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SUMMARY 

 

We propose coefficients for regressions relating dry weight to body or tergite length in 

Folsomia candida, Entomobrya schoetti, Sminthurus viridis, and Hypogastrura vernalis 

(Collembola). Measurements were made on large batches of preserved, identified 

specimens. Batches were dessicated completely by critical-point drying and weighed. 

We compare our data with other published models and critically review the literature, 

finding questionable records. 
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INTRODUCTION 

 

It has been long established that the estimation of standing crop is fundamental in 

studies of population and community ecology and production biology (Petersen, 1975). 

Many ecological measures, such as soil respiration, net production and litter turnover 

rates, are to be explained in terms of soil fauna activity including Collembola, which in 

turn requires precise measurements of its biomass (Dunger, 1968; Persson and Lohm, 

1977; Petersen, 1994, 1995, 2000; Detsis, 2000). 

 

Recently, there is increasing interest on the use of biomass when estimating biodiversity 

(Jordana et al., 2000), as opposed to (or complementary of) the widespread use of 

specimen numbers. Size differences between individuals or species may bias the use of 

diversity as an assessment tool for the “status” of an ecosystem. Small individuals, of 

correspondingly small effect on the ecosystem, are assigned an unrealistically large role 

by equaling them with large ones, thus violating the basic tenet of “equal differences” 

for the concept of diversity (Krebs, 1999). Biomass can be regarded as a homogenizer 

for diversity measures, once these are corrected for continuous variables. 

 

For small soil animals, direct measurement of the biomass of samples is often difficult 

due to their minute size, large numbers, and triage procedures. Thus, research has been 

published attempting to relate easier, more reliable measurements, such as length, to 

biomass. Allometry has been used to relate, by least-squares regression, the biomass to 

a lower dimensional measure, typically body length or width, through a power function 

or otherwise. However, many of these papers (i.e. Huhta and Koskenniemi, 1975; 

Schatz, 1981; Ganihar, 1997) deal with complex groups, such as “Collembola’’, which 

has a wide range of sizes and shapes. The goal of homogenizing counts through biomass 

for biodiversity studies requires good biomass estimates on a species-by-species basis. 

 

According to Petersen (1975), the first paper dealing with specific biomass estimates for 

Collem-bola was that of Tanaka (1970) for some Japanese springtails, for which the 

coefficients for a log–log regression between body length and weight were given. 

Previously, Edwards (1967) had published equations based on cubic regressions for 

families of Collembola. Petersen’s (1975) work is widely cited, containing also log–log 

equations similar to Tanaka’s. Later, Van Straalen (1989) published parabolic curves for 

two species of Tomoceridae, and Teuben and Smidt (1992) added some more log–log 

curves. 

 

Other information may exist as tables or unpublished data. Fjellberg (1975) referred to 

unpublished data on body size/weight relationship for Collembola populations on 

Hardangervida. Vannier (1973, 1977b, c) published individual series of data for some 

large Entomobridae. 

 

The aim of this research was to add new species or populations to the set of groups of 

Collembola for which adequate regressions relating weight to body length are known, 

and to investigate whether these equations yield consistent results. We measured 

different lengths on individual Collembola, and performed regressions against their dry 

weight after grouping the animals by similar sizes. After studying the behaviour of the 

models, we chose one particular length for each of four species to be used as estimator 

for the dry weight of the individual. 

 

 



 

MATERIALS AND METHODS  

 

Sampling of Collembola 

 

Four species were selected as representative of their groups. Folsomia candida was 

reared in the laboratory in large numbers. A very large sample of a population of 

Hypogastrura vernalis was collected from the surface of a swimming pool in Labiano 

(Navarra) in 2000. Entomobrya schoetti and Sminthurus viridis were collected in large 

numbers from an alfalfa (lucerne) field in Navarra where they had become a pest, in 

1997. 

 

 

Preparation and measurements 

 

The animals were preserved in 70% ethanol. The length of a straight line between the 

anal papillae and the front margin of the first thoracic segment (in all species but E. 

schoetti); the length of the fourth abdominal segment (in E. schoetti); the total length 

excluding antennae (in S. viridis); and the length of the straight line between the 

posterior margin of the head and the base of the antennae, or the end of the labrum in S. 

viridis, were measured, placing the specimens on their side under a stereomicroscope, 

by a pre-tabulated eyepiece micrometer. Animals were grouped by size classes so as to 

obtain up to 10 different, homogeneous classes, which were then subject, batch by 

batch, to dessication by critical point drying with liquid carbon dioxide. Shape and size 

were thus subsequently fully retained. In order to avoid rehydratation, dried specimens 

were kept at all times in dessicators with silicagel. Size batches, each containing 30–300 

specimens of one species, were weighed repeatedly with a one-microgram microbalance 

(10 µm scale for E. schoetti). 

 

 

Data analysis 

 

The ratio between head length and body length, or between head length and body length 

excluding head, was established by least-squares regressions. Results of this analysis 

were used to determine which length to use for the regressions between length and 

weight. We chose the measure having the largest intrinsic variation (i.e. largest 

coefficient of variation) to separate between classes. Precision factors for the 

measurements were obtained by dividing the unit length by the range for each 

measurement. 

 

The regressions were calculated assuming a power function of the type W = αL
b
, where 

L is a linear length (mm) and W the weight (micrograms). We used the average length 

of the body excluding the head (or the abdominal segment IV in E. schoetti), measured 

as described above, plotted against the last weighing before rehydratation would take 

place for the batch. Although other, slightly better fitting functions (mostly polynomial) 

were tested through the use of mathematical software (Tablecurve v. 2.12), for the sake 

of homogeneity and comparability we chose to stick to this most commonly used 

allometric function. 

 

In order to find agreement between our data and published coefficients, we plotted our 

functions together with the published functions. In case they described the relationship 



between length and fresh weight, the function was corrected using published fresh 

weight to dry weight ratios for the corresponding family. However, in many cases 

comparisons were not possible, as the lengths used for the regressions were measured 

differently among studies and there could not be set a homogeneous “unit length” for all 

species. Where this was possible, a “unit type” (i.e. the weight of an animal measuring 

one unit in length) was also used for comparison among species and groups. A quick 

quality check was performed on the coefficients to discard obvious errors by calculating 

the minimal density of a unit sphere according to the regression coefficients. No 

correction was included for “swelling factor’’, as they have been found to be poorly 

documented. 

 

 

RESULTS 

 

A total of 4061 specimens were measured. The achieved precision for the length 

measurements was 16 µm for the measurements in H. vernalis (precision 1.1% for body 

length) and E. schoetti (precision 3.1%), and 24µm for S. viridis (precision 1.3%) and F. 

candida (precision 1.7% for length of abdominal IV). 

 

We chose the measure that maximized the measure range for the whole group (i.e. that 

of maximal CV) in order to set up as many classes as feasible for the weighing (Table 

1). Therefore, we used the length of the body without head except for E. schoetti, where 

we used the abdominal segment IV, for subsequent analyses. 

 

All species fit well within a power function, with different coefficients for each species 

(Fig. 1). All our data fit within the published biomass ranges for their corresponding 

groups of Collembola. However, taking into account that for a given length we must 

obtain a weight slightly higher than that obtained from regressions where total length 

was used, it is surprising that our curves fall just about or slightly below the 

corresponding published weights (Fig. 1). This affects both the regression curve and the 

actual data. Comparisons of E. schoetti with published data were not possible since we 

were unable to find regression data of head length vs. weight for Entomobrya. 

 

 

DISCUSSION 

 

Our results are in range with published data and regressions (Fig. 1 and Table 2), with 

some exceptions. This is somewhat surprising, since we were not using total lengths but 

a fraction (i.e. body without head, or just the length of abdominal segment IV for E. 

schoetti) whereas other authors used total length, or length without head for 

Entomobryidae (where we measured just one segment). The calculated dry weight per 

unit length was expected to be higher for our animals, accounting for the weight of the 

remaining part of the body. As indicated in Table 2, the drying methods varied among 

the studies, and no two studies used the same drying procedure before weighing; 

Edwards (1967) and Van Straalen (1989) reported their equations for fresh weight 

although a correction factor is given in Table 2 for comparison. It should be noted, 

however, that the water content in Collembola is highly variable and depends on the 

degree of starvation, ambient conditions, transportation conditions and catching 

procedures (Vannier, 1976, 1977a; Thibaud and Vannier, 1978; Vannier and Verhoef, 

1978; Petersen and Luxton, 1982). 



Differences in body weight estimations from linear measurements, all things being 

equal, should be related solely with the material density or the aspect factor (i.e. the 

degree to which the shape differs from a regular, equal shape). Thus, more slender 

bodies should correlate to smaller volumes for unit length, and more globular ones to 

greater volumes (Fig. 2). Shapes for a given species should be similar; therefore, only 

density is left to account for differences. Our drying procedure used (critical point 

drying by phase change of liquid CO2, a procedure commonly used in electron 

microscopy to ensure complete removal of water without any volume or shape loss), 

together with our use of preserved specimens, has rendered dry materials which are 

somewhat “drier”, or lighter, than that obtained by other drying procedures such as 

freeze drying drying in an oven. Vannier (1976) and Thibaud and Vannier (1978) have 

reported fat contents of Collembola tissue and, although they were comparatively low, 

they may affect dry weight measurements. Teuben and Smidt (1992) reported as much 

as 15% loss of dry matter after storage in preservative fluids for 3 weeks. 

  

Other discrepancies may stem from typographic errors on published data. Some of the 

coefficients published in Teuben and Smidt (1992) are mistaken. If true, a 1 mm long 

Hypogastrura would have a dry weight of 5.5 x 10
6
 µg: its lowest possible specific 

gravity, were it perfectly spherical, would be over one thousand, that is, almost fifty 

times heavier than the heaviest element (iridium). Likewise, the coefficients for Isotoma 

notabilis and Orchesella cincta in this paper cannot be used as they are. It seems also 

that Teuben and Smidt did indeed obtain correct estimates for the coefficients, as results 

in the same paper based on these coefficients appear to be reasonable and do not reflect 

these errors; however, a number of papers may have used the published equations for 

biomass calculations (e.g. Detsis, 2000). We have not found a correction for these 

estimates, although it is likely that it might exist in the literature. As regards to the 

parabolic equation in Van Straalen (1989), the third term should be read “a2(log Y)
2
’’ 

(Van Straalen, pers. comm.) 

 

The range of differences in weight per unit length of Collembola found in the reported 

literature (see Fig. 2 for Arthropleona) suggest that the estimation of biomass from 

length measurements varies with the procedure used for the calculation of the regression 

curves. Thus, we conclude that precise figures for the dry weight of Collembola are yet 

to be published, much as they are needed for respiration or biodiversity studies. Our 

data, based on a large number of measurements, added figures for a few common 

species; more such studies are necessary for a more complete analysis of the structure 

and function of Collembola communities. 

 

 

REFERENCES 

 

 Detsis, V., 2000. Vertical distribution of Collembola in deciduous forests under 

mediterranean climatic conditions. Bel. J. Zool. 130 (Suppl. 1), 55–59. 

 Dunger, W., 1968. Die Entwicklung der Bodenfauna auf rekultivierten Kippen und 

Halden des Braunkohlentagebaues. Abhand. Ber. Naturkundmus. Görlitz 43 (2), 1–

256. 

 Edwards, C.A., 1967. Relationship between weights, volumes and numbers of soil 

animals. In: Graff, O., Satchell, J.E. (Eds.), Progress in Soil Biology. Friedr. Vieweg 

ft Sohn GmbH, Braunschweig, pp. 585–591. 



 Fjellberg, A., 1975. Organization and dynamics of Collembola populations on 

Hardangervidda. In: Wielgolaski F.E. (Ed.), Ecological Studies Analysis and 

Synthesis, vol. 17, Fennoscandian Tundra Ecosystems, Part 2, pp. 73–79. 

 Ganihar, S.R., 1997. Biomass estimates of terrestrial arthropods based on body 

length. J. Biosci. 22, 219–224. 

 Huhta, V., Koskenniemi, A., 1975. Numbers, biomass and community respiration of 

soil invertebrates in spruce forest at two latitudes in Finland. Ann. Zool. Fennici 12, 

164–182. 

 Jordana, R., Arpin P., Vinciguerra, M.T., González, S., Aramburu, M.P., Ariño, 

A.H., Armendáriz, I., Belascoáin, C., Cifuentes, P., Clausi, M., Escribano, R., 

García Abril, A., García-Mina, J.M., Hernández, M., Imaz, A., Moraza, M.L., 

Ponge, J.F., Puig, J., Ramos, A., 2000. Biodiversity across ecotones in desertificable 

Mediterranean areas. In: Balabanis, P., Peter, D., Ghazi, A., Tsogas M. (Eds.), 

Mediterranean Desertification Research Results and Policy Implications, vol 2. 

European Comission EUR 19303, pp. 497–505. 

 Krebs, C.J., 1999. Ecological Methodology, second edition. Addison Wesley 

Longman. 

 Persson, T., Lohm, U., 1977. Energetical significance of the Annelids and 

Arthropods in a Swedish Grassland Soil. Ecol. Bull. 23. 

 Petersen, H., 1975. Estimation of dry weight, fresh weight, and calorific content of 

various Collembolan species. Pedobiologia 15, 222–243. 

 Petersen, H., 1994. A review of collembolan ecology in ecosystem context. Acta 

Zool. Fenn. 195, 111–118. 

 Petersen, H., 1995. Energy flow and trophic relations in soil communities: state of 

knowledge two decades after the international biological programme. In: Edwards, 

C.A., Abe, T., Striganova, B.R. (Eds.), Structure and Function of Soil Communities. 

Kyoto University Press, pp. 111–130. 

 Petersen, H., 2000. Collembola populations in an organic crop rotation: population 

dynamics and metabolism after conversion from clover-grass ley to spring barley. 

Proceedings of the Vth International Seminar on Apterygota, Córdoba 1998. 

Pedobiologia 44, 502–515. 

 Petersen, H., Luxton, M., 1982. A comparative analysis of soil fauna populations 

and their role in descomposition processes. Oikos 39, 288–388. 

 Schatz, H., 1981. Abundanz, Biomasse und Respirationsrate der Arthropoden-

Mesofauna im Hochgebirge (Obergurgl, Tiroler Zentralalpen). Pedobiologia 22, 52–

70. 

 Tanaka, M., 1970. Ecological studies on communities of soil Collembola in Mt. 

Sobo, Southwest Japan. Jap. J. Ecol. 20, 102–110. 

 Teuben, A., Smidt, G.R.B., 1992. Soil arthropod numbers and biomass in two pine 

forest on different soils, related to functional groups. Pedobiologia 36, 79–89. 

 Thibaud, J.M., Vannier, G., 1978. Rélations entre les tailles, les biomasses, les 

teneurs en eau et en lipides chez deux espèces de Collemboles selon leur répartition 

dans la grotte de Sainte-Catherine (Ariège, France). Rev. Ecol. Biol. Sol 15, 89–101. 

 Van Straalen, N.M., 1989. Production and biomass turn-over in two populations of 

forest floor Collembola. Neth. J. Zool. 39, 156–168. 

 Vannier, G., 1973. Relations dimensionnellement homogenes entre la taille, la 

surface et le poids des individus de l’espèce Allacma fusca (L.). Insecte Collembole. 

Rev. Ecol. Biol. Sol 10, 559–573. 



 Vannier, G., 1976. Évolution de l’équation linéaire entre poids frais et poids secs 

corporels dans une même population entomologique pendant une periode de forte 

evaporation. C.R. Acad. Sci. Ser. D 282. 

 Vannier, G., 1977a. New proposal for calculating the average bodily water contents 

independent of the number of individuals in a soil population sampled weekly 

throughout a year. Rev. Ecol. Biol. Sol 14, 321–324. 

 Vannier, G., 1977b. Relations hydriques chez deux espèces de Tomoceridae 

(Insectes Collemboles) peuplant des niveaux écologiques séparés. Bull. Soc. Zool. 

Fr. 102, 63–79. 

 Vannier, G., 1977c. Water relationships in two species of Tomoceridae (Insecta, 

Collembola), a cave dwelling species and a top soil layer species. Rev. Ecol. Biol. 

Sol 14, 31–35. 

 Vannier, G., Verhoef, H., 1978. Effect of starvation on transpiration and water 

content in the populations of two co-existing collembola species. Comp. Biochem. 

Physiol. 60a, 483–489. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Mean lengths and range of lengths (in µm) of head, body, abdominal segment IV or 

body without head of the specimens 

Species N Measurement Mean Range CV Precision (%) Classes 

 

H. vernalis 635 Head 131.7 82–197 0.188 14.3 8 

  Body excl. head 797.1 393–1229 0.231 2.0  

 

F. candida 750 Head 140.9 73–340 0.459 9.1 6 

  Body excl. head 685.6 242–1673 0.563 1.7  

 

E. schoetti 741 Head 193.0 82–377 0.384 5.6 10 

  Abdominal IV 303.7 98–623 0.481 3.1  

 

S. viridis 1935 Head 493.5 244–1292 0.460 2.3 8 

  Body excl. head 700.6 268–2195 0.593 1.3  

  Body total 836.5 341–2731 0.578 1.0  

N=number of specimens; CV=coefficient of variation. “Classes” is the number of size 

classes into which specimens were grouped for weighing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 1. Dry weight-length regression lines from literature (thin) and this work (thick, 

with error bars). Solid lines indicate the range for which the regression was defined; 

dotted lines indicate the size range for the taxon. Codes indicate author (A–F, from 

Edwards, 1972 to Caballero et al.) and taxon (number) as seen in Table 2. F23 (E. 

schoetti, this work) based on length of abdominal segment IV only. 



 
 

 

Figure 2. Weight (in micrograms) of specimens of Arthropleona measuring 1 mm (total 

body length) calculated according to Edwards (1967, squares); Tanaka (1970, circles); 

Petersen (1975, crosses); Van Straalen (1989, triangles); Teuben and Smidt (1992, X 

symbol). 

 

 


