory T cell responses (16, 17). In addition to the results reported by Kursar et al. (16), we show in this study that depletion of CD25+ T cells, previous to a single immunization (priming immunization), permits peptide vaccination to induce a protective long-lasting antitumoral effect which is not observed in the presence of CD25+ reg cells. We are aware that maintaining a CD25+ T reg-depleted status for a long period of time, may have the risk of developing autoimmunity (48–50). Also, depletion of T cells expressing the CD25+ marker would not only eliminate T reg cells, but also would deplete activated lymphocytes, including antitumor-specific CD4+ and CD8+ T cells, a situation that might facilitate tumor growth (14). For these reasons, depletion of CD25+ cells should probably be reserved to de novo vaccination under conditions of great caution.

When the antitumor efficacy after immunization with AH1 alone is compared with that attained after coimmunization with AH1 and Th peptide p320–333, under different levels of depletion of CD25+ T reg cells, it is clear that Th cells play an important role to overcome the suppressive effect of CD25+ T reg cells. Thus, we have found that the protective effect of vaccinating with AH1 alone requires total depletion of CD25+ cells previous to immunization with AH1, and is very inefficient (0% protection) in the presence of as low as 4.5% of total CD25+ cells. However, coimmunization of AH1 and p320–333 allows total protection under both conditions, and reaches a considerable long-lasting protective response (33%) even in the presence of a 66.2% of total CD25+ T reg cells. To our knowledge, our results describe for the first time that Th cells may play an important role in overcoming the suppressive effect of CD25+ T reg on the induction of cellular immune responses. These results might be of great relevance when developing strategies of vaccination against cancer.

Acknowledgments

We thank Iligio Tirapu and Ainhoa Arina for their advice in the angiogenesis experiments, and Juan Pecarz and Javier Guillen for technical collaboration at the animal facilities.

References

