Acute generalized, widespread bleeding. Diagnosis and management

Eduardo Rocha,* José A. Páramo,** Ramón Montes,* Carlos Panizo*

*Department of Hematology, Clínica Universitaria; **Laboratory of Vascular Biology and Thrombosis Research, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain

Abstract

Background and Objective. Acute generalized, widespread bleeding is often related to disseminated intravascular coagulation (DIC), a pathologic process which complicates the clinical course of many diseases and is characterized by huge amounts of thrombin and plasmin within the circulation. The final result is the consumption of platelets, coagulation factors and inhibitors, as well as secondary hyperfibrinolysis, all leading to diffuse hemorrhage and microthromboses. This review article examines the present attitudes to the diagnosis and treatment of overt DIC in clinical practice, emphasizing the importance of an accurate differential diagnosis from some other processes characterized by acute generalized, widespread bleeding.

Information Sources. The authors have been working in this field, both at experimental and clinical levels, contributing original papers for many years. In addition, material examined in this review includes articles published in journals covered by MedLine®, recent reviews in journals with high impact factor and in relevant books on hemostasis and thrombosis.

State of Art and Perspectives. DIC is an intermediary mechanism of disease which complicates the clinical course of many well-known disorders. Although the systemic hemorrhagic syndrome is the predominant clinical manifestation, massive intravascular thrombosis frequently occurs contributing to ischemia and associated organ damage, making the mortality rate of this condition high. Current concepts on the pathophysiology, laboratory diagnosis and management of DIC are presented. Complex pathophysiological interrelations make the diagnosis of the etiology of the DIC difficult in clinical practice, although simple tests are useful for identification of patients with the process. Laboratory diagnosis of DIC is mainly based on screening assays, which allow a rapid diagnosis, whereas some other highly sensitive but more complex assays are not always available to routine clinical laboratories. The management of DIC is based on the treatment of the underlying disease, supportive and replacement therapies and the control of the coagulation mechanisms. Although some advances have been achieved, management decisions are still controversial, so that therapy should be highly individualized depending on the nature of the DIC and severity of clinical symptoms. Many syndromes sharing common findings with DIC, such as primary hyperfibrinolysis or thrombotic thrombocytopenic purpura, should be excluded. Finally, new therapeutic approaches to the management of this potentially catastrophic syndrome are required.

©1998, Ferrata Storti Foundation

Key words: disseminated intravascular coagulation, bleeding

The acute appearance of a general and widespread hemorrhagic syndrome, associated with a great number of underlying diseases, is a characteristic finding of disseminated intravascular coagulation (DIC). In clinical practice, some disorders closely related to DIC, such as primary hyperfibrinolysis, thrombotic thrombocytopenic purpura (TTP) and the complex hemostatic abnormalities associated with severe hepatic disorders can mimic a similar clinical condition, often making differential diagnosis difficult. This review will be restricted to bleeding syndromes secondary to DIC. The remaining processes will be considered only in order to mention them as differential diagnoses and list their treatments.

As McKay previously described, DIC is an intermediary mechanism of disease associated with a variety of disorders and clinical conditions. It probably represents a hyperactive response of the physiologic control mechanisms to a wide number of tissue insults. Although sometimes DIC can become itself the primary mechanism of disease, in most cases it is an epiphenomenon that complicates a previously established clinical entity.

DIC can appear in the evolution of many diseases (Table 1). In hospital clinical practice, the most frequent of these are infections, representing 25-30% of the cases reported in the largest series, followed by neoplastic processes, obstetrical accidents, crush injuries and major surgical operations, and liver diseases.

All these conditions can activate the coagulation system by triggering the generation of thrombin within the systemic circulation. This activation occurs as a direct effect of a broad spectrum of endothelial or tissue lesions. Normal endothelium plays a key role...
in hemostatic regulation through a variety of mechanisms, such as secretion or cell surface expression of heparan sulfate proteoglycan, thrombomodulin, prostacyclin, von Willebrand factor (vWF), tissue factor (TF), tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1). Endothelial damage may lead to disturbance or loss of its regulatory functions as a result of physical injury, infectious pathogens or toxins or inflammatory mediators such as bacterial endotoxins, activated complement, interleukin 1 (IL-1), tumor necrosis factor-α (TNF-α) or neutrophil proteases exposure.\(^{11-13}\) As far as concerns tissue lesions, these lead to some procoagulant material entering the circulation, particular TF, whose contribution to the activation of coagulation has been demonstrated in experimental DIC studies.\(^{14,15}\) The contribution of the contact system, particularly factor XII, to the activation of coagulation in DIC is, however, uncertain, although a role for the development of hemodynamic disorders associated with DIC and possibly for the activation of the fibrinolytic system has been proposed.\(^{16-19}\)

The activation of coagulation after a triggering event can be promoted directly or by the mediation of cytokines, mainly TNF-α and IL-1,\(^{12,13,20-25}\) contributing to the development of the theoretically well-differentiated stages of the pathophysiological mechanism of DIC (Figure 1). However, in clinical practice these stages are usually intertwined. Generation of circulating thrombin is a direct consequence of the activation of coagulation and responsible for fibrin generation and platelet activation leading to small vessel thrombosis thus producing ischemic lesions, necrosis and functional failure of several organs. The most commonly involved organs are the kidney, lung, central nervous system and skin. Microangiopathic hemolytic anemia also occurs as a result of fibrin deposits within the microcirculation. Moreover, activation of coagulation causes consumption of platelets and coagulation factors which contribute to hemorrhagic diatheses. Formation of intravascular fibrin triggers fibrinolysis and the resulting generation of plasmin through the action of t-PA released in response to cytokines generated by the initial stimulus. Activation of fibrinolysis represents a compensating system that degrades microvascular fibrin clots. The importance of such a mechanism is clearly shown in patients with sepsis due to Gram-negative bacteria, in whom endotoxin causes an increase in the levels of PAI-1\(^{26,27}\) as shown experimentally by the inhibitor levels being higher in patients with DIC. This is an indicator of a poor prognosis.\(^{28,29}\) The hyperplasminemia becomes the main cause of the hemorrhagic diathesis for two reasons: it induces the generation of great quantities of fibrinogen degradation products (FDP) and fibrin degradation products with a powerful anti-hemostatic action, and reduces the plasma concentrations of coagulation factors because of its capacity to degrade them. Finally, natural coagulation inhibitors, including antithrombin III (ATIII), proteins C and S and the inhibitor of the extrinsic pathway (TFPI) are also consumed, thus contributing to the increased generation of thrombin and fibrin. The pathophysiologic importance of these inhibitors has been recently evaluated by several clinical and experimental studies, although the results have not always been concordant.\(^{14,20,30-40}\)

Table 1. Some causes of DIC.

<table>
<thead>
<tr>
<th>Category</th>
<th>Causes</th>
</tr>
</thead>
</table>
| Infections: | Gram-negative bacteria (endotoxin)
Gram-positive bacteria (mucopolysaccharides)
Viruses, fungi, protozoa, others |
| Neoplasia: | Solid tumors (adenocarcinomas, others)
Leukemia (promyelocytic, others) |
| Obstetric complications: | Amniotic fluid embolism
Abruptio placentaet
Retained dead fetus
Septic abortion
Eclampsia |
| Trauma and tissue injury: | Brain injury
Crush injury
Burns
Surgery
Hyperthermia
Hypothermia |
| Liver disease: | Fulminant hepatic failure
Cirrhosis
Acute fatty liver of pregnancy
LeVeen shunt
Reye’s syndrome |
| Transfusion reactions: | Acute hemolytic transfusion reaction
Massive transfusion |
| Vascular disease: | Aortic aneurysm
Giant hemangioma (Kasabach-Merrit syndrome)
Malignant hypertension
Microangiopathic disorders |
| Venoms (vipers, other snakes, insects) |
| Respiratory distress syndromes |
| Shock |
| Drugs/Therapeutic agents: | Clotting factor concentrates (factor IX)
OKT3 monoclonal antibody
Interleukin-2 |
| Miscellaneous: | Amyloidosis
Pancreatitis
Autoimmune diseases
Renal vascular disorders
Kawasaki disease
Anaphylaxis
Sarcoidosis |
The intervention of normal compensatory processes must also be considered in the pathophysiology of DIC. These processes include activation of the fibrinolytic system and the liver’s capacity to synthesize coagulation factors, as well as production of platelets in the bone marrow in order to compensate for consumption, the clearance mechanisms of the factors responsible for the initial stimulus, activated coagulation factors and FDP by the mononuclear phagocytic system.

Therefore, the pathophysiology of DIC seems to be controlled by two main mechanisms: generation of thrombin and generation of plasmin. When the latter prevails, the clinical picture is characterized mainly by hemorrhagic symptoms. When generation of thrombin dominates, the most important symptoms are those caused by microvascular thrombosis and organ ischemia. It is also important to consider the acute or chronic nature of the process and the quality of activation, systemic or localized. This brief review of the etiology and pathophysiology of DIC is necessary in order to have a clear understanding of the diagnosis and treatment approaches to the condition.

The enormous complexity of the etiology, pathogenesis and pathophysiology of DIC explains why it generates controversy. In fact, it has been impossible to define unified criteria and come to an agreement on the most appropriate laboratory methods for diagnosis. As regards the response to treatment and survival, it should be noted that in many cases these are more related to the primary cause of DIC than to the treatment itself. Furthermore, there are no randomized, prospective assays evaluating any of the possible treatments. In this review we are trying to update the actual knowledge about DIC searching for maximum objectivity and avoiding any possible dogmatism.

Clinical presentation of DIC

The diagnosis of DIC is essentially based on clinical findings, the laboratory tests being useful for confirmation. Because of the great variety of primary conditions which can cause DIC, the clinical presentation may be very complex due to signs and symptoms directly related to the underlying disorder as well as to those more characteristic of DIC. On the other hand, DIC can be asymptomatic or manifest as a severe picture of hemorrhage and/or thrombosis, depending on the rates of fibrin formation and lysis.

Hemorrhages are the most frequent and common presentation of the disease. In some cases bleeding appears exclusively at the sites of venous or arterial punctures or at surgical or traumatic wounds. More common is the appearance of widespread petechiae, purpura and hematomas, mucocutaneous bleeding, hematuria, hemoptysis, gastrointestinal bleeding and, occasionally, intracranial hemorrhage.

The thrombotic manifestations may not be as clinically obvious as hemorrhages in patients with DIC. However, fibrin microthrombi often result in organ dysfunction. All organs are potentially vulnerable. Acute renal failure occurs frequently and acute tubular necrosis often accompanies this syndrome. Microvascular cerebral thrombosis causes cortical dysfunction manifested by an altered state of consciousness and coma. The combination of pulmonary hemorrhages and thrombosis produces a clinical picture resembling acute respiratory distress syndrome. Thrombosis in large vessels is less frequent except in the cases of an indwelling intravascular catheter and the thrombosis associated with

![Figure 1. Pathophysiology of DIC.](image)
chronic DIC secondary to malignancies when the incidence of venous thromboembolism is high (Trouseau syndrome). In some circumstances DIC is associated with purpura fulminans characterized by skin hemorrhagic necrosis and gangrene in the extremities of digits as a consequence of arterial fibrin microthrombi. This syndrome appears in patients with Gram-negative bacterial sepsis and also in other diseases and is associated with reduced levels of proteins C and S. Two clinical situations related to purpura fulminans are adrenal hemorrhagic necrosis (Waterhouse-Friderichsen syndrome) and adrenal cortex necrosis.

Laboratory diagnosis of DIC

Because of the complex pathophysiology of DIC and its association with a variety of processes, the laboratory manifestations in a given patient are extremely variable and depend not only on findings due to DIC but also on those due to the underlying disease. In addition, the intensity and duration of activation of blood coagulation and the consequent thrombin formation, the state of natural clotting inhibitors, the fibrinolytic system activation, the level of the liver function, the capacity of bone marrow to produce platelets, the activity of the macrophage system, the rate of blood flow and many other variables markedly influence the clinical picture and laboratory findings.

As a consequence of all the above, it is not surprising that the criteria for the diagnosis of DIC are not well defined. It seems clear that the frequency of diagnosis depends on two factors: the knowledge of the occurrence of DIC in certain clinical settings and the laboratory criteria used to make the diagnosis. These criteria are extremely arbitrary and the analysis should always take into account both the patient’s underlying disease and the functional state of several organs.

Tests which are useful in assessing patients with possible DIC can be divided into two categories (Table 2): screening tests, which allow a rapid diagnosis, and thus being those really useful in the acute forms, and more complex laboratory tests, highly sensitive but time-consuming and not always available in routine clinical laboratories, which are not, therefore, of immediate clinical relevance, at least in the acute forms. In fact, these latter tests should be restricted to specialized laboratories and to clinical situations allowing closer laboratory monitoring.

Screening Tests

If DIC is present, the global coagulation tests which measure the capacity of thrombin generation, such as the prothrombin time and the activated partial thromboplastin time (APTT), should show prolonged coagulation times because of the decrease of fibrinogen and factors II, V, VII, IX and X as a consequence of consumption and plasmin-induced proteolytic of these factors as well as the presence of FDP which inhibit fibrin polymerization. However, both tests may be demonstrate normal or fast rate coagulation in a percentage of patients with DIC, due to the presence of circulating activated clotting factors or early fibrin degradation products rapidly clottable by thrombin. This is the reason why both tests are of little use in evaluating DIC. The thrombin time may also be prolonged due to hypofibrinogenemia and interference of circulating FDP. However, it may be sometimes normal or shortened and is in any case difficult to standardize, so that this, too, is also of little use in the diagnosis of DIC.

Thrombocytopenia is a constant feature in patients with DIC and is related to shortened platelet survival. DIC also causes a qualitative defect in platelets. The thrombocytopenia may also be related to the underlying disorder, such as in acute promyelocytic leukemia (APL) and sepsis. These factors explain why a fall in platelet count is neither sensitive nor specific for DIC.

Fibrinogen concentration is reduced in approximately 50% of patients, but since it increases in situations such as after operations, in infection and during pregnancy, the measured fibrinogen levels may be normal in the presence of DIC.

FDP are elevated in 85 to 100% of patients with DIC, although their levels are not always related to the clinical course of DIC since they are influenced by the degree of procoagulant activity, the fibrinolytic response and other factors such as the activity of the macrophage system and renal clearance. The D-dimer, which is specific for fibrin degradation products, is more specific but less sensitive than the latex agglutination assays for FDP which measure the plasmin degradation of fibrinogen and fibrin. Two additional advantages of the D-dimer test over FDP assays are the possibility of it being performed on both plasma and serum and its lower susceptibility to

<table>
<thead>
<tr>
<th>Table 2. Laboratory diagnostic criteria of DIC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Screening tests:</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
</tr>
<tr>
<td>Hypofibrinogenemia</td>
</tr>
<tr>
<td>Elevated FDP and D-dimer</td>
</tr>
<tr>
<td>Decreased ATIII</td>
</tr>
<tr>
<td>Prolonged clotting times</td>
</tr>
<tr>
<td>Presence of schistocytes in peripheral blood smear</td>
</tr>
<tr>
<td>Positive tests for circulating soluble fibrin monomers</td>
</tr>
<tr>
<td>2. Other tests:</td>
</tr>
<tr>
<td>Decreased level of various clotting factors</td>
</tr>
<tr>
<td>Decreased protein C</td>
</tr>
<tr>
<td>Elevated F1+2, TAT and FPA</td>
</tr>
<tr>
<td>Decreased plasminogen and α2-antiplasmin</td>
</tr>
<tr>
<td>Elevated PAP, ββ 1-42 and ββ 15-42 peptides</td>
</tr>
<tr>
<td>Elevated PF4 and β-TG</td>
</tr>
</tbody>
</table>
artifacts caused by incomplete clotting of plasma samples. Of the common tests used in assessing DIC, in patients, the D-dimer assay appears to be the most abnormal in a high proportion of patients. It is worthwhile noting that the increase of D-dimer is not specific to DIC, since it can also occur in deep venous thrombosis and pulmonary embolism, post-operatively and in many other clinical conditions.

Protamine sulfate or ethanol gel tests for circulating soluble fibrin monomers were commonly used in the diagnosis of DIC some years ago. However, although specific they are not sensitive and are poorly standardized. More recently, new sensitive assays to detect fibrin monomers have been incorporated which can be useful in supporting a diagnosis of DIC, although complex for routine use.

Measurement of ATIII activity is considered another screening test in patients with DIC since its value markedly declines over time due to consumption. There is one exception, the DIC associated with APL, where the functional level of ATIII remains normal, supporting the hypothesis that the coagulopathy in APL is not caused by DIC but by primary fibrinolysis.

Examination of the peripheral blood smear often reveals schistocytes, but this finding is non-specific, and the absence of schistocytes does not exclude DIC. Differential diagnosis from TTP should be made in the presence of a marked schistocytosis.

At present, no single laboratory test can be used to confirm or exclude the diagnosis of DIC, but the combination of a low platelet count, a decrease of fibrinogen and ATIII and an increase of FDP – and especially D-dimer – viewed in the context of the patient’s underlying disease, appears to be the most useful indicator. Less useful are the presence of schistocytes in the blood smear, the prolongation of prothrombin, APTT and thrombin times and the positivity of protamine sulfate or ethanol tests.

Other tests for the diagnosis of DIC

Coagulation factor assays, previously considered to be useful, provide little information useful to the diagnosis of DIC. The interpretation of results is difficult partly because many underlying diseases result in increases and decreases in coagulation factors, and partly because of the presence of activated clotting factors in DIC which interfere with routine coagulation assays. In particular, activities of factors II, V, VII and X are likely to be low, whereas levels of factor VIII are often normal in DIC, probably because the factor VIII/von Willebrand released by endothelial cells forms a complex which stabilizes factor VIII. A decrease in circulating levels of protein C has also been found in patients with DIC.

The conversion of prothrombin to thrombin results in the release of an inactive prothrombin fragment 1.2 (F1+2). Once thrombin is produced it can either combine with ATIII to form a stable thrombin-antithrombin (TAT) complex or induce fibrinogen proteolysis with the liberation of fibrinopeptides A and B (FPA and FPB). ELISA assays are now commercially available to quantify the plasma levels of F1+2, TAT and FPA in order to provide evidence of activation of coagulation. Although there are numerous reports showing a significant increase in these molecular markers in patients with DIC, none of these tests are widely used routinely for diagnosis.

Fibrinolytic system assays may provide useful information in DIC. The global tests, such as the euglobulin lysis time and fibrin plate assays provide little information. However, in many cases there is a decrease in plasminogen and α2-antiplasmin, due to consumption, as well as a significant increase in plasmin-antiplasmin (PAP) complexes, providing direct evidence of in vivo plasmin generation, and in peptides Bβ 15-42 and Bβ 1-42 derived from the proteolytic action of plasmin on fibrin and fibrinogen respectively. A significant increase of PAI-1, which was related to a poor prognosis in some cases of DIC associated with sepsis or trauma, has also been reported.

Finally, increased platelet turnover and decreased platelet survival is common in patients with DIC; platelet factor 4 and β-thromboglobulin levels are markers of platelet reactivity and release and are usually elevated in patients with DIC. At present, none of the mentioned tests are routinely used in patients with a suspicion of DIC and there are not enough data regarding their clinical reliability compared to the screening tests which are cheaper, easier to perform and more readily available in clinical laboratories.

Differential diagnosis

Whereas there are few causes of acute, early onset, massive and generalized hemorrhage in a patient without a previous bleeding history and the cause is frequently known in acquired coagulopathies, there are some processes in which either the laboratory or clinical manifestations resemble those occurring in DIC. Septic patients may develop vitamin K deficiency or thrombocytopenia in the absence of DIC. but the differential diagnosis is relatively simple since these conditions do not cause generation of FDP or D-dimer, depletion of fibrinogen or consumption of ATIII. Significant bleeding due to reduced platelets and coagulation factors and inhibitors rather than DIC may be observed after massive transfusion or cardiopulmonary bypass surgery as a result of hemodilution; the absence of D-dimer and FDP generation may be useful in the differential diagnosis.

The coagulopathy associated with hepatic failure may be very difficult to distinguish from DIC. The former’s characteristics include thrombocytopenia due to platelet sequestration in the spleen, reduction of fibrinogen and other coagulation factors and inhibitors by abnormal synthesis, and elevated levels of FDP and D-dimer due to delayed hepatic clearance.
and hyperfibrinolysis. In the cases in which diagnosis is difficult, the only way to differentiate DIC in the presence of liver disease is to perform serial measurements which, in the event of acute DIC, usually reveal a rapidly changing coagulopathy.

TTP may be confused with DIC since it produces acute illness with multiorgan dysfunction and disseminated thrombotic and hemorrhagic phenomena. Ischemic symptoms are related to intraluminal platelet thrombi and the hemorrhagic manifestations depend on the degree of secondary thrombocytopenia due to platelet consumption. However, as shown in Table 3, TTP does not usually cause consumption of clotting factors or hyperfibrinolysis, making the differential diagnosis from DIC easy. TTP patients show an increase in thrombin generation and reduced fibrinolysis probably related to an increase in PAI-1. Although the etiology of TTP is not fully understood, two hypotheses have been proposed to explain the pathophysiology of this disease. For some authors, the platelet aggregation is due to the lack of a normally occurring platelet inhibitor or to a platelet agglutinating protein, whereas for others an abnormally large plasma von Willebrand factor molecule would cause excessive platelet agglutination, although this multimeric pattern is not always present. The prognosis of TTP has changed dramatically in the last years with the combination of plasmapheresis and plasma infusions to provide the absent factor and to remove platelet-aggregating substances.

Finally, the possibility of unusual primary hyperfibrinolysis should also be taken into account in the differential diagnosis of an acute, massive hemorrhagic disorder. The distinction from DIC may be very difficult because the same underlying disease can cause both processes, the bleeding symptoms may be similar, high concentrations of D-dimer and FDP can be present in both conditions, and lastly because DIC and hyperfibrinolysis may coexist in patients. The distinction is that in DIC the lysis is a physiologic response to fibrin deposition in the microcirculation, whereas in primary hyperfibrinolysis lysis occurs in the macrocirculation, perhaps as a result of activators released by endothelial cells, or as a consequence of the exogenous administration of plasminogen activators after thrombolytic therapy. That having been said, the distinction between DIC and systemic hyperfibrinolysis may be extremely difficult (Table 3), even when well-equipped laboratory facilities are available. The simplest laboratory evaluation for the diagnosis of hyperfibrinolysis is a shortened euglobulin lysis time in the absence of thrombocytopenia and schistocytosis. A correct differential diagnosis is very important since the treatment of choice in hyperfibrinolysis is administration of fibrinolysis inhibitors, such as ε-aminocaproic acid (EACA) or tranexamic acid, which can be dangerous in the presence of DIC. Primary hyperfibrinolysis may appear in the course of trauma, cardiopulmonary bypass surgery, liver transplantation, liver cirrhosis, prostatic carcinoma or congenital deficiencies of α2-antiplasmin and PAI-1. On the other hand, in other conditions such as APL-related DIC, fibrinolysis predominates over activation of coagulation leading to a marked risk of bleeding in these patients.

Management of DIC

The treatment of DIC is even more controversial than the other aspects of this pathology. Very different attitudes to this condition have been adopted in clinical practice, mainly as a consequence of the lack of studies conclusively showing the most efficient treatment. Although large series from which to draw definitive conclusions are not available, there is some evidence to support a few currently held opinions.

In the past DIC was associated with high mortality rates: the fact that the diseases underlying the DIC are themselves often fatal must, however, be kept in mind. This means that the cause of death in many patients is due more to the progression of the underlying disease than to the progression of the DIC. Nevertheless, more reasonable and effective therapeutic strategies have favored longer patient survival. The treatment of DIC must be logical and sequential, and should include four different strategies: treatment of the underlying disease or etiology treatment, supportive therapy, replacement therapy and arrest of the coagulation mechanism by heparin or other thrombin inhibitors.

Table 3. Differential laboratory diagnosis of DIC, primary hyperfibrinolysis and TTP.

<table>
<thead>
<tr>
<th></th>
<th>DIC</th>
<th>Primary hyperfibrinolysis</th>
<th>TTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet count</td>
<td>Low</td>
<td>Normal</td>
<td>Low</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>Low</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>FDP</td>
<td>Elevated</td>
<td>Elevated</td>
<td>Normal</td>
</tr>
<tr>
<td>D-dimer</td>
<td>Elevated</td>
<td>Elevated</td>
<td>Normal</td>
</tr>
<tr>
<td>AT III</td>
<td>Decreased</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Schistocytosis</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Clotting times</td>
<td>Prolonged</td>
<td>Prolonged</td>
<td>Normal</td>
</tr>
<tr>
<td>Lysis times</td>
<td>Short</td>
<td>Short</td>
<td>Normal</td>
</tr>
</tbody>
</table>
stimulus which induces coagulation activation. It seems clear that there are no useful therapies while the underlying cause persists as illustrated by DIC complicating obstetric disorders or sepsis. In the former cases, with the exception of amniotic fluid embolism, evacuation of the uterus or, much less frequently, hysterectomy, stop the DIC process; many times a serious problem arises to convince the gynecologist to operate on a patient who is bleeding. As far as sepsis is concerned, adequate antibiotic often succeeds in stopping DIC.

Other therapeutic approaches to treating the DIC directly are needed when the patient keeps on bleeding after a reasonable period of time, although it is not easy to establish what this period is since it depends heavily on the location and severity of the hemorrhagic episodes.

Supportive therapy

Supportive therapy must be started at the same time as treatment of the underlying disease. Hypovolemia and hypoxia should be compensated, acidosis should be controlled and a good electrolytic balance should be achieved. The supportive treatment must be adjusted to each specific clinical situation and each individual patient. In patients with DIC and shock the measures to restore hydroelectrolytic balance, increase the volume of the vascular compartment, and improve the cardiac deficit and hypotension can sometimes in themselves be enough to stop DIC but more often they help to establish the conditions needed to make the subsequent treatment efficient.

Replacement therapy

The aim of the blood replacement in DIC is to correct the consumption of platelets, coagulation factors and inhibitors in order to prevent or arrest the hemorrhagic episodes. However, it has been hypothesized that this treatment might feed the fire and cause thrombosis in patients with active DIC, although this issue has not been demonstrated in clinical practice or shown to be only marginal. Therefore, the usefulness of replacement therapy in some situations is, at present, beyond all doubt. Whether replacement therapy should start before or after the anticoagulant treatment has been initiated remains controversial, except for the cases in which the stimulus has been totally eliminated. In our opinion, replacement therapy is probably not necessary when the patient is not bleeding and does not require surgery or other invasive methods. In contrast, if the patient is bleeding or requires an invasive procedure, replacement therapy with cryoprecipitate, fresh-frozen plasma (FFP) and platelet concentrates will probably be needed. Replacement therapy is particularly important in patients with DIC and underlying hepatic disease, because in these conditions faster and more pronounced reduction of factors can take place due to the combination of increased consumption and decreased synthesis caused by the liver disease. A problem frequently arises when correcting thrombocytopenia and a defect of coagulation factors in the presence of severe hemorrhages and active DIC. In such cases, although this sounds paradoxical, application of the replacement therapy while under continuous heparin infusion cover can be useful.

When replacement therapy is going to be used, it is important to elucidate which factors are deficient and which could contribute to the persistence of hemorrhage. Only the necessary products should be administered; in other words, replacement therapy must be as specific as possible.

When the use of replacement therapy has been decided, the best choice is to infuse FFP, provided that all coagulation factors and inhibitors are present at a dose of 10-15 mL/kg weight. When FFP alone does not give a fibrinogen level above 0.5 g/L, cryoprecipitate can then be infused at a ratio of 10 U for every 2 or 3 U of plasma. Transfusing platelet concentrates at 1-2 U/kg weight is appropriate when the platelet count is less than 20,000/µL or if there is major bleeding and the platelet count is less than 50,000/µL.

Neither factor VIII nor factor IX concentrates should be infused in these patients provided that factor VIII levels are not reduced in DIC. Factor IX concentrate is potentially thrombogenic and may itself cause DIC because it contains activated clotting factors. Infusing hemoderivatives such as cryoprecipitates, which are fibronectin-rich, has been suggested to be useful because a decrease in fibronectin levels has been shown in patients with DIC which could subsequently reduce the clearance of activated coagulation factors.

Heparin and other thrombin inhibitor therapy

The role of heparin in the treatment of DIC is very controversial: while some physicians consider that heparin can contribute to an increase in severe hemorrhagic complications, others claim the drug is useful because of its ability to prevent the formation of thrombi and subsequent organ dysfunction caused by the ischemia. Heparin could also attenuate hemorrhagic complications by diminishing consumption of factors and the secondary fibrinolysis.

There are no objective data demonstrating that heparin reduces morbidity and mortality in acute DIC. Controlled prospective studies have not been performed and one should be cautious when drawing conclusions from retrospective analyses. In fact, contradictory results have been obtained from such analyses: while some reports in the literature support the claim that heparin reduces the incidence of hemorrhage and increases survival in patients with DIC, others show that the use of heparin has no beneficial effects.

It is now, however, beyond all doubt that heparin...
can be useful in the treatment of the acute DIC caused by some specific diseases. The most typical example is purpura fulminans, in which heparin prevents tissue damage due to thrombosis.46-49 The usefulness of heparin is also well established in patients with DIC caused by cancer, especially in chronic DIC associated with recurrent thrombosis45,130 but also when it is associated with hyperfibrinolysis and hemorrhage.131 Chronic DIC secondary to other causes such as large aneurysms,132 Kasabach-Merrit syndrome133 and a retained dead fetus134,135 may also improve with heparin. A few studies have shown that heparin is useful in controlling the DIC associated with APL,136-139 although two other large retrospective studies were not able to demonstrate that treatment with heparin improves results in this condition.127,140 Heparin does not seem to exert beneficial effects in other situations such as sepsis, obstetric complications (except in retained dead fetus syndrome) or liver disease.

Even when there is agreement over the usefulness of heparin, there is still controversy about the best dose to give and the way to give it. It seems that low doses, in the range of 5-10 U/kg/h given by continuous intravenous infusion, should be enough to reverse the coagulopathy in patients with acute DIC.72,121,141,142 Some authors claim that the subcutaneous route is as efficient as intravenous infusion.3,6 Finally, the use of low molecular weight heparins has been shown to be useful in experimental models of endotoxin-induced DIC in rabbits,143 although it has only been evaluated in one clinical study which showed that 50\% of the treated patients improved.144

Since heparin requires ATIII to exert its anticoagulant activity and ATIII levels can be low in DIC, heparin therapy could sometimes be inefficient in these patients. The use of direct thrombin inhibitors could give better results because their activity is unrelated to ATIII levels. The direct thrombin inhibitor hirudin has been experimentally tested with good results in a few animal models,145-148 although its clinical benefit has only been evaluated in two small studies which cannot be considered conclusive.149,150

The infusion of ATIII concentrates, with or without heparin, has been shown to be useful in experimental models of DIC in rabbits27 and dogs.30 Moreover, some clinical studies have described a reduction in mortality together with disappearance of the DIC. However, the number of patients included in these studies is small which makes it difficult to draw definitive conclusions, although the available data support the efficacy of this treatment.151-158 A large, prospective and randomized clinical trial should, therefore, be performed to demonstrate clearly whether the use of ATIII concentrates is appropriate as a treatment of patients with DIC.

The infusion of activated protein C concentrates has been shown to prevent DIC and mortality in an animal model of sepsis,35 moreover, an anti-protein C monoclonal antibody previously administered pro-

voked a more severe DIC pattern.159 It has been proposed that the presence of activated protein C not only serves as an anticoagulant but also protects against the lethal effect of endotoxin shock.160 These studies strongly suggest a beneficial role for protein C replacement therapy in patients with DIC. There is very little clinical experience with the use of protein C concentrates in patients with DIC so far, but the preliminary results appear promising.161-162

Other treatment modalities

Antifibrinolytic drugs such as EACA and tranexamic acid can diminish bleeding caused by hyperfibrinolysis. However, they may also unmask underlying coagulation and convert a bleeding disorder into a thrombotic condition, which have made many authors consider their use contraindicated in DIC.163-164 Nevertheless, the beneficial effects of antifibrinolytic drugs can be greater than the risks when DIC is associated with hyperfibrinolysis and intense hemorrhagic episodes, especially when there is not much thrombin formation, as frequently happens in patients with APL. Some reports describe that these patients can be successfully treated with EACA or tranexamic acid to reduce hemorrhage with no increase in the risk of thrombosis.165-167 Antifibrinolytic drugs have also been successfully used in patients with DIC associated with Kasabach-Merrit syndrome168-170 and in patients who have laboratory evidence of hyperfibrinolysis with depletion of physiologic plasmin inhibitors but who bleed despite aggressive replacement therapy.64 When used to treat DIC, antifibrinolytic drugs are usually given in conjunction with heparin to minimize the risk of thrombosis. Doses of 10-15 mg/kg/h of EACA are appropriate.165 In the case of patients with giant hemangiomas the treatment with antifibrinolytic drugs is not associated with heparin.

Products such as gabexate, aprotinin, DDAVP, t-PA or a genetically engineered mutant, \(\alpha\)-antitrypsin Pittsburgh, a mutant serpin that inhibits thrombin, factor X\textsubscript{II}, factor Xa, and kallikrein have been used, but in purely experimental animal models; their usefulness in DIC patients has only been tested in very occasional anecdotally reported cases.171-175 It has recently been suggested that intervention at the level of endotoxins or cytokines (e.g. by specific monoclonal antibodies) may result in treatment or prevention of DIC, specially in patients with sepsis. There are some studies, both experimental and clinical, in which anti-endotoxin polyclonal or monoclonal antibodies, anti-TNF-\(\alpha\) antibodies, TNF-\(\alpha\) receptor:Fc recombinant fusion protein, recombinant IL-1 receptor antagonist, anti-interleukin-6 antibodies, pentoxifylline or ibuprofen have been used. The results, although not totally conclusive, are quite promising in some cases, which is leading many researchers to focus on the potential beneficial role of these agents.176-192 New more specific strategies
aimed at the treatment or prevention of DIC may include inhibition of the extrinsic pathway of blood coagulation; to this end anti-tissue factor and anti-factor VIIa antibodies have been used and the effect of immunodepletion of TFPI or administration of recombinant TFPI have been studied in a variety of experimental models, with promising results which suggest that these strategies could also be successful when applied to human DIC.

To conclude, until these new strategies clearly show their efficacy, the treatment of acute generalized, widespread bleeding in general and the specific treatment of DIC must be decided according to a scheme similar to that given in Figure 2.

Contributions and Acknowledgments

ER was responsible for the conception of this review article and for the writing of the paper. All the authors contributed equally to the writing of the paper and revising it critically.

Funding

This work was partially supported by a grant from the DGI-CYT of the Ministerio de Educación y Ciencia, Spain, n. PM94-1553.

Disclosures

Conflict of interest: none.
Redundant publications: no substantial overlapping with previous papers.

Manuscript processing

Manuscript received April 24, 1998; accepted August 12, 1998.

References

17. Pixley RA, De la Cadena R, Page JD, et al. The contact system contributes to hypotension but not dissemi-

97. Rocha E, Marín J, López Borrasca A. Cirrosis hepáti-

