9th International Conference of the European Chitin Society

EUCHIS 2009

23 - 26 May 2009

San Servolo Island
Venice, Italy
Distinct complexing trends of chitosan with toxic metals

Maria Lasheras-Zubiate¹, Jose Maria Fernandez¹, Iigo Navarro-Blasco¹
¹Departamento de Quimica y Edafologia, Universidad de Navarra, Spain

Chitosan is the product of deacetylation of chitin, a natural homopolymer of \(\beta -(1-4) \) linked N-acetyl-D-glucosamine repeating units, which is known as the second most abundant biopolymer, after cellulose, among the biopolymers found in nature. The presence of amino groups in Chitosan increases its complexation capacity and has been investigated as an effective removing agent for several metals. A number of applications have been proposed for removing toxic species in water purification.

We have been able to prove that not only adsorption but also complexation of different metals (Pb, Cd, Mo, Cu, Zn and Cr) actually takes place in acetate buffer (pH=4) with Chitosans of different molecular weights and deacetylation degrees. Depending on the different electrochemical behaviour on mercury electrode of studied metals and the nature of the resulting complexes, diverse approaches have been used.

Chitosan molecular weight and concentration had been seen to play a key role in the Chitosan binding activity with Zn, Pb and Cd, as reported elsewhere[1]. Length of Chitosan chains influences the degree of complexation with both Cr and Mo, while Cu binding capacity remains independent of the molecular weight of the assayed polymers. The larger the polymer chain length the higher the number of amino group available for the retention of both Cr and Mo within the tridimensional structure of the acting ligand. This is consistent with a predominant intra-chain linkage of both metal atoms. On the contrary, in the case of Cu, an inter-layer binding mechanism is proposed as the main retention factor by Chitosan.

These studies will be applied to reduce toxicity from waste by the retention of these complexes within an inert cement matrix.

Effect of growing time on the chitosan content of cell wall of zygomycetes fungi

Azam Jeihanipour¹, Zamani Akram¹, Keikhosro Karimi¹, Mohammad J. Taherzadeh¹
¹School of Engineering, University of Boras, Boras, Sweden, ²Chemical Reaction Engineering, Chalmers University of Technology, Goteborg, Sweden, ³Chemical Engineering Department, Isfahan University of Technology, Isfahan, Iran

Chitosan, deacetylated form of chitin with variety of industrial application, is produced in the cell wall of zygomycetes fungi by enzymatic deacetylation. Solubility of chitosan in acid solutions is the key factor in the purification process of this biopolymer. A new process has recently been developed for separation of chitosan from other components of the cell wall such as chitin and polyphosphates. The process was based on temperature-dependence solubility of chitosan in sulfuric acid. The cell wall was first treated with hot dilute sulfuric acid to dissolve the chitosan followed by cooling down for precipitation and recovery of chitosan from the solution. However, chitin is not soluble in sulfuric acid at any temperature and can be collected as hot acid insoluble material (HAIM). Polyphosphates were released in sulfuric acid as soluble phosphate in this process. In the current work, extraction of chitosan from cell wall of three strains of
Distinct complexing trends of chitosan with toxic metals

Lasheras-Zubiate M.*, Fernández J.M., Navarro-Blasco I.
Departamento de Química y Edafología, Universidad de Navarra, Spain
*mlashera@alumni.unav.es

INTRODUCTION
Chitosan is the product of deacetylation of chitin, a natural homopolymer of β-(1-4) linked N-acetyl-D-glucosamine repeating units, which is known as the second most abundant biopolymer after cellulose [1-3]. The presence of amino groups in chitosan increases its complexation capacity and has been the resulting complexes, diverse approaches have been used. The effect of the molecular weight and concentration of the polymer on the binding of the metals has also been studied.

MATERIAL AND METHODS
Chitosans with different molecular weights (Sigma-Aldrich) were used in this study. The Certipure standard solutions containing 1000 ppm of the heavy metals Cr(VI), Cu(II), Zn(II), Mo(VI), Cd(II) and Pb(II) were purchased from Merck. Chitosan and metal solutions were dissolved in acetic-acetate buffer solution (pH=4). Voltammetric measurements, both differential pulse anodic stripping voltammetry (DPASV) and differential pulse voltammetry (DPV), were performed with a Metrohm 746 VA Trace Analyzer coupled with a 747 VA Stand equipped with a static mercury drop electrode (SMDE).

RESULTS
We have been able to prove that not only adsorption but also complexation of different metals (Pb, Cd, Mo, Cu, Zn and Cr) actually takes place in acetate buffer (pH=4) with chitosans of different molecular weights.

To show complexation, current vs. metal concentration are plotted (Figure 1). In general, two linear portions are obtained: a first one with a lower slope, corresponding to the metal when complexed by the chitosan, and a second steeper branch indicative of free metal in solution.

CONCLUSIONS
• Not only adsorption but also complexation of different metals (Pb, Cd, Mo, Cu, Zn and Cr) actually takes place in acetate buffer (pH=4) with chitosans of different molecular weights.
• Chitosan molecular weight and concentration have been seen to play a key role in the chitosan binding activity with Zn and Pb but not with Cd.
• Length of chitosan chains influences the degree of complexation with both Cr and Mo, while Cu binding capacity remains independent of the molecular weight of the assayed polymers.
• A predominant intra-chain linkage for Cr and Mo is proposed. On the contrary, an inter-layer binding mechanism seems to be the main retention factor in the case of Cu.

ACKNOWLEDGEMENTS
This work has been fully funded by the Ministry of Education and Science of Spain (MAT2001-65478) and FUNA (Fondos Universitarios de Navarra). M.L. would like to thank the Friends of the University of Navarra, Inc. for funding support.

REFERENCES