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ABSTRACT 

Histone deacetylases (HDACs) have been identified as therapeutic targets due to their 

regulatory function in chromatin structure and organization. Here we analyzed the 

therapeutic effect of LBH589, a class I-II HDAC inhibitor, in acute lymphoblastic 

leukemia (ALL). In vitro, LBH589 induced dose-dependent antiproliferative and 

apoptotic effects, which were associated with increased H3 and H4 histone acetylation. 

Intravenous (i.v.) administration of LBH589 in immunodeficient BALB/c-RAG2-/-γc-/- 

mice in which human-derived T and B-ALL cell lines were injected induced a significant 

reduction in tumor growth. Using primary ALL cells, a xenograft model of human 

leukemia in BALB/c-RAG2-/-γc-/- mice was established, allowing continuous passages of 

transplanted cells to several mouse generations. Treatment of mice engrafted with T or 

B-ALL cells with LBH589 induced an in vivo increase in the acetylation of H3 and H4, 

which was accompanied with prolonged survival of LBH589-treated mice in comparison 

with those receiving Vincristine and Dexametasone. Notably, the therapeutic efficacy of 

LBH589 was significantly enhanced in combination with Vincristine and 

Dexametasone. Our results demonstrate the therapeutic activity of LBH589 in 

combination with standard chemotherapy in pre-clinical models of ALL and suggest 

that this combination may be of clinical value in the treatment of patients with ALL. 

 

 

Keywords: LBH589, Acute Lymphoblastic Leukemia, epigenetics, histone, mouse 

model 
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INTRODUCTION 

Although it is tempting to consider acute lymphoblastic leukemia (ALL) as a curable 

disease due to the remarkable improvement in the cure rates observed in recent years, 

the prognosis of relapsed patients is still dismal (1). Almost 80% of children diagnosed 

with ALL become cured with modern risk-adapted therapies. However, more than 60% 

of adult patients will eventually relapse and most of them will succumb to their disease. 

This underlies the need for new therapeutic options for resistant patients. The role of 

recurrent chromosomal translocations in the pathogenesis of ALL has been clearly 

established (2) providing not only important prognostic information but also guiding the 

development of new treatments such as the use of tyrosine-kinase inhibitors (Imatinib 

or Dasatinib) in patients with t(9;22) (3). Other genetic alterations such as the 

overexpression of FLT3 receptor tyrosine kinase in mixed-lineage leukemia gene 

(MLL)-rearranged or hyperdiploid B-ALL (4) or the presence of NOTCH1-activating 

mutations in T-cell ALL are attractive candidates for targeted therapies with FLT3 or 

NOTCH inhibitors (γ-secretase inhibitors) (5). Indeed, the current view of the 

pathogenesis of ALL suggests that several genetic lesions need to act in concert to 

induce overt leukemia (1).  

 

The classical view of cancer as a genetic disease has been challenged by the clear 

demonstration that epigenetic modifications can alter gene expression by mechanisms 

that do not affect the DNA sequence itself. Epigenetics plays an important role in the 

pathogenesis and prognosis of various tumors. The hypermethylation of DNA 

promoters and changes in histone modification patterns are the most frequently 

described abnormalities in tumor cells (6). We and others have extensively 

demonstrated that patients with ALL frequently show an abnormal hypermethylation of 

DNA promoter of tumor suppressor genes, miRNAs or genes involved in tumorigenic 

pathways such as WNT or Ephrin-Eph pathway, and that these changes are 

associated with prognosis of the disease (7-12). 

 

Among the various epigenetic modifiers, histone deacetylases inhibitors (HDACi) have 

emerged as promising drugs for the treatment of a number of tumors (13). HDAC 

inhibitors are a class of anticancer agents that inhibit deacetylation of histones and 

non-histone cellular proteins, inducing hyperacetylation and an “open chromatin” 

configuration. In cancer, such hyperacetylation is associated with a greater 

transcriptional activity of silenced tumor suppressor genes. LBH589 (also called 

Panobinostat) is an HDAC inhibitor characterized as a pan-deacetylase inhibitor with 

activity against both class I and II HDACs. This drug has demonstrated a significant 
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activity against different tumors such as myeloma, acute myelogenous leukemia and T-

cell lymphomas as well as breast, prostate, colon and pancreatic cancer (14, 15).  

 

In this study, we investigate the role of the HDACi LBH589 using in vitro and in vivo 

models of ALL, and demonstrate that treatment of ALL cells with LBH589 induces a 

prolonged survival in a mouse model of human ALL. Also, we show that this effect is 

significantly improved when combined with currently active drugs used to treat ALL, 

providing the basis for using this combination in patients with ALL. 

 
 
MATERIALS AND METHODS 
Human samples and cell lines 
Six ALL-derived cell lines TOM-1, REH, 697, SEM, TANOUE and MOLT-4, were 

purchased from the DSMZ (Deutche Sammlung von Microorganismen und Zellkulturen 

GmbH). Cell lines were maintained in culture in RPMI 1640 medium supplemented with 

10% fetal bovine serum and with 1% penicillin-streptomicin and 2% HEPES (Gibco-

BRL) at 37ºC in a humid atmosphere containing 5% CO2. To generate the mouse 

model, bone marrow or peripheral blood mononuclear cells were obtained at diagnosis 

from patients with ALL after signed informed consent had been obtained from the 

patient or the patient’s guardians, in accordance with the Declaration of Helsinki. 

 
Reagent and cell drug treatment 
The HDACi LBH589 was provided by Novartis Pharmaceuticals and diluted in saline 

solution for in vitro studies and in 5% dextrose (D5W) for in vivo experiments. Cell lines 

were treated with LBH589 at different concentration and maintained in culture for up to 

4 days after which cells were washed in PBS and used for different assays. The half 

maximal inhibitory concentration (IC50) values was determined using GraphPad Prism 

log (inhibitor) vs. response (variable slope) software (version 5, La Jolla, CA). 

 
Protein extraction and western blot 
Protein extracts were separated by 10% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE), transferred onto a nitrocellulose membrane (Bio-Rad, 

Hercules, CA) and incubated with a monoclonal antibody against described proteins. A 

detailed description is included in the supplementary materials and methods. 
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Cell proliferation  
Cell proliferation was analyzed after 24, 48, 72 and 96 hours of in vitro treatment using 

the Celltiter 96 Aqueous One Solution Cell Proliferation Assay (Promega) as previously 

described (8).  All experiments were repeated three times. 

 
Apoptosis assays 
Apoptosis induction was analyzed using the ELISAPLUS 10x Cell Death Detection Kit 

(Roche), following the manufacturer’s instructions, the FITC-Conjugated Monoclonal 

Active Caspase-3 Antibody Apoptosis Kit (BD Pharmingen), and by detection of the 85 

kDa fragment of PARP (8, 16). 

 
SNP-chip-analysis 
DNA from primary cells and tissues was extracted using QIAmp DNA Mini Kit following 

the manufacturer´s instructions (Qiagen). DNA was quantified using NanoDrop 

Specthophotometer (NanoDrop Technologies). DNA from samples was analyzed on 

Affimetrix GeneChip Human mapping 250K SNP arrays (Santa Clara) capable of 

genotyping on average 250.000 SNPs according to the manufacturer´s protocol. 

Microarray data were analyzed for determination of both total and allelic-specific copy 

numbers using the Genotyping Console software (Affymetrix) as previously described 

(17). 

 
DNA methylation array analysis 
A HumanMethylation27 BeadChip (Illumina, Inc) was used to quantify DNA 

methylation. The panel is developed to quantify the methylation status of 27,578 CpG 

sites located within the proximal promoter of 14,475 well-annotated genes from the 

consensus coding sequence project as well as known cancer genes and miRNAs. The 

protocol was performed according to the manufacturer's instructions. The methylation 

status of a CpG was determined by the beta value calculation, which ranges from 0 for 

unmethylated CpGs to 1 for completely methylated CpGs 

 

Gene expression array analysis 
Total RNA from primary cells and tissues was extracted with Ultraspec (Biotecx) 

following the manufacturer’s instructions after tissue lysates were prepared using a 

mechanical tissue homogenization by ultraturrax (IKA). RNA was quantified using 

NanoDrop Specthophotometer (NanoDrop Technologies). Gene expression analysis 

was performed using GeneChip Human Gene 1.0 ST array (Affimetrix) following the 
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manufacturer´s instructions. Microarray data were normalized and analyzed as 

previously described (18) 
 
TaqMan Low Density Arrays  
A TaqMan Low Density Array A v2.1 (Applied Biosystems) was used for 377 human 

miRNA expression assays after treatment. A total concentration of 500ng of RNA was 

used for the array hybridization. Reverse transcription and real-time PCR reactions 

were done following the manufacturer’s instructions without product preamplification. 

 
Bioinformatic data analysis 
A detailed description of the bioinformatic data analysis is provided in the 

supplementary material and methods. Raw array data files were submitted to GEO and 

are available under the accession number GSE26807. 

 

In vivo experiments 
All animal studies had previous approval from the Animal Care and Ethics Committee 

of the University of Navarra, whereas experiments that used patient samples were 

approved by the Human Research Ethics Committees of University of Navarra. For the 

human subcutaneous ALL model, 6-week old female BALB/cA-RAG2-/-γc-/-  mice were 

subcutaneously inoculated in its back left flank with 1x106 human ALL viable cells in 

100μl volume of saline solution. At least eight mice were included in each group. A 

group of healthy control BALB/cA-Rag2-/-γc-/- mice was treated with increasing doses of 

LBH (1mg/kg, 5mg/kg, 10mg/kg and 20mg/kg). Doses were selected based on 

previously published studies (25) and administered intraperitoneally (i.p.) to determine 

the MTD of LBH589. Treatment was initiated 24 hours after injection of leukemic cells 

and included 3 cycles of 5 consecutive days of LBH589 with two days rest between 

cycles. Tumor size was analyzed every three days using the following method: V= 

Dxd2/2, were D and d corresponding to the longest and shorter diameter, respectively. 

Mice were sacrificed 24 days after cell inoculation or when their tumor diameter 

reached 17mm. 

 

Two human ALL xenograft mice models were generated by intravenously injection of 

10x106 human primary cells diluted in 100μl of saline solution in the tail vein of a 6-

week old female BALB/cA-RAG2-/-γc-/- mice. Cells used for the T and B cell human ALL 

mice model (ALL-T1 and ALL-B1) were characterized by karyotype, immunophenotype 

and methylation profile (Table 1). After primary engraftment in mice, human blasts from 

mice spleen were isolated (>97% of human blasts) by Ficoll-Paque plus (GE 
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healthcare) and transplanted into the tail vein of new BALB/cA-RAG2-/-γc-/- mice. Cells 

obtained from different generations of mice were compared with the initial patient 

sample by SNP arrays, methylation and mRNA expression arrays. Mice were divided in 

4 treatment groups: 1) saline; 2) LBH589; 3) Vincristine and Dexametasone and 4) 

Vincristine-Dexamethasone and LBH589. Vincristine was administrated intravenously 

(i.v.) the first day of each cycle at 0.025 mg/kg and dexametasone was administrated 

intraperitoneally (i.p.) for 21 consecutive days at 1 mg/kg while LBH589 was 

administered i.p. at doses of 5mg/kg for 3 cycles of 5 consecutive days with two days 

rest between each cycle. For survival analyses, we used the date of: a) death from 

leukemia, b) sacrifice due to severe clinical symptoms or c) PB infiltration with more 

than 80% blasts. 

 

FACS analysis 
For immunephenotyping, 50-100μl of peripheral blood, bone marrow or 500.000 human 

blasts from mice spleen were isolated by ficoll-Paque plus (GE healthcare). Cells were 

labeled for 15 minutes with the following antibodies: rat anti-mouse CD45-PE (BD 

pharmingen), mouse anti-human CD5-APC (BD pharmingen) mouse anti-human 

CD45-PerCP (BD pharmingen), mouse anti-human CD22-PE (BD pharmingen) 

followed by 10 minutes incubation with 2ml of FACS lyses solution (1:10)(Becton 

Dickinson). Cells were washed with saline solution and centrifuged at 600g for 7 

minutes. The supernatant was decanted and cells were fixed in 400μl of 0.4% 

paraformaldehide. The analysis was done with FACSCalibur cytometer and Paint-A- 

Gate software (Bencton Dickinson). 
 

Histological and immunochemistry analysis  
Organs collected from mice were fixed in paraformaldehyde at 4% for 6-8 hours and 

washed twice with saline solution and stored in 70% ethanol. Samples were included in 

paraffin and 3μm serial sections were cut, deparafinated and stained with hematoxilin-

eosin. For the immunohistochemical characterization, deparaffinated slides were heat 

treated using high or low PH solution (target retrieval solution low pH, En Vision FLEX, 

Dako) by means of the PTlink (Dako) for antigen unmasking. Immunohistochemistry 

was performed in the Autostainer PlusLink (Dako). Primary antibodies against active 

caspase 3 (diluted 1/150 for 30 minutes, R&D systems), Ki67 (Ready to use, for 20 

minutes, Dako), CD45 (diluted 1/50 for 40 minutes, Dako) and CD19 (diluted 1/50 for 

30 minutes, Dako) were used followed by secondary antibodies, goat anti Rabbit HRP, 

goat anti mouse HRP and biotinylated mouse IgG (MOM vector). 
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CD34 positive cell isolation and treatment 
A detailed description of the CD34+ cells isolation and treatment protocols are provided 

in the supplementary material and methods. 

 
Statistical analysis 
A detailed description is provided in the supplementary material and methods. 

 
RESULTS 
In vitro activity of LBH589 in ALL cells 
We investigated the effect of treatment with LBH589 on six human derived ALL cell 

lines corresponding to the most representative translocations in B-cell ALL (TOM-1 

t(9,22)(q32;q11), REH t(12;21)(p12;q22), 697 t(1;19)(q23;p13), SEM t(4;11)(q21;q23) 

and TANOUE t(8;14)(q24;q32)) and T-cell ALL (MOLT-4). In all analyzed ALL derived 

cell lines except to TANOUE cell line, the IC50 value of LBH589 were below 50nM 

(Figure S1). In order to establish the optimal dose of LBH589, apoptosis was measured 

in TOM-1 and MOLT-4 after treatment with doses of 1-100nM for 48 hours. At doses of 

50nM a significant increase in cell apoptosis was observed in all leukemic cell lines by 

detection of active caspase-3 (Figure 1A), the increase in the 85-Kda fragment of 

PARP by western blot or the increased detection of oligonucleosomal fragments. 

Nevertheless some differences were found between cell lines (Figure S2). Treatment 

with LBH589 also markedly inhibited proliferation of ALL cells with an inhibition close to 

100% after 4 days (Figure 1B and Figure S2). Inhibition of cell proliferation and 

increased apoptosis was associated with increased level of acetylation of histone H3 

(AcH3) and histone H4 (AcH4) observed at doses of 50nM of LBH589 but not at lower 

concentrations (Figure 1C). As an early marker of DNA damaged and activation of 

DNA repair genes we examined the phosphorylation of H2AX (26) which was found to 

be up-regulated after treatment with LBH589 in a dose-dependent manner (Figure 1C). 

This suggests a link between disruption of DNA repair and apoptosis induced by 

LBH589 and establishes a dose of 50nM as the optimal dose in ALL cells.   

 

While apoptosis of ALL cells was detected between 12 and 24 hours after treatment 

with LBH589, changes in acetylated H3 and H4 were detected as early as 2 hours 

(Figure 1D and 1E). Phosphorylation of H2AX was initially detected 12 to 24 hours after 

in vitro treatment with LBH589 depending on the cell line employed (Figure 1E). These 

results suggest that H3 and H4 acetylation precede DNA damaged and induction of 

apoptosis which might indicate that inhibition of HDAC are likely to be responsible at 

least in part for LBH589 induced apoptosis and inhibition of cell proliferation.  
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In vivo effect of LBH589 in a subcutaneous mouse model of ALL 
The in vivo activity of LBH589 was initially examined in a subcutaneous ALL mouse 

model. The ALL cell lines TOM-1 and MOLT-4 were transplanted (1x106 cell per 

animal) subcutaneously into the left flanks of 6-week-old female BALB/cA-Rag2-/-γc-/-. 

These cell lines develop into a rapidly growing tumor, as we have previously shown (8). 

A group of healthy control BALB/cA-Rag2-/-γc-/- mice were treated with increasing 

doses of LBH589 (1, 5, 10 and 20mg/kg) administered i.p. in order to examine the 

maximum tolerated dose. Doses of 10mg/kg and 20mg/kg were associated with 

splenomegaly, weight loss and central nervous system abnormalities (Figure S3), while 

no adverse effects were observed at doses of 1 and 5mg/kg. Treatment with 5mg/kg of 

LBH589 was initiated 24 hours after injection of the leukemic cells and animals were 

monitored for 24 days. A significant inhibition of tumor growth was demonstrated in 

animals treated with LBH589 compared with control animals (P<0.01). Inhibition of 

leukemia cell growth was associated with an increase in the levels of acetylated H3 

and H4 and an increase in phosphorylated H2AX as measured by western blot in the 

leukemic cells obtained after sacrifice of mice (Figure 2). These results suggest that 

LBH589 has a powerful antileukemic effect not only in vitro but also in vivo.  

 

Characterization of an in vivo xenogeneic model of human ALL in immune-
deficient mice 
In order to examine the efficacy of LBH589 in a more representative model, human 

ALL cells from patients with ALL were transplanted in BALB/cA-RAG2-/-γc/-. A total of 

10 million cells from a patient with T-ALL (ALL-T1) and a patient with B-ALL (ALL-B1) 

(Table 1) were administered intravenously into the tail vein of immunodeficient mice. 

Animals were monitored by immunophenotyping in peripheral blood (PB) and/or bone 

marrow (BM). Mice died of leukemia or were sacrificed when signs of overt leukemia 

were observed such as a percentage of human blasts higher than 80% in PB, weight 

lost higher than 20% and/or hunched posture. After being sacrificed, spleen blasts 

were re-transplanted in secondary and tertiary recipients. After 2-5 generations, 

leukemic cells were frozen, thawed and re-injected into new immune-deficient mice 

with development of leukemia (Figure S4). Kinetics of engraftment of leukemic cells 

was monitored in PB and BM by phenotyping while organ infiltration was analyzed by 

immunohistochemistry (Figure S5 and S6). Differences in the disease development 

were observed between ALL-T1 and ALL-B1, with faster development of the disease in 

the case of ALL-T1 (Figure S5). However, there were no differences in engraftment or 
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development of the disease according to whether secondary or later recipients were 

analyzed. 

 

To characterize the in vivo model further, conventional karyotyping as well as 

genotyping, gene expression and methylation arrays were performed in fresh cells from 

patients and samples obtained from mice at different generations (generation 1 to 5). 

There were no significant differences in the genome, methylome or transcriptome 

between the original sample and the samples obtained after multiple generations, with 

the exception of minor differences between the original sample from ALL-T1 and the 

cells obtained after multiples transplants in mice, consistent with the presence of 

several clones at diagnosis with persistence of a single dominant clone after sequential 

transplants in vivo (Figure S7).  

 

LBH589 potentiates the in vivo effect of chemotherapy and prolongs survival in a 
mouse model of human ALL  
To determine the efficacy of LBH589 alone or in combination with drugs currently used 

for treatment of ALL, BALB/cA-RAG2-/-γc-/- mice engrafted with ALL-T1 and ALL-B1 

cells were treated with LBH589, Vincristine and Dexamethasone or a combination of 

LBH589 with Vincristine-Dexamethasone. A dose-finding study was previously 

performed in healthy BALB/cA-RAG2-/-γc-/- mice establishing the following doses as the 

optimal non-toxic combination: 0.025 mg/kg (Vincristine), 1 mg/kg (Dexamethasone) 

and 5 mg/kg (LBH589) (Figure S8). The in vitro and in vivo hematopoietic toxicity 

associated with treatment with LBH589 or Vincristine plus Dexamethasone was not 

increased by the combination of the 3 drugs (Figure S9). Treatment was initiated when 

disease could be detected in PB by FACS (24 hours after injection of cells for ALL-T1 

and between day 17 and 21 after injection for ALL-B1). LBH589 was administered i.p. 

on days 1-5, 8-12 and 15-19, Vincristine i.v. on days 1, 8 and 21 and Dexamethasone 

daily until day 21 i.p. (Figures 3A and 4A) and survival was compared in the four 

groups of animals: control (no treatment), LBH589, Vincristine-Dexamethasone and 

LBH589-Vincristine-Dexamethasone.   

 

Treatment with either LBH589 or Vincristine-Dexamethasone significantly reduced the 

percentage of leukemic cells in the PB (Figure 3B) and BM (Figure 4B), but the effect 

was significantly greater in animals treated with the combination of the HDACi and 

chemotherapy (P<0.01). Similarly, a significant reduction in spleen size was found after 

treatment with the combination of drugs (Figures 3C and 4C) which was associated 

with an increase in acetylated H3 and H4 as well as in phosphorylation of H2AX in 
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leukemic cells from the spleen of animals treated with LBH589 (Figures 3D and 4D). 

Interestingly, treatment with LBH589 not only modified the acetylation of H3 and H4 but 

also induced significant changes in DNA methylation of leukemic cells obtained from 

the spleen of leukemic mice: ALL-T1 cells from mice treated with LBH589 clustered 

separately from untreated samples with hypomethylation of 59 genes and 

hypermethylation of 3 genes after treatment (Figure 3E and Table S1). Similarly, ALL-

B1 cells from mice treated with LBH589 clustered separately from untreated samples 

showing 217 genes hypomethylated and 54 hypermethylated genes (Figure 4 and 

Table S2). As an example, genes that are known to be hypermethylated in ALL such as 

the Wnt inhibitor SFRP4 involved in WNT pathway (11) became hypomethylated after 

treatment with LBH589. Finally treatment with LBH589 and Vincristine-Dexamethasone 

prolonged survival of the leukemic mice in comparison with the control animals 

(P<0.05). Furthermore, there were statistically significant differences between animals 

treated with the combination of LBH589-Vincristine-Dexamethasone compared with 

any of the other groups (Figures 3F and 4F).  

 

Treatment with LBH589 is associated with a decrease in the NFκB pathway 

activity and downregulation of its target CDK6  

To gain insights into the mechanism of the anti-leukemic action of LBH589 in ALL, 

TOM-1 and MOLT-4 ALL cell lines were treated for 6 hours with LBH589 at 50nM, after 

which their transcriptomes were analyzed. Gene expression profiles and Venn 

analyses of both ALL cell lines identified a total of 930 genes significantly deregulated 

(536 up regulated and 394 downregulated genes; transcriptional changes in gene 

expression of B≥0). The analysis by gene ontology (GO) indicated that treatment of 

TOM-1 and MOLT-4 cells lines with LBH589 induced an enrichment of genes involved 

in chromatin modification (P=1.64X10-6), regulation of apoptosis/cell death (P=0.003) 

and regulation of transcription/gene expression (P=0.001) (Figure 5A). Using 

Ingenuity® Pathway Analysis (IPA) and the 930 differentially expressed genes 2 

different networks in which the NFκB pathway was involved were identified (Genes 

related to cell death, cell-to-cell signaling, interaction and drug metabolism and 

metabolic disease). Both networks were further interconnected suggesting a potential 

role for the NFκB pathway in the anti-leukemic effect of LBH589 (Figure 5B). As shown 

in Figure 5C, a large number of known direct or indirect NFκB target genes 

(http://www.nf-kb.org), were significantly deregulated in T and B leukemia cells (27) 

including CDK6, a described target of NFκB and a gene previously described to be 
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regulated by miRNAs in ALL (8). No mutations of NFKB1, NFKB2 or CDK6 (data not 

shown) were found in ALL cell lines or in leukemic cells from ALL-B1 or ALL-T1.  

 

In order to determine whether regulation of CDK6 in ALL, in addition to NFκB may be 

regulated by the expression of miRNAs, we compared the expression of 377 miRNAs 

after treatment of ALL cell lines with LBH589. Of the miRNAs differentially expressed 

after treatment with LBH589, a group of 6 miRNA (hsa-miR-124a, -139, -141, -145, -

449b and -494) that have been shown to be putative regulators of CDK6 by the 

bioinformatic software miRGen (www.diana.pcbi.upenn.edu/miRGen.html) or found to 

regulate CDK6 by previous studies were up-regulated in TOM-1 and MOLT-4 (Figure 

5D) (8, 28-30).  

 

The analysis of CDK6 expression and its target Rb after treatment with LBH589 in vitro 

(cell lines) and in vivo (human leukemic blasts from the spleen) revealed a down 

regulation of CDK6 protein expression that was associated with a decrease in the 

levels of phosphorylated retinoblastoma (RB-P) in vitro and in vivo (Figures 5E and F). 

These results suggest that treatment with LBH589 leads to inactivation of the CDK6-Rb 

oncogeneic pathway, frequently over expressed in ALL (Figure 5G), through 

inactivation of the NFκB pathway and upregulation of miRNAs. Besides these 

pathways, LBH589 also induced an up-regulation of the pro-apoptotic Bcl2-member 

BIM (BCL2L11) which has also been described to be silenced by epigenetic 

mechanisms in other B-cell malignancies such as Burkitt’s lymphoma suggesting a 

common mechanism of apoptotic blockade in lymphoid malignancies that can be 

reverted by LBH589 (31).  

 

 
DISCUSSION 
Despite significant progress in the treatment of patients with ALL, more than 60% of 

adults will succumb to their disease underlining the requirement for new therapeutic 

strategies for these patients (32). The results of our study clearly establish the use of 

the HDAC inhibitor LBH589 as a clinically useful drug with a synergistic effect with 

standard chemotherapy in patients with ALL. Furthermore, the development of a 

human leukemia mouse model could be very useful for investigating the efficacy of new 

drugs in ALL.  

 

The role of epigenetic regulation (hypermethylation of DNA and histone modifications) 

in the prognosis and pathogenesis of ALL has been clearly demonstrated by a number 
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of groups (8-11) (12, 33). It provides a basis for the use of demethylating agents such 

as 5-aza-2`deoxycitidyne or decitabine in the treatment of ALL (34). While 

demethylating agents have been used and approved for different hematological 

malignancies such as AML and myelodysplastic syndromes (35) the experience in 

patients with ALL is very limited (36). On the other hand the inhibitors of histone 

deacetylases (HDACi) and specifically LBH589 (Panobinostat) have demonstrated 

preclinical activity in vitro and in vivo in a wide range of malignancies such as 

subcutaneous and Hodgkin lymphomas (37), multiple myeloma (25), melanomas (38), 

lung cancer (39), colon cancer cell lines (40), head and neck squamous cell carcinoma 

(41), glioma cells (42) and some hematological malignances (43). Similarly, the number 

of studies using LBH589 in ALL is very limited (13, 44).  

 

An important finding from our study is that the antileukemic effect of LBH589 is 

observed in every cytogenetic subtype of ALL including both T and B cell-ALL as well 

as patients with Philadelphia positive ALL. This is in agreement with recent studies, 

which demonstrate a synergistic effect of HDACi with tyrosine kinase inhibitors such as 

Imatinib or Dasatinib (45). Although mechanisms related to acetylation of other proteins 

may be involved in the effect of LBH589 (46), the time and dose dependent studies 

performed suggest that activation of acetylation of H3 and H4 are early events in ALL 

(2 hours after in vitro treatment). Interestingly, an increase in acetylation of H3 and H4 

in leukemic cells was not only found in vitro but also in leukemic cells obtained from the 

spleen of treated mice. 

 

The expression arrays performed after treatment with LBH589 provide an interesting 

insight into some of the putative pathways involved in the antileukemic effect induced 

by LBH589. The role of NFκB in the pathogenesis of certain subtypes of ALL such as 

T-ALL (27) or in the resistance to glucocorticoid has recently been described (47). 

Similarly, cyclins and cdks such as CDK6 have been implicated in the abnormal 

proliferation of ALL cells and establish these proteins as attractive targets (8). Although 

we have not demonstrated a direct relation between the two pathways, our results do 

suggest that they may be related and that activation of CDK6-Rb may be driven by the 

activation of the NFκB pathway. The differential expression of miRNAs after LBH 

treatment (hsa-miR-494 and hsa-miR-449a have been previously described as 

regulating CDK6 expression (28, 30)) indicates that LBH589 has a pleitropic effect on 

many genes and miRNA that may act in concert to induce the inhibition of CDK6 and 

decreased phosphorylation of Rb protein, leading to inhibition of proliferation.  
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The use of human ALL cells to engraft immune deficient mice has been previously 

exploited to assess the effect of new drugs in the treatment of ALL (48, 49) or even to 

predict the response of a specific patient to standard chemotherapy such as Vincristine 

and Dexamethasone (50). . However, our approach differs from those of previous 

studies as we have developed a model that can be transplanted into multiple 

generations of animals without significant changes either in their genetic or epigenetic 

makeup. This makes our model particularly appropriate for long-term studies and for 

comparing different therapies. Whether this model is able to predict the efficacy of 

certain treatments in patients with ALL is yet to be demonstrated but the possibility of 

monitoring the disease in the PB and BM is advantageous for testing new therapeutic 

strategies.  

 

Even though the combination of LBH589 with Vincristine and Dexamethasone was able 

to prolong survival, the mice eventually succumbed to their disease, consistent with the 

pattern we observed in patients with ALL, in which multiple courses of induction, 

consolidation and maintenance are required to treat the disease effectively. It is also 

plausible that this model may be helpful for testing treatments designed to mirror 

human ALL therapy, which would contribute significantly to the development of new 

therapies.  

 

In conclusion, our results demonstrate that the addition of the HDACi LBH589 may 

form the basis of a novel treatment of patients with ALL as well as suggesting new 

candidate signal transduction pathways involved in the pathogenesis of ALL, such as 

CDK6, thereby providing a rationale for the use of CDK6 inhibitors in a combination of 

epigenetic drugs and standard therapy. The development of our human leukemic 

mouse model should facilitate the assessment of the efficacy of these new therapies 

for ALL, eventually enabling their clinical evaluation in ALL patients.  
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LEGEND TO THE FIGURES 
Figure 1: In vitro efficacy of LBH589 in ALL cell lines 
(A) Apoptosis induced by LBH589 in TOM-1 and MOLT-4 cell lines measure by the 

activation of caspase-3 by FACS. (B) Survival of TOM-1 and MOLT-4 cells after 

treatment with LBH589 at doses of 50nM for 4 days. (C) Acetylation of H3 and H4 and 

phosphorylation of H2AX in TOM-1 and MOLT-4 cells after treatment with increasing 

concentrations of LBH589 measure by western blot analysis. (D) Time course analysis 

of activation of caspase-3 in TOM-1 and MOLT-4 ALL cells after treatment with 50nM 

of LBH589. (E) Acetylation of H3 and H4 and phosphorylation of H2AX in TOM-1 and 

MOLT-4 cells after treatment with LBH589 measure by western blot analysis. The 

mean±SD of at least 3 independent experiments are shown in A,B and D while a 

representative experiment is depicted in C and E. Total H3 was used as loading control 

in C and E.  

 

Figure 2: Anti-leukemic effect of LBH589 in a subcutaneous model of ALL in 
immunedeficient mice 
Mice (n = 8) were injected subcutaneously with 1 x 106 TOM-1 or MOLT-4 cells and 

treatment with 5 mg/kg LBH589 was initiated 24 hours later. (A) Mouse model and 

treatment schedule summary. Tumor size was measured in treated and control animals 

at different times in TOM-1 (B) and MOLT-4 (C) transplanted animals. At sacrifice (day 

24), the levels of acetylated H3 and H4 and phosphorylation of H2AX were assessed 

by western blot. The mean ± SD of tumor size are shown, while a representative 

picture of the treated mice and western blot is included. 

 

Figure 3: Synergistic effect of LBH589 with Vincristine and Dexamethasone in a 
human ALL mouse model of T-ALL 
(A) Treatment schedule in mice engrafted with human ALL-T1 cells. (B) FACS analysis 

of T-ALL human blasts in PB at different times after transplantation. (C) Spleen size at 

sacrifice in mice from control group, LBH589, Vincristine and Dexamethasone or with 

the three-drug combination. (D) Western blot analysis of acetylated H3 and H4 

acetylation and H2A.X phosphorylation in leukemic cells from spleen after LBH589 

treatment. (E) Heat map of hypermethylated and hypomethylated genes (red and 

green, respectively) in leukemic cells from spleen of mice treated with LBH589 or 

control mice. (F) Kaplan–Meier survival curves of leukemic mice after treatment with 

LBH, Vincristine and Dexamethasone, or with the combination of LBH with Vincristine 

and Dexamethasone. 
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Figure 4: Synergistic effect of LBH589 with Vincristine and Dexamethasone in a 
human ALL mouse model of B-ALL 
(A) Treatment schedule in mice engrafted with human ALL-B1 cells. (B) FACS analysis 

of B-ALL human blasts in the BM of control mice or those treated with LBH589, 

Vincristine and Dexamethasone or LBH589 with Vincristine and Dexamethasone at 

sacrifice. (C) Spleen size at sacrifice in control group mice, LBH589, Vincristine and 

Dexamethasone or with the three-drug combination. (D) Western blot analysis of 

acetylated H3 and H4 acetylation and H2A.X phosphorylation in leukemic cells from 

spleen after LBH589 treatment. (E) Heat map of hypermethylated and hypomethylated 

genes (red and green, respectively) in leukemic cells from spleen of mice treated with 

LBH589 or control mice. (F) Kaplan–Meier survival curves of leukemic mice after 

treatment with LBH, Vincristine and Dexamethasone, or with the combination of LBH 

and Vincristine and Dexamethasone. 

  

Figure 5: NFκB and its target CDK6 are downregulated after LBH589 treatment in 

ALL  
(A) Venn analyses and gene ontology (GO) annotation of differentially expressed 

genes in three biological replicates of MOLT-4 and TOM-1 after treatment with 50nM of 

LBH589. (B) NFκB Ingenuity network obtained with the 930 differentially expressed 

genes in MOLT-4 and TOM-1 after treatment with 50nM of LBH589. Red: up regulated 

genes after treatment; Green: down regulated genes after treatment; White: genes 

used by IPA to build the network which have not been analyzed in our study. (C) 

Dendrogram of hierarchical cluster analysis based on NFκB pathway genes in three 

biological replicates of MOLT-4 and TOM-1 and these cell lines after treatment with 

50nM of LBH589. Red: upregulated; Green: downregulated. (D) Dendrogram of 

hierarchical cluster analysis of differentially expressed miRNAs in three biological 

replicates of TOM-1 and MOLT-4 and these cell lines after treatment with 50nM of 

LBH589. Red: upregulated; Green: downregulated. (E) Western blot analysis of CDK6 

and Rb-P levels in MOLT-4 and TOM-1 cell lines (upper panel) and (F) in human 

leukemic cells from spleen mice engrafted with ALL-T1 and ALL-B1 after treatment with 

LBH589 (C=control animals; T=mice treated with LBH589). β-Actin was used as a 

loading control. (G) Western blot analysis of CDK6 and Rb-P levels in healthy donor 

samples (HD) and primary samples of ALL. 1, 2 and 3: PB samples of healthy donors. 

T: ALL-T; B: ALL-B. GAPD was used as a loading control. 
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