Angiotensin-converting enzyme (ACE) is primarily localized (>90%) in various tissues and organs, most notably on the endothelium but also within parenchyma and inflammatory cells. Tissue ACE is now recognized as a key factor in cardiovascular and renal diseases. Endothelial dysfunction, in response to a number of risk factors or injury such as hypertension, diabetes mellitus, hypercholesteremia, and cigarette smoking, disrupts the balance of vasodilation and vasoconstriction, vascular smooth muscle cell growth, the inflammatory and oxidative state of the vessel wall, and is associated with activation of tissue ACE. Pathologic activation of local ACE can have deleterious effects on the heart, vasculature, and the kidneys. The imbalance resulting from increased local formation of angiotensin II and increased bradykinin degradation favors cardiovascular disease. Indeed, ACE inhibitors effectively reduce high blood pressure and exert cardio- and renoprotective actions. Recent evidence suggests that a principal target of ACE inhibitor action is at the tissue sites. Pharmacokinetic properties of various ACE inhibitors indicate that there are differences in their binding characteristics for tissue ACE. Clinical studies comparing the effects of antihypertensives (especially ACE inhibitors) on endothelial function suggest differences. More comparative experimental and clinical studies should address the significance of these drug differences and their impact on clinical events.
ur awareness and appreciation of the role of tissue angiotensin-converting enzyme (ACE) in endothelial function and vascular health has begun to influence the treatment of cardiovascular and renal disorders. The results of experimental and clinical research have provided the rationale for intervening in the underlying pathophysiologic processes associated with activated tissue ACE in conditions such as congestive heart failure, coronary artery disease, hypertension, and nephrosclerosis. Extensive evidence indicates that ACE inhibition favorably affects the heart, the vasculature, and the kidney, the results of which are associated with improved patient outcomes. This consensus report will provide an extensive review of the biology and function of tissue ACE, its role in the pathophysiology of cardiovascular disease, the importance of tissue ACE as a therapeutic target, and evidence from clinical trials for the beneficial effects of tissue-ACE inhibition. The article will also examine the pharmacologic properties of ACE inhibitors and explore the potential clinical effects related to differences in binding for tissue ACE.

INTRODUCTION

The structure of ACE is well known, and the enzyme’s predominant localization in tissue, rather than plasma, was established nearly 30 years ago. Despite this knowledge and an abundance of recent experimental data, the role of genetic variability in ACE activity has yet to be fully resolved.

BIOCHEMISTRY AND GENETICS OF ACE

ACE: ACE is a zinc metallopeptidase that catalyzes I of the main steps in the renin cascade—the conversion of angiotensin I (Ang I) to angiotensin II (Ang II), a potent vasoconstrictor. ACE is also involved in the inactivation of the vasodilator hormones, bradykinin and substance P. The ACE enzyme exists in 2 forms, a high molecular weight form (170 kDa) found in endothelial, epithelial, and neuronal cells, and a low molecular weight form (90 kDa) found in germinal cells. The 2 forms are encoded by 2 different messenger RNAs corresponding to molecular sizes of 2.0 kilobase (kb) and 4.3 kb. ACE is found in the plasma and in a number of tissues including blood vessels, heart, kidney, brain, and the adrenal gland. Somatic ACE (the form of ACE made by endothelium and other somatic tissues) is a single polypeptide chain that contains 2 homologous protein domains. Each domain is independently catalytic with roughly equivalent affinities for Ang I. ACE is synthesized with an amino terminal signal sequence. This leads to export of both catalytic domains from the cell, but the last carboxyl-terminal portion of the molecule is hydrophobic and anchors the protein within the cell membrane. Thus, ACE is an ectoenzyme with both catalytic domains outside of the cell (Figure 1).

Plasma versus tissue ACE: Biochemical measurements of ACE activity illustrate that ACE is a tissue-based enzyme. Indeed, <10% of ACE is found circulating in the plasma. The functional importance of tissue-based ACE has been demonstrated in genetically altered mice devoid of tissue ACE but having substantial plasma ACE levels. These mice have demonstrated an inability to activate their renin–angiotensin system and consequently develop marked hypertension. The precise function of plasma ACE is unclear. However, because it represents only a small proportion of the body’s total ACE activity, its role is thought to be minimal.

Role of the genetic variations of ACE: The chromosomal locus of the ACE gene has been linked to the variability of ACE activity and arterial hypertension, as well as left ventricular mass (independent of blood pressure) in several rodent breeding experiments. In addition, genetic factors may also regulate vasculature ACE expression and production in humans. In 1990, Rigat et al described an insertion/deletion polymorphism of the ACE gene that accounted for 40% of the interindividual variation in serum and cardiac ACE activity. ACE levels are highest in individuals who are homozygous for the D allele, lowest in those homozygous for the I allele, and intermediate in I/D heterozygous individuals. Since 1990, the ACE D allele has been associated with a number of disease states for which activation of the renin–angiotensin system has been implicated in playing a role, including acute myocardial infarction (MI) in low-risk patients, left ventricular hypertrophy, and progressive diabetic nephropathy. This association has been attributed to increased formation of Ang II in individuals who carry the ACE D allele. These results have not been duplicated by other investigators. It has been suggested that in healthy subjects, negative feedback inhibition may neutralize the genetically enhanced expression of singular components in the Ang II synthetic cascade. By contrast, the ACE DD genotype may play a substantial role in the development of left ventricular hypertrophy when the cardiac growth machinery is activated. This hypothesis is il-
Illustrated by recent data from Montgomery et al. in which young healthy subjects were studied before and after a rigorous exercise protocol. Only those participants who carried the ACE deletion allele displayed an increase in left ventricular mass. Thus, the ACE genotype may act only under specific conditions, suggesting an interaction between altered hemodynamics, ACE, or other genetic cofactors in the modulation of left ventricular mass. In agreement with this notion are the observations of Pinto et al. and Ohmichi et al. who both found that pathologic remodeling early after MI occurs predominantly in those subjects with the ACE DD genotype. Furthermore, transgenic rats with high levels of cardiac ACE expression have normal (or even smaller) hearts, as long as these animals are housed under physiologic conditions. However, cardiac growth and diastolic dysfunction were augmented in the same ACE transgenic rats when the animals were stressed by abdominal aortic banding and subsequent cardiac pressure overload. However, the ACE gene polymorphism has not been consistently associated with hypertension or the prevalence or extent of coronary artery disease or MI. Thus, the role of the genetic variability of ACE remains to be fully elucidated.

Tissue ACE, the Cardiovascular System, and the Kidneys

The importance of tissue ACE in the pathophysiology of cardiovascular disease is reflected by findings that, despite the existence of alternative Ang II pathways, marked ACE induction occurs in almost all models of cardiac injury. Within the vasculature, tissue ACE plays a critical role in endothelial function through the direct pleiotropic actions of Ang II and also through a bradykinin-dependent mechanism. There is also substantial evidence that in atherosclerosis, plaque represents an important target of ACE inhibitor action. Finally, the kidneys are especially susceptible to the toxic effects of chronically elevated levels of Ang II; thus, the exuberant response to injury may ultimately lead to renal failure.

Tissue ACE and the Heart: Tissue sites of ACE expression: ACE activity is distributed in a tissue and cell-type specific fashion. Very high levels are found in the capillary bed of the lungs. Because of its high ACE levels, the pulmonary vasculature—albeit a tissue site—is considered an integral part of the classic circulating renin-angiotensin system. In contrast, some tissues, including the heart, express relatively low levels of ACE, at least under physiologic condi-
Within the normal heart, the right atrium elaborates a moderate density of ACE, which is higher than that of the left atrium and the ventricles. The vast majority of immunohistochemical ACE staining is found in the endothelium of large and small cardiac arteries and arterioles, whereas only half the capillaries are immunoreactive, and venous vessels are almost completely devoid of the enzyme. Other sites of cardiac tissue ACE expression include the endocardial layer and the cardiac valves. Very little, if any, ACE is found in normal adult cardiac myocytes in situ.

LOCALIZATION AND REGULATION OF ACE IN HEART DISEASE: After our initial observation of ACE upregulation in pressure-overloaded, hypertrophied hearts, marked ACE induction has been found in virtually all models of cardiac injury including volume overload, MI, and heart failure. Additionally, increased cardiac ACE levels have been correlated with the aging process, Elevated wall stress is believed to be a critical factor for cardiac ACE induction, because elevated enzyme levels were found exclusively in the affected ventricle. Interestingly, ACE upregulation is not restricted to the vasculature, because fibroblasts and myocytes are also recruited for ACE expression in injured hearts. Likewise, cardiac myocytes in cell culture have been reported to express ACE and are able to generate Ang II locally, especially in response to mechanical stretch. Moreover, macrophages invade injured myocardium and carry high levels of ACE activity to interstitial sites where Ang II, the product of ACE, accumulates. In addition, mast cells in cardiac tissue are another source of tissue Ang II through the action of chymase. The role of tissue ACE in the heart is summarized in Figure 2.

Whereas cardiac ACE increases in the failing heart, pulmonary ACE tends to decrease when pulmonary congestion complicates the condition. These opposing regulatory steps may protect Ang I from conversion/degradation in the lung and increase ACE substrate in the heart.

KINETICS AND MECHANISMS OF CARDIAC ANGII FORMATION: During a single passage through the coronary system, approximately 3% to 10% of Ang I is con-
verted to Ang II. 25,40 However, these measurements may only reflect vascular conversion. More precise insights on the intracardiac events leading to Ang II generation were revealed by experiments that used intracoronary infusions of minute concentrations of radiolabeled (exogenous) Ang I or Ang II followed by measurements of native (endogenous) as well as labeled angiotensins in the interstitial fluid, the cellular compartment, and the coronary effluent.8,41 These experiments revealed that angiotensinogen and renin are extracted from the coronary circulation.42,43 Indeed, cardiac concentrations of renin may substantially exceed renin levels in the plasma, suggesting an active mechanism for cardiac renin accumulation.42,43 In addition, there appears to be local generation of angiotensinogen and renin, at least during disease conditions.44,45

These kinetic studies document that >80% of Ang I found in the cardiac interstitium is formed locally by renin (which is largely taken up from the circulation) cleaving angiotensinogen (which is both locally formed and taken up from the circulation).40,41 Likewise, most of the Ang II found in the heart is synthesized in situ. Specifically, the conversion of Ang I to Ang II appears to be mediated by tissue ACE rather than blood-derived enzymes.46 Consequently, the tissue levels of Ang II are several times higher than the circulating levels.36 It is conceivable, therefore, that the local levels of ACE activity reflect the cardiac Ang II concentrations.

In experimental models and in humans, the cardiac conversion of Ang I to Ang II is largely blocked by ACE inhibitors.37,46–49 By contrast, in ex vivo membrane preparations of cardiac tissue (human and rat), the conversion of Ang I to Ang II occurs largely independently of ACE.50,51 Chymase, a mast cell enzyme with high affinity for Ang I, has been shown to catalyze this reaction and chymase inhibitors were effective in its inhibition.38 This apparent discrepancy between in vivo and in vitro data51 may have been resolved by the findings of Kokkonen et al,52 who demonstrated that interstitial fluid completely inhibits chymase activity, whereas ACE remains active under these same conditions. Despite this finding, chymase may still be important, and further investigation is necessary to define its role in the formation of Ang II in humans.

FUNCTIONAL ROLE OF ACE IN THE NORMAL AND FAILING HEART: The normal development of the heart does not require the functional integrity of the cardiac renin–angiotensin system. Thus, genetically altered mice lacking cardiac ACE do not experience cardiac pathology.53 Furthermore, Ang II is not required for the maintenance of normal cardiac function.54 In this regard, the role of the cardiac renin–angiotensin system differs from that of the renal renin–angiotensin system, which requires Ang II for normal kidney development.55

In the failing heart, however, activation of the renin–angiotensin system may have a series of functional implications. Ang II has been shown to enhance protein synthesis independently of load in the intact heart as well as in the isolated myocyte.56,57 Ang II, then, is considered to be an important factor contributing to the development of cardiac hypertrophy. ACE appears to be involved in this process because, on the one hand, the activity of the enzyme is enhanced in hypertrophied hearts and on the other hand, inhibition of the enzyme may cause regression of left ventricular hypertrophy, even when the pressure or volume overload persists.58,59 Even more strikingly, the inhibition of cardiac ACE with a high tissue-affinity ACE inhibitor (quinapril) prevented the development of volume overload hypertrophy more efficiently than an ACE inhibitor (enalapril) with low affinity for tissue ACE.28,60 Moreover, tissue-ACE activity is involved in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis.61

Ang II not only induces hypertrophy of cardiac myocytes but also hyperplasia of cardiac fibroblasts.62 Accordingly, the activation of the cardiac renin–angiotensin system and specifically, cardiac ACE, may contribute to the development of cardiac fibrosis.62 It has been demonstrated that fibrotic areas of the heart display the highest levels of cardiac ACE activity,31,32 and that fibroblasts themselves generate Ang II.63 ACE inhibitors, on the other hand, may prevent the accumulation of extracellular matrix proteins and the development of fibrosis of the heart (Figure 3), even when pressure overload persists.64,65 The intimate communication between cardiac fibroblasts and myocytes was elegantly demonstrated in chimeric mice that had Ang II receptor type 1A gene null mutant cells and Ang II receptor type 1A gene intact cells expressing the lacZ gene. Proliferating cardiac fibroblasts were present predominantly in areas of Agtr1a intact cardiomyocytes. Therefore, an intact cardiac renin–angiotensin system appears to be a requirement for local proliferation of fibroblasts and the consequent development of fibrosis.66

Ang II has also been shown to induce apoptosis of cardiac myocytes, whereas cardiac fibroblasts are fairly resistant to the effects of Ang II on cell death.67 Specifically, the enhanced local renin–angiotensin system decreases the bcl-2-to-BAX protein ratio in cardiomyocytes, thus decreasing the resistance to undergar programed cell death.67 There appears to be a vicious circle, given that an apoptosis-related protein, p53, induces the local renin–angiotensin system.58 In fact, the induction of cardiac ACE parallels the appearance of apoptosis in the pressure-overloaded heart.69 Again, use of ACE inhibitors has been shown to prevent apoptosis of cardiac myocytes in pressure-overloaded hearts.69

The activation of tissue ACE in cardiac remodeling has direct functional consequences. Ang II causes a depression of diastolic function in the hypertrophied heart.25,47 Likewise, perfusion of isolated hearts with Ang I, followed by intracardiac conversion to Ang II, causes an increase in left ventricular end-diastolic pressure, suggesting that local ACE may facilitate this response.47 ACE inhibitors infused into the coronary arteries of isolated experimental hearts or hearts of
patients with aortic stenosis caused a significant improvement in diastolic function. This response is even amplified in hearts exposed to an ischemia/reperfusion injury. Conversely, the effects of Ang II on systolic function in the failing ventricles are minimal.

Local generation of Ang II may also increase the vascular tone of the coronary bed. Specifically, in patients with dilated cardiomyopathy, intracoronary enalaprilat induced a significant coronary vasodilation, and in an animal model of cardiomyopathy, long-term treatment with quinapril resulted in a significant cardioprotective effect. These data provide strong evidence for the functional significance of the cardiac renin–angiotensin system in both patients with heart disease and in controlled experimental situations.

In 2 studies, the effects of ACE inhibition (ramipril or fosinopril) on survival in experimental aortic stenosis were examined. This model allows the separation of peripheral and cardiac drug effects, because afterload reduction is prevented by a clip at the ascending aorta. Both studies demonstrated a survival benefit in animals receiving the ACE inhibitor, thus suggesting that the inhibition of cardiac ACE contributes to the prognostic relevance of these agents in patients with heart failure.

Role of tissue ACE in the vasculature: Regulation of vascular ACE. ACE is the most important enzyme controlling the activation of angiotensin and the degradation of bradykinin. Although ACE is widely distributed through the tissues, it appears that ACE expression is regulated by a number of different mechanisms. In cultured endothelial cells, the expression of ACE is modulated by steroids, calcium ionophores, and growth factors. The expression of ACE in endothelial cells and culture is also a function of confluence, as ACE enzyme levels increase exponentially after confluence is obtained. Thus, the regulation of endothelial ACE is a determinant of vascular function in both health and disease.

Studies of Ang I infusion into human forearm or coronary arteries have shown that Ang I is converted to Ang II. This conversion is blocked by ACE inhibitor treatment. The primary vasodilatory action of ACE inhibitors is the blockade of Ang II formation. The contribution of bradykinin to the action of ACE inhibitors has been debated. With long-term administration, ACE inhibitors lower blood pressure, even in patients with low renin hypertension, suggesting an effect that is independent of a decrease in Ang II. Bradykinin is a potent vasodilator, acting through the release of prostacyclin, nitric oxide, and endothelial-derived hyperpolarization factor. Accurate measure-
ment of bradykinin concentrations in plasma has been technically challenging; these concentrations have been shown to be increased or unchanged after ACE inhibition. Although it is clear that ACE inhibition potentiates the hemodynamic effects of exogenous bradykinin, this observation does not address whether endogenous bradykinin plays a part in the action of ACE inhibitors. Recent studies performed by Gainer et al. indicate that the coadministration of the bradykinin receptor antagonist, icatibant acetate (HOE 140), significantly attenuates the hypotensive effect of captopril. Although HOE 140 does not alter the renal hemodynamic response to captopril, it does significantly alter the change of plasma renin activity in response to ACE inhibition. These effects appear to be similar in both normotensive and hypertensive subjects. These data confirm that bradykinin contributes to the short-term effects of ACE inhibition in blood pressure in normotensive and hypertensive persons and suggest that bradykinin also contributes to the short-term effects of ACE inhibition on the renin–angiotensin system. Similar results have been seen in the effects of ACE inhibitors on endothelial vasodilator function. Studies performed by Hornig et al. have shown that ACE inhibitors augment flow-dependent, endothelial-mediated dilation in humans by a bradykinin-dependent mechanism.

ACE regulates other important vascular functions (Figure 3). Studies in healthy human volunteers have provided additional support for ACE in regulating vascular fibrinolytic balance. Specifically, examination of the effect of activation of the renin–angiotensin system by low salt intake (10 mEq vs 200 mEq sodium per day) on plasma fibrinolytic parameters demonstrated that low salt intake was associated with a significant increase in morning plasminogen activator inhibitor type 1 (PAI-1) levels, and plasma PAI-1 correlated dramatically with serum aldosterone levels ($R^2 = 0.56$, $p < 0.10^{-7}$). Treatment with quinapril significantly lowered PAI-1 concentrations and the molar ratio of PAI-1 to tissue plasminogen activator throughout the day.

PATHOPHYSIOLOGY OF VASCULAR ACE: The endothelium plays a crucial role in the maintenance of normal vascular tone and structure, local hemostasis, and vascular-wall proliferation processes (Figure 4). These processes are mediated by the reactive release of vasoactive substances (thromboxane A$_2$, free radicals, endothelin, prostacyclin) among which nitric oxide is perhaps the most important. Nitric oxide (1) relaxes vascular smooth muscle through a cyclic guanosine monophosphate–mediated decrease in cytosolic calcium, resulting in vasodilation; (2) mediates coagulation by the inhibition of platelet aggregation and the expression of adhesion molecules for both monocytes and neutrophils; and (3) prevents structural

A SYMPOSIUM: TISSUE ANGIOTENSIN-CONVERTING ENZYME
changes by inhibiting the growth and migration of smooth muscle cells. These regulatory processes are all subject to disruption by Ang II.

Ang II, elaborated by activated endothelial ACE, impairs nitric oxide bioactivity, mainly because of oxidative stress through the Ang II–induced production of superoxide radicals (O2−) that can scavenge nitric oxide and reduce endothelium-dependent vasodilation.85 This action is independent of the effects of ACE in degrading bradykinin and modulating the endothelial-dependent vasodilation in response to activation of the β2-receptor.

There is evidence that ACE expression is increased in atherosclerosis and that Ang II may contribute to disease progression by increasing oxidative stress and attenuating chemoattractant and adhesion molecule expression, leading to inflammation. As discussed, tissue Ang II can also exert proproliferative and prothrombotic actions (Figure 4). Diet et al86 reported that tissue ACE in human atherosclerotic plaque localizes to regions of inflammatory cells, especially areas of clustered macrophages and microvessel endothelial cells. The accumulation of ACE and metalloproteinase in the shoulder region of the vulnerable plaque may contribute to increased local circumferential stress and plaque instability. Thus, ACE accumulation within the vascular lesions may be a factor in the pathophysiology of coronary artery disease.

This hypothesis is underscored by the findings of an elegant experiment in which endothelial nitric oxide synthetase gene knockout mice developed atherosclerotic lesions in response to adventitial vessel-wall injury.87 Wild-type mice with normal endothelial function were able to produce nitric oxide and were therefore protected from this effect. The evidence cited above indicates that plaque ACE may be an important target of ACE inhibitor action.

Tissue ACE and the kidney: The prominent role of Ang II in renal physiology, as briefly outlined below, renders the kidneys highly susceptible to injury caused by the de novo production of Ang II. The kidneys, under the regulation of Ang II and aldosterone, maintain the electrolyte balance in the body. Sodium homeostasis, in particular, is maintained by the local action of Ang II on both the proximal and distal tubules. The filtration function of the kidneys is also preserved during changes in systemic blood pressure by local Ang II, which acts to constrict the afferent and efferent glomerular arterioles. The efferent arterioles are very sensitive to Ang II, and the resulting vasoconstriction, together with prostaglandin-induced vasodilation of the afferent arterioles, regulates intraglomerular pressure, thereby maintaining the glomerular filtration rate.

Because Ang II is essential in normal kidney function, increases in the level of locally elaborated Ang II frequently result in pathophysiologic conditions. In renovascular hypertension, for example, filter function of the ischemic kidney is compensated with afferent vasodilation and efferent Ang II–induced vasoconstriction. Renin production is greatly increased as well. This response to injury increases blood pressure, exposing the contralateral kidney to the sequelae of systemic hypertension. Ang II also maintains the glomerular filtration rate in chronic renal failure regardless of the cause of tissue damage. Despite this compensatory response, there is a progressive loss of renal function that results in further Ang II–generated increases in glomerular blood pressure and, therefore, continuing injury to the remaining nephrons.88 Ang II–induced glomerular hypertrophy89 and renal fibrosis90,91 escalate the response to injury into a destructive cycle, which ultimately concludes with complete renal failure.

CLINICAL CONSEQUENCES OF TISSUE ANGIOTENSIN-CONVERTING ENZYME INHIBITION

Based on experimental data, hypertension may be associated with increased local Ang II production, which may play an important role in vasoconstriction and direct tissue pathology. Consequently, antihypertensive therapy with ACE inhibitors not only controls hypertension by interrupting the renin–angiotensin system, but it has the added benefit of reducing the risk associated with Ang II–induced disease processes, including cardiovascular disease and renal failure. Thus, our evolving understanding of the role of tissue ACE in cardiovascular and renal disease culminates with the therapeutic application of this knowledge. In this context, the beneficial consequences of tissue ACE inhibition may occur independently of changes in blood pressure (ie, overt renin–angiotensin system activation); therefore, the value of inhibiting tissue ACE may extend to a broader range of patients than are currently being treated.

TISSUE ACE INHIBITION AND HYPERTENSION, DIABETES, AND RENAL DISEASE

The hallmark of essential hypertension is nephrosclerosis, the first clinical sign of which is protein (chiefly albumin) in the urine. Proteinuria is a principal predictor of cardiovascular disease in patients without diabetes mellitus and with type 2 diabetes,92 as well as in progressive renal disease in type 1 diabetes, and in patients with overt diabetic nephropathy.93 Treatment with ACE inhibitors has been shown to consistently reduce proteinuria in these patients, as compared with other antihypertensive agents that appear to have milder effects.94–96
The lack of an antiproteinuric effect by other antihypertensive agents that effectively reduce blood pressure suggests that renal protection afforded by ACE inhibitors may occur through a blood pressure-independent mechanism. Support for this hypothesis can be derived from examining large clinical trials and evaluation of the high-risk groups that were treated for hypertension.

Aggressive antihypertensive treatment in patients with type 2 diabetes mellitus was assessed in a subgroup analysis (n = 1,148) of the United Kingdom Prospective Diabetes study in which 758 patients (tight control group, blood pressure <150/85 mm Hg) were randomized to either an ACE inhibitor or a β-blocker (captopril or atenolol, respectively) as the main treatment. A total of 390 patients were treated less aggressively (blood pressure <180/105 mm Hg) with the same antihypertensive drugs. This study demonstrated that aggressively treated patients had clinically important reductions in the risks of death or complications associated with diabetes compared with patients who were treated less aggressively regardless of the antihypertensive agent used. In light of these data, could further evaluation of high-risk patients with modest reductions in blood pressure uncover additional beneficial effects attributable to a specific class of antihypertensive agent?

The Captopril Prevention Project (CAPPP) was designed to compare the effects of ACE inhibition and conventional therapy (diuretics and β blockers) on cardiovascular morbidity and mortality in hypertensive patients. A subgroup of >700 CAPPP patients were at increased risk for cardiovascular complications caused by diabetes mellitus. A total of 337 of these patients were randomized to captopril and 380 to conventional therapy. Although those patients treated with conventional therapy had significantly lower blood pressure than did the patients who received captopril, conventional therapy did not result in any additional benefit for diabetes-related risk. Those patients treated with the ACE inhibitor had a 66% reduction in fatal and nonfatal MIs and a reduced frequency of all cardiac events and total mortality. Moreover, within the entire study population (N = 10,085), the incidence of diabetes was lower in the captopril-treated patients than in those who received conventional therapy (relative risk 0.86, confidence interval 0.74 to 0.99, p = 0.039).

Evidence from the Appropriate Blood Pressure Control in Diabetes (ABCD) trial further supports the advantage of ACE inhibitor therapy in high-risk patients. ABCD was a prospective, randomized, blinded trial comparing the effects of moderate blood-pressure control (80 to 89 mm Hg, target diastolic blood pressure) with intensive control (75 mm Hg, target diastolic blood pressure) on the incidence and progression of diabetic vascular complications in hypertensive patients. First-line antihypertensive therapy with a dihydropyridine calcium antagonist (nisoldipine) or enalapril was also evaluated. A clinically important and highly statistically significant difference in the cardiovascular event rate was observed after 67 months of treatment in the hypertensive cohort. Patients treated with ACE inhibitor therapy had fewer nonfatal MIs (chi-square test: p = 0.001), all MIs (chi-square test: p = 0.001), and overall cardiovascular events (chi-square test: p = 0.002) than patients treated with the calcium antagonist. This relation was maintained in both the moderate and intensive blood-pressure control groups. Because of ethical considerations, there was no placebo control group in this study. Therefore, the difference between the ACE inhibitor group and the calcium antagonist group cannot be definitively ascribed to a beneficial effect of ACE inhibition. It is possible that calcium antagonists exerted a deleterious effect on this study population. Comparisons with other studies, however, suggest that the rate of MIs in the calcium antagonist group is not different from these historical controls; therefore, the results of the ABCD trial may be attributed to a protective effect of ACE inhibition rather than to a deleterious effect of calcium antagonists.

The blood-pressure–independent renoprotective effects of ACE inhibition have been clearly established in 2 large placebo-controlled clinical trials. The first study was conducted to determine whether captopril has kidney-protecting properties independent of its effect on blood pressure in patients with diabetic nephropathy. All patients had type 1 diabetes mellitus, proteinuria ≥500 mg/day, and serum creatinine concentration ≥2.5 mg/dL. Patients already on conventional antihypertensive therapy were randomized to captopril (n = 207) or placebo (n = 202) and were observed for 4 years. Doubling of baseline serum creatinine concentration—the primary study endpoint—occurred in 43 patients who received placebo and in only 25 ACE inhibitor–treated patients (p = 0.007), representing a risk reduction of 48%. Risk associated with the combined secondary endpoints (death, dialysis, and kidney transplantation) was reduced by 50%, and an aggregate analysis revealed significantly less proteinuria in the captopril-treated patients than in those patients who received placebo (p = 0.001). Over the course of the study, there was no difference in blood pressure in those patients with pre-existing hypertension who were randomized to ACE inhibitor therapy (n = 155) or placebo (n = 153, p = 0.16). Among patients who were normotensive at study entry, blood pressure was only marginally higher in the placebo group (p <0.001). Because blood pressure was not different between the groups with hypertension, and 85% of the patients who reached the primary endpoint were hypertensive, the decreased progression of diabetic nephropathy most likely occurred through a mechanism that is not dependent on blood pressure reduction.

Most recently, treatment with ramipril was found to result in vasculoprotective and renoprotective effects in patients with diabetes who had a previous cardiovascular event and at least 1 other cardiovascular risk factor. A total of 3,577 patients were randomized to ramipril (10 mg/day) or placebo, and vitamin E or placebo (2×2 factorial design). Treatment with ramipril reduced the risk of overt nephropathy by...
24% (95% confidence interval 3 to 40, \(p = 0.027 \)), and that of the combined primary outcome measure (MI, stroke, or cardiovascular death), even after adjusting for changes in both systolic and diastolic blood pressure, by 25% (confidence interval 12 to 36, \(p = 0.004 \)).

These results extend to patients whose renal insufficiency stems from causes other than diabetic nephropathy. The role of ACE inhibition in the preservation of renal function in patients with mild-to-moderate renal insufficiency because of diverse causes (eg, nephrosclerosis, glomerular disease, diabetic nephropathy) was evaluated using benazepril, an ACE inhibitor with high tissue-ACE affinity. A total of 583 patients were randomized to ACE inhibitor therapy (n = 300) or placebo (n = 283). Renal insufficiency was classified according to baseline creatinine clearance as either mild or moderate (46 to 60 or 30 to 45 mL/min). The primary study endpoint was a doubling of the baseline creatinine concentration or the need for dialysis. At 3 years, the primary endpoint was reached by 57 patients who received placebo and by 31 benazepril-treated patients (\(p < 0.001 \)), yielding an extraordinary overall risk reduction of >50%. Patients with mild or moderate renal insufficiency had risk reductions of 71% and 46%, respectively. ACE inhibition most effectively slowed the progressive deterioration of renal function in patients with glomerular diseases; however (and not unexpectedly), patients with polycystic disease (who also do not respond to low-protein diets) benefited the least.

Statistical adjustment for changes in blood pressure among the benazepril-treated patients and those who received placebo revealed that the risk reduction could not be completely attributed to the antihypertensive action of the ACE inhibitor. Additionally, the renoprotective effect of benazepril, as reflected by reduced urinary-protein excretion, was also found to occur independently of changes in blood pressure.

CLINICAL ASPECTS OF TISSUE ACE
AND ITS RELEVANCE TO CORONARY ARTERY DISEASE

ACE inhibitors as first-line therapy in patients with heart failure, asymptomatic left ventricular dysfunction, and in post-MI patients with a low ejection fraction: More than 2 decades of experience have demonstrated that ACE inhibitors save lives and decrease the number of hospitalizations in patients with heart failure, asymptomatic left ventricular dysfunction, and those post-MI patients with a low left ventricular ejection fraction (Table 1). Consequently, ACE inhibitors are now considered first-line therapy for these patients. Benefits have been observed with different ACE inhibitors, including captopril, enalapril, zofenopril, ramipril, and trandolapril, thus suggesting a class effect.

The Cooperative Northern Scandinavian Enalapril Survival Study (CONSENSUS) demonstrated a significant 40% reduction in 6-month mortality in enalapril-treated patients with severe heart failure versus those patients who received placebo. Enalapril was also found to reduce mortality in patients with less-severe congestive heart failure. In the treatment arm of the Studies On Left Ventricular Dysfunction (SOLVD), enalapril significantly reduced overall mortality by 16% versus placebo in patients with a left ventricular ejection fraction of <0.35 and New York Heart Association (NYHA) functional class II and III. Whereas no mortality benefit was demonstrated in the prevention arm of the SOLVD trials, which enrolled asymptomatic patients with a left ventricular ejection fraction <0.35, there was a significant reduction in hospitalizations for heart failure. The benefits of ACE inhibitor therapy in heart failure are also substantiated by a systematic overview of randomized trials of ACE inhibitors in patients with heart failure. This meta-analysis of 32 trials, including 3,870 patients with symptomatic heart failure randomized to ACE inhibitor therapy and 3,235 control patients, reveals a 23% reduction in total mortality and a 35% reduction in congestive heart failure in the ACE inhibitor group. Similar benefits were noted in this meta-analysis across various subgroups defined by age, sex, etiology of heart failure, and NYHA class.

Trials in patients with recent MI and moderate reductions in the left ventricular ejection fraction including the Acute Infarction Ramipril Efficacy (AIRE) study, the Survival and Ventricular Enlargement (SAVE) trial, and the Trandolapril Cardiac Evaluation (TRACE) trial, also demonstrate significant mortality benefits for patients treated with ACE inhibitors. The AIRE study evaluated ramipril treatment in MI patients who had any sign of heart failure subsequent to the MI. The risk of mortality was decreased in the ramipril-treated patients by 27% versus placebo. In a similar trial (SAVE), patients who received captopril had a 19% reduction in mortality. In the TRACE study, patients who had an MI with echocardiographic evidence of left ventricular dysfunction and who were treated with trandolapril had a 27% increase in life expectancy as compared with patients given placebo.

A recent systematic overview of long-term ACE inhibitor therapy in patients with heart failure or left ventricular dysfunction used pooled data from 12,763 patients randomly assigned to ACE inhibitor treatment or placebo for an average of 35 months. In the 3 postinfarction trials included in this meta-analysis (SAVE, AIRE, and TRACE), patients treated with an ACE inhibitor had a 26% lower mortality, a 27% lower rate of hospital admission for heart failure, and a 20% lower reinfarction rate. Similarly, when, in addition to the trials of patients with recent MI, trials of patients with chronic heart failure or left ventricular dysfunction were considered, significant reductions in death, reinfarction, and heart failure rates were observed in patients treated with an ACE inhibitor. These benefits were observed early after the start of therapy and persisted long term. Moreover, the benefits of ACE inhibitor treatment were independent of age, sex, and baseline use of diuretics, aspirin, and \(\beta \)-blockers.
TABLE 1 Angiotensin-Converting Enzyme (ACE) Inhibitor Clinical Trials Summary

<table>
<thead>
<tr>
<th>Trial</th>
<th>ACE Inhibitor</th>
<th>Patient Group</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSENSUS</td>
<td>Enalapril vs placebo</td>
<td>NYHA IV, CHF</td>
<td>Overall mortality</td>
</tr>
<tr>
<td>SOLVD, treatment arm</td>
<td>Enalapril vs placebo</td>
<td>NYHA II & III, CHF</td>
<td>Overall mortality</td>
</tr>
<tr>
<td>SOLVD, prevention arm</td>
<td>Enalapril vs hydralazine-isosorbide</td>
<td>Recent MI with asymptomatic LVD</td>
<td>Overall mortality</td>
</tr>
<tr>
<td>SAVE</td>
<td>Captopril vs placebo</td>
<td>Asymptomatic LVD</td>
<td>Death and hospitalization due to CHF</td>
</tr>
<tr>
<td>V-HeFT II</td>
<td>Enalapril vs placebo</td>
<td>Acute MI</td>
<td>Overall mortality</td>
</tr>
<tr>
<td>ISIS-4</td>
<td>Ramipril vs placebo</td>
<td>Recent MI with LVD</td>
<td>Overall mortality</td>
</tr>
<tr>
<td>GISSI-3</td>
<td>Captopril vs placebo</td>
<td>Acute MI</td>
<td>Overall mortality</td>
</tr>
<tr>
<td>TRACE</td>
<td>Lisinopril vs placebo</td>
<td>Recent MI with LVD</td>
<td>Overall mortality</td>
</tr>
<tr>
<td>SMILE</td>
<td>Zofenopril vs placebo</td>
<td>Acute MI</td>
<td>Overall mortality</td>
</tr>
</tbody>
</table>

AIRE = Acute Infarction Ramipril Efficacy trial; CHF = congestive heart failure; CONSENSUS = Cooperative New Scandinavian Enalapril Survival Study; GISSI-3 = Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico III; ISIS-4 = International Study of Infarct Survival 4; LVD = left ventricular dysfunction; MI = myocardial infarction; NYHA = New York Heart Association; SAVE = Survival and Ventricular Enlargement trial; SOLVD = Studies on Left Ventricular Dysfunction; SMILE = Survival of Myocardial Infarction Long-Term Evaluation trial; TRACE = Trandolapril Cardiac Evaluation trial; V-HeFT II = Vasodilator-Heart Failure Trial II.

Adapted from The Pharmacological Basis of Therapeutics, New York: McGraw-Hill.106
(130 mg/dL) had a statistically significant reduction in the progression of coronary artery disease.121

The therapeutic implications of tissue ACE inhibitor treatment have been realized with the publication of the Heart Outcomes Prevention Evaluation (HOPE) study results.122 The HOPE study was a 2×2 factorial design trial, which randomized 9,541 high-risk patients, ≥ 55 years of age with evidence of vascular disease or diabetes plus at least 1 additional cardiovascular risk factor, in the absence of known heart failure or a low renin–angiotensin system, the uniformity of benefit among different subgroups, and the magnitude of the treatment effect—much larger than expected based on the observed reductions in blood pressure—suggest that the results of this study may indeed be explained by inhibition of tissue ACE–mediated processes that are related to atherosclerotic and ischemic complications. These findings are concordant with the results of numerous laboratory investigations and clinical studies, such as the Trial on Reversing Endothelial Dysfunction (TREND),123 the Brachial Artery Normalization of Forearm Function (BANFF),124 the Healing and Early Afterload Reducing Therapy (HEART) trial,125 and the effects of Quinapril on Vascular Ace and Determinants of Ischemia (QUO VADIS) study,126 and support the use of ACE inhibitors that effectively inhibit tissue ACE in a wide range of patients.

The effect of ACE inhibitor therapy on cardiovascular outcomes in patients without heart failure and with preserved left ventricular systolic function is also being evaluated in large ongoing clinical trials. The Prevention of Events with ACE Inhibition (PEACE)127 and European Trial of Reduction of Cardiac Events with Perindopril in Stable Coronary Artery Disease (EUROPA)128,129 trials, using the high tissue-affinity ACE inhibitors trandolapril and perindopril, and the Ischemia Management with Accupril Post Bypass Graft via Inhibition of Converting Enzyme (IMAGINE) study in patients with recent coronary bypass graft surgery will provide further evidence for the role of ACE inhibitor therapy in different patient subsets. If these trials confirm the large benefits noted in the HOPE study, this will further...
support the use of long-term ACE inhibitor therapy in a wide range of patients with atherosclerotic disease but without systemic activation of the renin–angiotensin system.

MECHANISTIC STUDIES WITH POSITIVE OUTCOMES: Mechanistic studies using angiographic measurements have yielded considerable evidence that endothelial dysfunction can be altered or improved with various ACE inhibitors and that there may be differences in effects between these agents. With regard to tissue ACE and its relation to coronary artery disease, the most intriguing mechanistic studies include TREND, BANFF, HEART trial, and the QUOVA DIS study.

The TREND study was the first to show improved endothelial function in coronary artery disease patients who were normotensive but did not have severe hyperlipidemia or evidence of heart failure. A total of 105 secondary prevention patients were randomized to quinapril 40 mg/day or placebo and observed for 6 months. Using quantitative coronary angiography, luminal diameter changes in response to acetylcholine were measured in both cohorts at baseline and at study completion. After 6 months, patients in the quinapril group showed significant improvement in endothelial response over the placebo group (p = 0.002), suggesting that ACE inhibition attenuates the vasoconstrictive and superoxide-generating effects of Ang II while promoting endothelial cell release of nitric oxide consequent to the accumulation of bradykinin.

The BANFF study compared the effects of quinapril 20 mg, enalapril 10 mg, amlodipine 5 mg, and losartan 50 mg on blood flow and dilation of the brachial artery. These doses were considered equal in antihypertensive efficacy. Results were assessed by measuring flow-mediated vasodilation of the brachial artery in response to hyperemia through high-resolution intravascular ultrasound. Patients, who all had evidence of coronary artery disease confirmed by angiography, were randomized in a crossover design to 3 drugs for 8 weeks each, with a 2-week washout period in between. Although all of the agents improved blood pressure, they differed in their ability to improve endothelial function. Quinapril was the only agent that produced a significant improvement (p <0.02) in endothelial function versus baseline.

The HEART study, in which 120 patients were randomized to ramipril (relatively high affinity for tissue ACE) or placebo within 24 hours of the onset of symptoms of MI, observed a significant decrease in PAI-1 activity levels with the administration of the ACE inhibitor. This finding supports an earlier supposition that the renin–angiotensin system plays an important role in regulating endogenous fibrinolysis and that ACE inhibition may decrease the increase in PAI-1, yielding a clinical benefit. Similar results were also reported with the use of captopril post MI.

STUDIES EVALUATING THE EFFECTS OF ACE INHIBITION ON THE ANATOMIC PROGRESSION OF ATHEROSCLEROSIS: The effects of long-term ACE inhibition on the anatomic progression of atherosclerotic lesions of the coronary and carotid arteries were evaluated (Table 2) in the QUIET study, the Simvastatin Coronary Atherosclerosis Trial (SCAT), the Prevention of Atherosclerosis with Ramipril Therapy-2 (PART-2), and the Study to Evaluate Carotid Ultrasound Changes in Patients Treated with Ramipril and Vitamin E (SECURE). In the PART-2 trial, atherosclerotic progression was measured by B-mode carotid ultrasound of the extracranial carotid arteries; quantitative coronary angiography was used in SCAT. These studies were considered “neutral” because they did not provide clear evidence that ACE inhibitors can delay or reverse atherosclerotic lesions. Both PART-2 and SCAT, however, which together observed >1,000 patients, demonstrated significant improvements in rates of cardiovascular deaths, MI, and stroke. The angiographic substudy of QUIET demonstrated lesser progression of coronary atherosclerosis in patients with elevated cholesterol concentration (low-density lipoprotein cholesterol >3.2 mmol/L) treated with quinapril, but no clear benefit in those with lower low-density lipoprotein cholesterol levels. Finally, the SECURE trial (a substudy of HOPE) showed that ramipril 10 mg/day was effective in retarding the progression of atherosclerosis as evaluated by B-mode carotid ultrasound. These differences are likely related to diversity in the patients studied, the ACE inhibitors used, and most importantly, the methods used to assess the progression of the anatomic extent of atherosclerosis.

<table>
<thead>
<tr>
<th>Trial</th>
<th>ACE Inhibitor</th>
<th>Primary Outcome</th>
<th>Sample Size (n)</th>
<th>Duration (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUIET</td>
<td>Quinapril</td>
<td>1. Quantitative coronary angiographic measures of CAD progression</td>
<td>1,775</td>
<td>3</td>
</tr>
<tr>
<td>SCAT</td>
<td>Enalapril</td>
<td>Quantitative coronary angiographic measures of CAD progression</td>
<td>468</td>
<td>5</td>
</tr>
<tr>
<td>PART-2</td>
<td>Ramipril</td>
<td>B-mode ultrasound measures of carotid atherosclerosis</td>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>HOPE</td>
<td>Ramipril</td>
<td>Composite of myocardial infarction, stroke, or death from cardiovascular causes</td>
<td>9,297</td>
<td>5</td>
</tr>
</tbody>
</table>

CAD = coronary artery disease, HOPE = Heart Outcomes Prevention Study; PART = Prevention of Atherosclerosis with Ramipril Therapy; QUIET = Quinapril Ischemic Event Trial; SCAT = Simvastatin and Enalapril Coronary Atherosclerosis Trial.

*Composite endpoint including cardiovascular death, nonfatal myocardial infarction, coronary revascularization procedures (coronary artery bypass graft surgery, angioplasty, arterectomy), and hospitalization for unstable angina pectoris.

Adapted from Circulation.
PHARMACOLOGY OF ANGIOTENSIN-CONVERTING ENZYME INHIBITORS

The ACE inhibitors currently number more than a dozen different agents worldwide and have long been represented by captopril and enalapril, the first ACE inhibitors to be approved. Because the mechanism of action of the ACE inhibitors is the same (ie, competitive inhibition of ACE), the documented beneficial effects of captopril and enalapril, among others, are attributed to the class as a whole. Nevertheless, individual ACE inhibitors have unique pharmacokinetic properties that may result in differential clinical effects. The most important property, perhaps, is the strength of binding affinity to tissue ACE.

The active catalytic sites of ACE consist of hydrophobic pockets of amino and carboxyterminal side chains on the enzyme’s surface. The binding strength of ACE inhibitors to ACE is dependent on the binding of the sulfhydryl-, carboxyl-, or phosphinyl-containing group at the N-terminus of the ACE inhibitor with the coordinated Zn$^{2+}$ as well as the binding of the negatively charged C-terminus of the ACE inhibitor with the postulated positively charged carboxylate dock residue (believed to be an arginine side chain) of ACE. The affinity of ACE inhibitors to ACE is also dependent on the number of auxiliary binding sites, the most important of which are the S’1 and S’2 subsites.

RELATIVE TISSUE AFFINITY OF ACE INHIBITORS

The degree of functional in vivo inhibition of tissue ACE produced by an ACE inhibitor is directly dependent on the binding affinity of the inhibitor and the concentration of the free inhibitor in the tissue. The concentration of the free inhibitor in the tissue, in turn, is dependent on the dynamic equilibrium between the rate of delivery of ACE inhibitor to the tissue and its subsequent washout into the blood. Key factors affecting the concentration of free inhibitor in tissues are dose, bioavailability, half-life in blood, tissue penetration, and tissue retention (or depot effect). Bioavailability and half-life in blood can readily be determined and are important for decision making in initially choosing the correct dose of ACE inhibitor. When blood levels of the ACE inhibitor are consistently high—normally in the first half of the dosing period—tissue retention of the inhibitor is not likely to have a significant effect on functional ACE inhibition. However, toward the end of the dosing period, as the levels of the ACE inhibitor in blood decreases, 2 factors appear to be key in producing functional tissue ACE inhibition: (1) inhibitor binding affinity, and (2) tissue retention (which will directly influence the concentration of the free inhibitor in the tissue).

The rank order of potency of several different ACE inhibitors has been determined by investigators using competition analyses and by direct binding of tritium-labeled ACE inhibitors to tissue ACE. The potency is: quinaprilat = benazeprilat > ramiprilat > perindoprilat > lisinopril > enalaprilat > fosinopril > captopril. The potency of ACE inhibitors in tissue may also be ranked accordingly (Table 3).

Tissue retention of ACE inhibitor has also been examined. Isolated organ bath studies examining the duration of ACE inhibition after the removal of ACE inhibitor from the external milieu shows that functional inhibition of ACE lasts well beyond (2- to 5-fold longer) the time predicted solely on the basis of inhibitor dissociation rates or binding affinity. Indeed, inhibitors with similar dissociation rates from tissue ACE show markedly different degrees of functional inhibition or retentiveness after washout. The rank order of tissue retentiveness is quinaprilat > lisinopril > enalaprilat > captopril and reflects both the binding affinity and lipophilicity of these inhibitors.

CAN ANGIOTENSIN-CONVERTING ENZYME INHIBITORS BE DIFFERENTIATED?

The physiochemical differences among ACE inhibitors that are responsible for their distinct pharmacologic properties—binding affinity, potency, lipophilicity, and depot effect—reveal that a divergent trend allows the arbitrary classification of ACE inhibitors as agents according to tissue-ACE affinity (Table 3). Thus, the recognition that tissue ACE, the endothelium, and the natural history of cardiovascular disease are interrelated leads to the question of whether the degree of tissue-ACE inhibition may extend to differences in efficacy. Clearly, a reduction of Ang II and increased nitric oxide bioavailability may represent the mechanism by which ACE inhibitors confer vascular protection. As a consequence, endothelial function may be regarded as a surrogate marker for vascular protection. The effects of ACE inhibitors on endothelium-dependent relaxation appear to differ among several reports and appear to be dependent on the agents used and the experimental designs (Table 4). It is intriguing that consistent im-
improvement in endothelial function is reported with those ACE inhibitors with higher tissue-ACE affinity, such as quinapril and ramipril.

Ramipril has been shown to improve endothelial dysfunction by attenuating the toxic effects of oxidized low-density lipoprotein in vitro. More recently, ramiprilat was found to prevent the development of coronary endothelial dysfunction in a canine model. In this model, scanning electron micrographs of subepicardial arterioles from control dogs revealed endothelial leukocyte adhesion and crater formation. These markers of endothelial dysfunction were not observed in ramiprilat-treated dogs. Likewise, perindoprilat prevented chronic heart failure–induced endothelial dysfunction and reduced media cross-sectional area and collagen density in rats. Perindoprilat has also been shown to accelerate endothelial re-growth after balloon denudation in rabbits. In humans, long-term treatment with perindopril inhibits both endothelial and adventitial ACE in the internal mammary arteries from patients with ischemic heart disease.

Several studies further extend these lines of evidence, including the TREND and the BANFF studies (see above), which have established that tissue-ACE inhibition improves endothelial function in humans. Interestingly, the BANFF study showed that enalapril and antihypertensive agents from other classes have no effect on endothelial function.

These results are strengthened by those from QUO VADIS, a 2-phase, parallel-arm, phase 3 study of ACE inhibition in coronary artery disease patients scheduled to undergo coronary artery bypass graft surgery. Patients were randomized to a double-blind, placebo-controlled treatment with quinapril (40 mg/day), or a single-blind treatment with captopril 50 mg, 3 times a day (phase 1, before coronary bypass graft surgery). Overall, 75 patients received quinapril, 37 received captopril, and 74 patients received placebo, with treatment beginning, on average, 27 days before coronary bypass graft surgery.

Phase 1 of QUO VADIS was designed (1) to determine the effects of ACE inhibition with quinapril and captopril on vascular tissue ACE, independent of the circulating renin–angiotensin system and the formation of Ang II; and (2) to determine whether functional differences existed between the 2 ACE inhibitors. During coronary bypass graft surgery, segments of internal mammary arteries were harvested for in vitro measurements of tissue-ACE activity. Both quinapril and captopril reduced the production of Ang II. However, only the reduction in Ang II formation in quinapril-treated patients was significant (p <0.05) versus placebo. This result suggests that there is a functional difference in the respective abilities of quinapril and captopril to inhibit endothelial ACE and the local production of Ang II. Phase 2 of the QUO VADIS study evaluated the effect of chronic ACE inhibition (quinapril, 40 mg/day for 1 year) versus placebo, on the incidence of ischemia. Treatment with quinapril significantly (p = 0.02) reduced clinical ischemic events during the 1-year period after coronary bypass graft surgery.

The potential importance of tissue-ACE inhibition was further demonstrated in a study of patients with chronic heart failure by quantitating impaired flow-dependent dilatation as a measure of endothelial dysfunction. The effects of quinapril (high affinity to tissue ACE) were compared with those of enalapril. High-resolution ultrasound and Doppler were used to measure radial-artery diameter and blood flow in patients who received intra-arterial infusions of quinaprilat (1.6 μg/min, n = 15) and enalaprilat (5.0 μg/min, n = 15) while at rest and during reactive hyperemia. Measurements were made both before and after N-monomethyl-L-arginine was used to inhibit endothelial nitric oxide synthetase and, hence, the production of nitric oxide. Quinaprilat improved flow-dependent dilatation by >40%, whereas enalaprilat had no effect. Moreover, although endothelial nitric oxide synthetase was inhibited by N-monomethyl-L-arginine (the part of flow-dependent dilatation mediated by nitric

| Table 3: Pharmacological Properties of Various Angiotensin-Converting Enzyme (ACE) Inhibitors in Plasma and Tissue |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Tissue** | **Potency** | **ACE Inhibitor Potencies (mmol/L × 10⁻⁹)** | **Enzymatic Inhibition (IC₅₀ᵃ)** | **Radioligand Displacement (DD₅₀)** | **Plasma Half-Life** | **Relative Lipid Solubility** |
| **High** | Quinapril | 0.07 | 5.5 × 10⁻¹¹ | 4.5 × 10⁻¹¹ | 25 | ++ |
| | Benazepril | NA | 1.3 × 10⁻⁹ | 4.8 × 10⁻¹¹ | 11 | + |
| | Ramipril | 0.08 | 1.9 × 10⁻⁹ | 7.0 × 10⁻¹¹ | >50 | ++ |
| | Perindopril | 0.40 | NA | NA | 10 | + |
| | Lisinopril | NA | 4.5 × 10⁻⁹ | 1.7 × 10⁻¹⁰ | 12 | NA |
| | Enalapril | 1.00 | 4.5 × 10⁻⁹ | 1.1 × 10⁻⁹ | 11 | + |
| | Fosinopril | NA | 1.6 × 10⁻⁸ | 5.1 × 10⁻¹⁰ | 11.5 | ++ |
| **Low** | Captopril | 15.00 | NA | NA | 2 | + |

NA = not available.

*Radioligand binding studies using the active drug moiety.

ID₅₀ is the inhibitor concentration required to displace 50% of [¹²⁵I]531A bound to human plasma.

*Comparison of 50% inhibition of enzymatic activity (IC₅₀) with 50% displacement of [¹²⁵I]531A (DD₅₀) from human plasma.

Values cited for quinaprilat and ramiprilat are for dissociation from tissue ACE, ie, terminal halflife.

Lipid solubility based on log P logarithm of the octanol/water partition coefficient of the active drug moiety, except for captopril. + signs represent increased lipid solubility.
oxide), quinaprilat increased flow-dependent dilation by >100%. Enalaprilat, even when infused twice, had no effect. Similar results have been obtained with oral administration of quinapril and enalapril. Thus, the tissue affinity of quinaprilat may be a key to that agent’s ability to improve endothelial-mediated dilation.

This study also sheds light on the potential mechanism by which high tissue-affinity ACE inhibitors improve endothelial-mediated relaxation. The mechanism of increased nitric oxide activity may be the result of enhanced bradykinin-mediated nitric oxide release or reduced nitric oxide degradation by Ang II–induced production of reactive oxygen species. Indeed, the latter mechanism has been demonstrated by Harrison and Warnholtz et al. who also reported that Ang II type 1 receptor blockade can reduce superoxide anion production.

The supposition that high tissue-affinity ACE inhibitors may protect nitric oxide is authenticated by the results of enhanced bradykinin-mediated nitric oxide release or reduced nitric oxide degradation by Ang II–induced production of reactive oxygen species. Indeed, the latter mechanism has been demonstrated by Harrison and Warnholtz et al. who also reported that Ang II type 1 receptor blockade can reduce superoxide anion production.

The tissue ACE inhibition has also been shown to promote angiogenesis in an ischemic hind-limb animal model by a process thought to involve the endothelium. Ischemia was produced in 1 hind limb in New Zealand White rabbits, which then received a single intra-arterial injection of quinaprilat, captopril, recombinant human vascular endothelial growth factor (positive control), or no treatment (negative control). Both functional and morphologic assessments revealed augmented angiogenesis in quinaprilat-treated rabbits, which was similar to that seen in animals that received recombinant human vascular endothelial growth factor and greater than that observed in captopril-treated rabbits or the negative controls. Residual ACE activity after quinaprilat and cap-

Table 4: Tissue Angiotensin-Converting Enzyme (ACE) Inhibition and Endothelial Function

<table>
<thead>
<tr>
<th>Study</th>
<th>ACE Inhibitor</th>
<th>Population</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saris et al</td>
<td>Enalaprilat</td>
<td>Normotensive male volunteers</td>
<td>Inhibition of contractile effects of AII; reduction in fractional conversion of AII to Ang II</td>
</tr>
<tr>
<td>Lyons et al</td>
<td>Quinapril, enalaprilat</td>
<td>Normotensive male volunteers</td>
<td>Quinapril, but not enalaprilat, significantly inhibited Ang II–induced vasoconstriction</td>
</tr>
<tr>
<td>Padmanabhan et al</td>
<td>Enalaprilat</td>
<td>Normotensive male volunteers</td>
<td>Enalaprilat failed to inhibit the contractile response to Ang II</td>
</tr>
<tr>
<td>Hornig et al</td>
<td>Quinaprilat, enalaprilat</td>
<td>CHF patients</td>
<td>Endothelial-dependent dilation was improved with quinaprilat, but not with enalaprilat</td>
</tr>
<tr>
<td>Prasad et al</td>
<td>Enalaprilat</td>
<td>CAD patients</td>
<td>Enalaprilat significantly potentiated bradykinin-mediated femoral vasodilation</td>
</tr>
<tr>
<td>Mancini et al (TREND)</td>
<td>Quinaprilat</td>
<td>CAD patients with preserved LVF</td>
<td>Increased coronary artery dilation; increased endothelial function in smokers and those with elevated LDL-C</td>
</tr>
<tr>
<td>Anderson et al (BANFF)</td>
<td>Quinapril, enalapril, losartan, amlodipine</td>
<td>CAD patients with preserved LVF</td>
<td>Only quinapril significantly improved endothelial function</td>
</tr>
<tr>
<td>Oosterka et al (QUO VADIS-I)</td>
<td>Quinaprilat, captopril</td>
<td>CAD patients with preserved LVF</td>
<td>Quinapril, but not captopril, blocks Ang II–induced oxidant stress within the vessel wall, and as a result, protect nitric oxide from superoxide anion inactivation</td>
</tr>
</tbody>
</table>

CAD = coronary artery disease; CHF = chronic heart failure; LVF = left ventricular function.

Adapted from Vascular Biology Working Group website.
The experimental and clinical evidence presented here validates earlier suppositions that long-term tissue-ACE inhibition would provide important clinical benefits to a broad population of patients with coronary artery disease. The cardio- and renoprotective benefits of this drug class appear to extend beyond the therapeutic effects of blood pressure reduction and may distinguish the ACE inhibitors from other antihypertensive agents. The next significant step is to determine if pharmacologic differences among the ACE inhibitors, such as the affinity for tissue ACE and the clinical effect on endothelial dysfunction, are a differentiating factor within this class of important cardiovascular drugs.

CONCLUSION

The importance of tissue-ACE inhibition. Studies such as IMAGINE, PEACE, and EUROPA, using quinapril,trandolapril, and perindopril, respectively, may confirm the findings of the HOPE study and thus validate the use of tissue-ACE inhibitors in clinical practice among high-risk patient populations.

24. Danesh AH, de Lannoy LM, Saxena P, Schalekamp MD. Chymase does not...

119. MacMahon S, Sharpe N, Gamble G, Clague A, Mhrurcu CN, Clark T, Hart H, Scott J, White R. Randomized, placebo-controlled trial of the angiotensin-converting enzyme inhibitor, ramipril, in patients with coronary or other occlu-

