Plasminogen Activator Inhibitor Activity in Bacterial Infection

J. A. Páramo, F. J. Fernández Díaz, and E. Rocha

From the Hematology Service, University Clinic, University of Navarra, Pamplona, Spain

Key words
Plasminogen activator inhibitor – Bacterial infection – Disseminated intravascular coagulation

Summary
It has been experimentally shown that endotoxin induces a marked increase in the levels of a fast-acting inhibitor of plasminogen activator (PAI). The plasma PAI activity and tissue-type plasminogen activator (t-PA) concentrations were measured in 61 patients with human septicemia and results were compared with those observed in healthy controls. There was a markedly significant increase of PAI in plasma and platelet extracts of patients with septicemia as compared to controls (p < 0.0001). No correlation between PAI and endotoxin concentration was observed. Fibrin autograft of plasma samples confirmed that activator inhibition was associated with the formation of an enzyme-inhibitor complex. t-PA activity was similar in patients and controls, whereas t-PA Ag showed a significant increase in patients (p < 0.0001). A significant inverse correlation between t-PA activity and PAI was observed (p < 0.05). PAI activity was higher in patients with positive blood cultures (p < 0.0001) and gram-negative septicemia (p < 0.0001). There was also a significant increase of PAI levels in patients with disseminated intravascular coagulation (DIC) as compared with patients without DIC (p < 0.001). We conclude that there is a marked increase of PAI in patients with sepsis. Increased PAI activity may contribute to the pathogenesis of DIC associated with septicemia.

Introduction
Disorders of the hemostatic system leading to disseminated intravascular coagulation (DIC) can be induced in animal species by injection of endotoxin, a cell wall constituent of gram-negative bacteria (1). Similar changes can be observed in human septicemia (2). It appears that endotoxin has a marked effect on endothelial cell function. Endothelial cells are known to play an important role in fibrinolysis by modulating the synthesis of plasminogen activators and inhibitors (3). Deficient fibrinolysis may contribute to the precipitation of fibrin within blood vessels (4). Plasminogen activator inhibitors (PAI) have been identified in plasma (5–9), platelets (10), placenta (11) and in the conditioned medium of endothelial cells (12–17). They seem to play an important role in different clinical conditions related to deficient fibrinolysis associated with thrombotic phenomena (18). Recently, Colucci et al. (19) have reported a marked increase in the concentration of PAI in a small series of patients with septicema.

The present study was undertaken to investigate the plasminogen activator inhibitor activity in the blood of patients with bacterial infection. The possible role of this inhibitor in the pathogenesis of DIC associated with sepsis was also studied.

Patients and Methods

Patients
Sixty-one patients with local and disseminated bacterial infections were studied. There were 41 males, 20 females and the mean age was 51 ± 17 years (range 15–79). The diagnosis of sepsicaemia was established in 32 patients based on the typical clinical picture, repeated temperature over 38.5°C and positive blood cultures. Twenty-six patients developed gram-negative septicemia. Bacteriological studies identified E. coli (13), Salmonella (6), Serratia (2), Enterobacter (2), Pseudomonas (1), Neisseria (1) and Proteus (1). Six patients presented with gram-positive septicemia. Bacteriological identification showed Staphylococcus (3), Streptococcus (2) and Listeria (1). The remaining 29 patients presented with a localized site of infection and negative blood cultures.

A control group consisted of 30 age and sex-matched healthy subjects.

Blood Samples
Blood from the antecubital vein was collected into 0.1 vol trisodium citrate (final concentration 0.011 M) and immediately cooled on ice. All samples were taken before antibiotic therapy was started and, when possible, in the morning. Platelet-rich plasma (PRP) was obtained by 10 min centrifugation at 200 g at room temperature. Platelet-poor plasma (PPP) was obtained by further centrifugation for 15 min at 2,500 g and 4°C, and stored at −70°C. The PRP was pipetted off and platelets were adjusted to 500,000/mm³. Subsequently PRP was centrifuged at 20°C and 2,400 g for 30 min and the pellet resuspended in 0.05 M Tris HCl, 0.1 M NaCl, 3 mM EDTA, pH 7.3 (final volume equal to the original volume of the PRP). Platelets were extracted by adding 1/6 volume of 10% Triton X-100. Platelet extracts were stored at −70°C until use.

Reagents
Plasminogen-rich human fibrinogen was purchased from Kabig Diagnostica (Sweden); fibrinogen fragment was obtained by digestion of fibrinogen with CNBr as described by Verheijen et al. (20). Two-chain melanoma cell t-PA with a specific activity of 100,000 IU/mg was kindly provided by Dr. Collen (Leuven, Belgium). Chromogenic substrates S-2251 and S-2423 were obtained from Kabi Diagnostica (Sweden).

Tissue-Type Plasminogen Activator (t-PA) Activity

t-PA activity was determined by spectrophotometric assay (20). Diluted cuglobulin fraction was mixed in a microtiter plate to a final volume of 200 µl with 0.02 M Tris HCl, pH 7.5, 0.1% Tween 80, 0.30 mMol/L S-2251, 0.13 mMol/L human plasminogen and 0.12 mg/ml CNBr fibrinogen fragments. The plate was incubated at 37°C and the change in absorbance at 405 nm was measured with a titertek multispan spectrophotometer (Flow Laboratories, Inc., McLean, VA).

Determination of t-PA Antigen (t-PA Ag)

t-PA Ag was performed by using t-PA ELISA kit from Biopool AB (Umeå, Sweden). The plasma was not acidified.
Table 1 Plasma PAI activity in patients and controls. Mean ±SD is reported

<table>
<thead>
<tr>
<th></th>
<th>Number of patients</th>
<th>PAI activity (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>30</td>
<td>0.85 ± 0.77</td>
</tr>
<tr>
<td>Total patient group</td>
<td>61</td>
<td>7.05 ± 6.96</td>
</tr>
<tr>
<td>Local infection</td>
<td>29</td>
<td>3.39 ± 6.93</td>
</tr>
<tr>
<td>Positive blood cultures</td>
<td>32</td>
<td>10.37 ± 5.14</td>
</tr>
<tr>
<td>Gram-negative septicemia</td>
<td>26</td>
<td>12.11 ± 3.77</td>
</tr>
<tr>
<td>Gram-positive septicemia</td>
<td>6</td>
<td>2.81 ± 2.92</td>
</tr>
<tr>
<td>DIC</td>
<td>9</td>
<td>13.54 ± 9.84</td>
</tr>
</tbody>
</table>

Determination of PAI Activity

PAI was measured as previously described (21). Human t-PA (2 IU/ml final concentration) was incubated for 1 min at 37°C with plasma or platelet extracts diluted four-fold or more in 0.02 M Tris HCl, 0.1 M NaCl, 0.01% Triton X-100 pH 8.8. The samples were acidified with 0.16 M HCl and incubated 10 min at room temperature. The pH was adjusted with 0.16 M NaOH. Remaining t-PA activity was measured by spectrophotometric assay as described above. Inhibitor activity was expressed in units of plasminogen activator inhibited per ml.

Analysis of Plasminogen Activator-Inhibitor Complexes by SDS-PAGE and Fibrin-Enzymography

Fibrin autography was performed essentially as described by Loskutoff and Mussoni (22). Plasma samples to be analyzed by SDS-PAGE were first incubated at 37°C for 5 min in the presence of t-PA (50 IU/ml final concentration). Fifty μl of 1/6 diluted sample was then subjected to electrophoresis in sodium dodecylsulfate on an 8% polyacrylamide gel that was then washed for 60 min in 2.5% Triton X-100. Gels to be analyzed were applied to the surface of a freshly formed fibrin agar gel containing in final concentrations: agarose 2%, plasminogen 25 μg/ml, fibrinogen 10 mg/ml and thrombin (0.5 U/ml). Gels were incubated at 37°C for 16 h stained with Coomassie brilliant blue, destained in 30% methanol and 10% acetic acid and photographed.

Endotoxin Concentration in Plasma

Endotoxin concentration was determined by using a limulus lysate chromogenic peptide substrate (Coastest Endotoxin, Kabi Diagnostica, Sweden).

Statistical Analysis

The data were evaluated using Student’s t-test for comparison of means and S.D.

Results

Sixty-one patients with local and disseminated bacterial infection were studied. Mean plasma endotoxin concentration in patients was 1.77 ± 2.25 ng/ml (not detectable in controls). The distribution of PAI concentrations in the studied groups is shown in Fig. 1. There was a markedly significant increase (p < 0.0001) in the plasma levels of PAI in patients (7.05 ± 6.96 U/ml) as compared to controls (0.85 ± 0.77 U/ml). The PAI levels in platelet extracts (determined in 16 patients) were significantly higher (p < 0.0001) in patients (10.27 ± 4.90 U/ml) than those observed in healthy individuals (3.34 ± 0.81 U/ml). No correlation between endotoxin concentration and plasma PAI activity was found (r = −0.030).

Fig. 1 Distribution of PAI in plasma samples (A) and platelet extracts (B) from patients with bacterial infection. The shaded areas represent the normal values of healthy matched controls (mean ±SD).

Fig. 2 Distribution of t-PA activity and t-PA Ag in patients with bacterial infection. The shaded areas represent the normal values of healthy matched controls (mean ±SD). Significant differences for t-PA Ag (p < 0.0001) whereas no differences for t-PA activity were observed.
observed on fibrin-enzymography. This inhibitor seems to be of endothelial type according to experimental observations in rabbits and endothelial cells (19, 26, 27). The induced plasma PAI and the endothelial cell-derived PAI are closely related with regard to molecular weight, inhibition constant and immunochemical characteristics (28–31).

Platelet PAI activity was also significantly higher in patients as compared to controls. Immunochemical studies have suggested that PAI in plasma and platelets are immunologically related to each other (30, 31) thus they represent two different compartments of PAI activity (32). It seems improbable that platelets would contribute to the PAI activity of plasma under physiological conditions (33). However, platelet stimulation in vivo, such as that occurring in septicemia may result in significantly increased levels of PAI. Platelets might contribute to the inhibition of fibrinolysis, protecting the blood clot against premature lysis (18).

One interesting finding was the lack of correlation between PAI activity and endotoxin concentration observed in the patient group, which is in agreement with experimental observations in rabbits (19) and endothelial cells (26), showing that a minimum dose of endotoxin is able to induce a marked inhibitor response.

In contrast to normal t-PA activity, t-PA Ag was elevated in patients as compared to controls. Increased t-PA Ag levels with normal t-PA activity as observed in our patients can be explained by the increased levels of PAI, as suggested by our enzymography results and by other clinical observations (34).

PAI levels were found to be significantly higher in patients with septicemia than in those with local infection, which could be due to the more intense endothelial damage in patients with positive blood cultures. On the other hand, PAI activity was markedly increased in sepsis by gram-negative bacteria, which is not surprising since endotoxin is a cell wall constituent of these bacteria. The PAI levels found in gram-positive septicemia can be attributed to acute-phase reaction behaviour (35).

The highest PAI concentrations were found in patients with DIC, suggesting a possible role of this inhibitor in the pathogenesis of endotoxin-induced DIC. It is known that thrombin added to confluent monolayers of human endothelial cells induces a six-fold increase in PAI in conditioned medium (36). Interestingly, both endotoxin and thrombin can induce endothelial cell secretion of an interleukin 1-like activity (37). On the other hand, an impairment of clearance from the circulation, via the liver, might also explain the high inhibitor levels in these patients. This would agree with experimental observation of a markedly prolonged half-life of t-PA antigen in endotoxin-treated rabbits after functional heptectomy (38). Thus, the endotoxin-induced release of a fibrinolytic inhibitor together with the suppression of endothelial fibrinolytic activity (26) would contribute to fibrin deposition within blood vessels, a typical finding of DIC.

In conclusion, this study shows that there is a marked increase of PAI in patients with bacterial infections, particularly gram-negative sepsis. Increased PAI levels may contribute to DIC associated with human septicemia.

Acknowledgements

This work was supported by Grant 86/1222 from the FIS of the Ministerio de Sanidad y Consumo, Spain. We are grateful to I. Paz and G. Equiza for their expert technical assistance.

References

Received November 19, 1987 Accepted after revision February 9, 1988