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Background. The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will
revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during
dietary intervention using only a single gene expression snapshot. Methodology/Principal Findings. The present study
involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines
(NUGENOB) trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior
to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression
profiles of responders (8–12 kgs weight loss) could always be differentiated from non-responders (,4 kgs weight loss). We
also assessed whether this differentiation was sufficient for prediction. Using a bottom-up (i.e. black-box) approach, standard
class prediction algorithms were able to predict dietary responders with up to 61.1%68.1% accuracy. Using a top-down
approach (i.e. using differentially expressed genes to build a classifier) improved prediction accuracy to 80.9%62.2%.
Conclusion. Adipose gene expression profiling prior to the consumption of a low-fat diet is able to differentiate responders
from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction
accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the
comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition.
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INTRODUCTION
Personalized nutritional and medical intervention is rapidly gaining
more interest as general population-based recommendations
continue to produce unclear and contradictory results [1–4]. As
such, the counsel and treatment of a complex disease like obesity
requires a more fine-tuned and individual approach. Gene
expression profiling has been positioned as a potential method for
the identification of novel predictors of disease etiology, outcome,
occurrence of co-morbidities and responsiveness to dietary inter-
vention. While microarray analyses have been successfully used to
classify and/or predict disease state or outcome in oncology [5–10],
no examples currently exist in which gene expression has been used
to predict changes in weight after nutritional or clinical intervention
in obese individuals. Rather, the many microarray studies performed
using obesity models have repeatedly demonstrated that microarray
analysis can successfully differentiate between preadipocytes and
adipocytes, the various body fat depots in humans, and the cellular
response of adipocytes to exogenous compounds [11].
The complex biology of obesity suggests that using microarrays

to identify genes capable of foreshadowing adipose tissue
metabolism is an ambitious endeavor. This is primarily because
of the large inter-individual differences in response to a given
dietary intervention for which the origin of this variation remains
unknown [12]. Indeed, common obesity does not occur because of
a single dysfunctional gene, but rather through gene-gene and
gene-environment interactions that will vary from one individual
to another [13–15]. While most microarray work in obesity has

focused on class comparison (i.e. comparing obese versus lean,
adipocyte versus preadipocyte, etc.), the line between class
comparison and class prediction is often blurred and results are
frequently positioned to create interest in novel genetic markers for
the purpose of disease prognosis and management [16,17]. Yet
there is an inherent limitation with such an approach as inferred
models tends to ‘over-fit’ data [18]. Prior to claiming a gene or
subset of genes as predictive, they must be confirmed in
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independent samples because often a predictor performs well only
on the samples used to identify it. To circumvent this limitation,
class prediction is best approached using supervised methods that
extract information from a representative and randomly generated
‘training’ set under the guidance of a ‘teacher’, and then relate it to
a ‘test’ set to confirm the validity of this extracted information.
Only through such an approach can clinically relevant gene
predictors be identified.
Selecting subjects from the Nutrient-Gene Interactions in

Human Obesity-Implications for Dietary Guidelines (NU-
GENOB: http://www.nugenob.com) trial, we examined whether
subcutaneous adipose tissue gene expression could be used to
predict the amount of weight loss in an individual following the
consumption of a low fat-hypocaloric diet. Subcutaneous tissue
was used for prediction because of the relative ease and rapidity by
which biopsies may be obtained. While little is known regarding
the changes in adipose gene expression incurred following energy
restriction with a low-fat, high-carbohydrate diet [19,20], even less
is known concerning the predictive capacity of human adipose
gene expression profiles with regards to diet-induced weight loss.
The aim of the present study was to assess whether a single gene
expression snapshot prior to the 10 week consumption of a
hypocaloric diet could be used to accurately predict whether an
individual would lose weight or not. Through the use of a
combination of statistical and supervised learning techniques, we
demonstrate that the ability to distinguish between the expression
profiles of dietary responders does not guarantee a high accuracy
for class prediction. This is in contrast to the successful class
comparison and prediction achieved with a publicly available
cancer dataset [5]. These results are particularly relevant to the
clinical field and applicable to those studying drug and nutritional
responses in humans with nutritionally related diseases, such as
obesity and its associated metabolic pathologies.

MATERIALS AND METHODS
Subjects and study design
Subjects were participants in the European multi-centre NU-
GENOB study (www.nugenob.org), which was supported by the
European Community. Informed consent was obtained from all
subjects. Clinical investigations were approved by the ethical
committees of each participating centres and were performed
according to the Declaration of Helsinki. Subjects (n = 771) were
randomly assigned to one of two similarly energy-restricted diets: a
low-fat, high-carbohydrate diet (LF) or a moderate-fat, low-
carbohydrate diet (MF); however, the present study involved only
females from the LF group. The LF diet was designed to provide
600 kcal/day less than the individually estimated energy require-
ment based on an initial resting metabolic rate measurement and
multiplied by 1.3. The macronutrient composition of the LF diet
was 20–25%:15%:60–65% for fat:protein:carbohydrate, respec-
tively. Subjects completed a 3-day weighed food record for two
weekdays and one weekend day before the start of the dietary
intervention and at the end of the 10-week diet. This was done to
assess the habitual diets of the subjects and to estimate their
compliance, respectively. Subjects also completed 1-day weighed
food records during the second, fifth and seventh weeks of the
intervention. During the dietary intervention the subjects either
visited or had telephone contact with the dietician every week.

Subject Selection for Prediction Analysis
Subcutaneous adipose tissue biopsies were obtained for the
majority of the 771 subjects participating in this dietary
intervention study (both before and after the dietary intervention).

An abdominal subcutaneous fat specimen (,1 g) was obtained by
needle aspiration under local anaesthesia after an overnight fast.
Biopsies were washed and stored in RNA later preservative
solution (Qiagen, Courtaboeuf, France) at 280uC until analysis.
Total RNA was extracted using the RNeasy total RNA Mini kit
(Qiagen). When accounting for both drop outs during the
intervention study and those biopsies that produced total RNA
that did not meet quality and quantity controls, 319 subjects were
assessed for weight loss after 10 weeks and subsequently divided
into two groups: ‘responders’ (i.e. subjects losing between 8–12 kg)
and ‘non-responders’ (subjects losing ,4 kg) (Figure 1). Twenty-
seven female subjects were randomly selected from each group
after careful matching based on weight, height, body mass index
(BMI), waist/hip ratio, energy intake, fat, carbohydrate, protein
and alcohol energy intakes at baseline (Table 1). Only total RNA
from biopsies taken prior to the 10 week dietary intervention was
used in the present study.

Sample preparation and microarray analysis
Total RNA concentration and quality was confirmed using the
Agilent 2100 Bioanalyzer (Agilent Technologies, Massy, France).
200 ng of total RNA from each sample was amplified and
transcribed into fluorescent cRNA using Agilent’s Low RNA Input
Linear Amplification kit (Agilent Technologies, Massy, France).
Cyanine-5 dye was incorporated into all samples, while an in-house
obese reference pool was labeled with cyanine-3 dye. In brief, the in-
house reference pool was created by mixing equal amounts of total
RNA extracted from adipose tissue samples of subjects undergoing
plastic surgery, as previously described [21]. Samples were
hybridized to Agilent 44K whole human genome microarrays,
which are comprised of over 41,000 unique 60-mer oligonucleotide
human sequences and transcripts. Sample preparation, hybridiza-
tion, and microarray washing were performed according to
manufacturer’s recommendations (Agilent Technologies, Massy,
France). Arrays were scanned using a GenePix 4000A Scanner
(Axon Instruments-Molecular Devices, Sunnyvale, CA).

Differential Gene Expression Analysis
Fifty-four microarrays, corresponding to 27 responders and 27
non-responders, were performed; however, one of the microarrays in
the non-responders group was of poor quality and therefore not
considered further. For the remaining 53 arrays, background signal
was not subtracted prior to the Loess normalization of log-
transformed microarray data [22]. 14135 unique GeneIDs were
present across 80% of the microarrays, representing 76.4% of the
total genes on the 44K microarray platform. Differential gene
expression, using a 5% false discovery rate (FDR), was assessed using
the Significance Analysis of Microarrays (SAM) procedure (available
at http://www-stat.stanford.edu/tibs/SAM/), a Fisher test and a
paired Student’s T-test. The three statistical approaches were used
because of recent reports demonstrating that different algorithms can
generate gene lists with differing degrees of predictive power [16,17].
The Student’s T-test score was generated using the mt.teststat
function in the multtest package in ‘R’ (http://cran.r-project.org/
src/contrib/Descriptions/multtest.html). In all analyses the thresh-
old for statistical significance was p,0.05. Univariate analyses were
performed using R software (available at http://www.r-project.org/).
Multivariate analysis was performed using Umetrics SIMCA-P
software (Umetrics AB, Umea, Sweden).

Semi-quantitative real-time RT-PCR
Reverse transcription was performed with 0.5 mg of total RNA
and random hexamer primers, according to manufacturer’s
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instructions (Promega, Charbonnieres-les-Bains, France). SybrH
green primers were designed and validated for target specificity
and amplification efficiency. Primer sequences for Ptgds, Fmod,
Ifi27, Qprt, Fam69B, Tmem132A, Esam, Cldn5, and Loc374491 are

listed in supplementary materials (Table S1). RT-PCR amplifi-
cation was performed using an ABI 7300 (Applied Biosystems,
Foster City, CA, USA) with the following thermal cycling
conditions: 2 min at 50uC, 10 min at 95uC, followed by 40 cycles
of 95uC for 15 s and 60uC for 1 min for denaturation, annealing,
and elongation. All samples were normalized to 18S gene
expression (18S rRNA Control kit, Eurogentec, Seraing, Belgium).
Differences in gene expression were assesses using a two-tailed,
homoscedastic Student’s t-test.

Prediction Analysis
Prediction analyses were performed using the following commonly
used methods: Diagonal Linear Discriminant Analysis (DLDA)
[23], K-Nearest Neighbour (KNN), Random Forest (RF) [24–27],
and Support Vector Machines (SVM) [23,24,28,29]. All algo-
rithms were implemented within the R environment: the DLDA
model is available in the sma package, KNN is in class package, RF
is in the randomForest package and SVM in Kernlab. Standard
parameters were used for all methods except SVM, where the
optimal slack parameter was tuned using the svmpath package [30].
Only the 10592 GeneIDs for which no missing values were
observed across all microarrays were used.

Golub Leukemia Data
To assess the performance of our statistical tests, a human
Affymetrix microarray dataset corresponding to 47 subjects with
acute lymphoblastic leukaemia (ALL) and 25 subjects with acute
myeloid leukaemia (AML), as previously described by Golub and
colleagues [5], was downloaded from: http://wwwmaths.anu.edu.
au/,johnm/r/hddplot/. The ‘Golub’ cancer dataset profiled the
expression of 7129 genes in 47 subjects with acute lymphoblastic
leukemia (ALL) and 25 subjects with acute myeloid leukemia
(AML) to develop a class predictor [5]. GeneChips were
normalized using the median signal across all 72 microarrays.

Figure 1. Weight loss curves during the 10 week hypocaloric diet. The two groups were defined as responders (i.e. subjects losing between 8–
12 kgs) and non-responders (i.e. subjects losing less than 4 kgs). Weight was measured in at least 43 subjects at each weekly time point. Error bars
represent the 95% confidence intervals (equal to 1.96 * standard deviation).
doi:10.1371/journal.pone.0001344.g001

Table 1. Baseline characteristics of responders (8–12 kgs
weight loss) and non-responders (,4 kgs weight loss) at T0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group Non-responders Responders

Number of Subjects 26 27

Age 34.0610.0 37.768.5

Weight (kg) 100.9615.6 96.4614.3

BMI (kg.m22) 37.865.9 35.665.1

FFM (kg) 54.565.9 54.464.4

FM (kg) 46.4612.0 42.0611.3

WHR 0.8560.07 0.8560.06

Triglycerides (mmol/L) 9806370 9586328

Free fatty acids (mmol/L) 5526161 5096111

Free glycerol (mmol/L) 1306108 108665

Total cholesterol (mmol/L) 5.0760.86 5.0560.97

HDL-C (mmol/L) 1.2460.37 1.2760.28

LDL-C (mmol/L) 3.3960.87 3.3560.93

VLDL-C (mmol/L) 0.2760.07 0.2960.09

Insulin (mU/ml) 11.165.8 9.066.0

Leptin (ng/ml) 37.4612.7 32.469.7

Cortisol (nmol/L) 2216119 2276117

Glucose (mmol/L) 5.1160.39 5.2360.33

Values are means6standard deviation. Values indicated are from the fasted
state. FFM, fat free mass; FM, fat mass.
doi:10.1371/journal.pone.0001344.t001..
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While the original dataset was comprised of three groups (AML,
ALL T-type and ALL B-type), the present analysis created only
two classes: AML and ALL. This was done in order to perform a
comparable analysis to the present two-class dietary response study
and to ensure that all methodologies used were performing as
expected.

RESULTS
Gene expression profiling immediately before the 10-week
consumption of a low-fat, high-carbohydrate diet (LF-diet) was
performed to assess whether subjects could, a priori, be classified as
hypo-caloric diet responders and non-responders. To test this
hypothesis, we determined whether A) responders could be
differentiated from non-responders based on microarray data,
and B) whether these gene expression profiles could be used for
class prediction (i.e. can one predict whether an individual will lose
weight in response to dietary intervention or not).

Differentiating Responders from Non-Responders
As illustrated in Figure 2, global gene expression was similar
between dietary responders and non-responders. Nevertheless,
using any of 3 different statistical approaches enabled us to identify
gene sets differentiating the two populations. While a SAM
analysis using a false discovery rate (FDR) of 5% did not identify
any differences between the two populations, relaxing our selection
criteria to a FDR of 8% identified 34 differentially expressed
genes. The selection criteria for the two other analytical tests
(Fisher test and Student’s T-test) were arbitrarily set in such a
manner as to select the top 100 genes that differentiated the two
populations. In order to minimize spurious results that could be
attributed to the varying sensitivity of the statistical tests and their
ability to identify outliers (i.e. differentially expressed genes), we
considered only those genes that were identified by all 3 statistical
tests as candidate predictive genes (herein referred to as

‘predictors’). The following nine genes were identified as
significantly increased in non-responders versus responders:
prostaglandin D2 synthase (Ptgds : 1.6-fold), claudin 5 (Cldn5 :
1.4-fold), fibromodulin (Fmod : 1.4-fold), interferon alpha-inducible
protein 27 (Ifi27 : 1.4-fold), quinolinate phosphoribosyltransferase
(Qprt : 1.3-fold), family with sequence similarity 69 B (Fam69b : 1.3-
fold), transmembrane protein 132A (Tmem132A : 1.2-fold),
endothelial cell adhesion molecule (Esam : 1.2-fold), and TPTE/
PTEN homologous inositol lipid phosphatase pseudogene
(LOC374491 : 1.1-fold). Statistical significance for Ptgds, Cldn5,
Qprt, and Tmem132A was confirmed by real-time RT-PCR
(p,0.05; Table 2); and while directional concordance was
achieved for Fmod, Ifi27, Fam69b and Esam, changes in expression
were not statistically significant. Suitable primers for LOC374491
could not be designed; therefore this gene was not confirmed by
real-time RT-PCR. Nevertheless, these 9 genes were deemed
suitable candidates to assess their capacity to predict weight loss.
In order to determine whether global gene expression profiles

could permit responders and non-responders to be distinguished,
partial least squares discriminant analysis (PLS-DA) was performed.
Figure 3A demonstrates that while a trend regarding the separation
of the two groups using subcutaneous adipose tissue gene expression
profiles exists, there is some overlap between the two populations
(R2= 0.547 and Q2=20.096, where R2 explains the cumulative
variation of the first two components and Q2 indicates the variation
explained by the model according to cross validation). In contrast to
our adipose gene expression data, Figure 3B clearly illustrates that
the Golub cancer dataset can be differentiated by PLS-DA, apart
from a single outlier, explained below (R2=0.795 and Q2=0.622).
Although the first two principal components explain a significant
amount of the variation in both datasets, only the Golub model
performs well when cross-validated.

Predicting Clinical Responders from Non-

Responders
Because the two obese groups could be differentiated as previously
described, we employed several supervised machine learning
algorithms to address whether this differentiation was sufficient to
establish a robust classifier to identify responders and non-
responders. Classification was assessed using support vector
machine (SVM), random forest (RF), K-nearest neighbour

Figure 2. Distribution of the mean gene expression levels in
responders and non-responders, computed from microarray mea-
surements normalized with respect to the standard Gaussian
distribution. Each spot represents the mean expression for a single
gene. Dotted lines indicate the 95% confidence interval of the means
(equal to 1.96 * standard deviation).
doi:10.1371/journal.pone.0001344.g002

Table 2. Validation of 8 predictors by real-time RT- PCR in
comparison to microarray results.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcript
Name

FC by Microarray
(FDR= 8%)

FC by real-
time RT-PCR

P-value for real-
time RT-PCR

TMEM132A 1.2 2.6 0.008

QPRT 1.3 2.1 0.015

CLDN5 1.4 2.3 0.015

PTGDS 1.6 1.9 0.035

ESAM 1.2 2.2 0.126

FMOD 1.4 2.3 0.159

FAM69B 1.3 2.1 0.176

IFI27 1.4 1.4 0.182

Of the 8 genes examined by real-time RT-PCR (normalized to 18S rRNA), all of
them were in directional concordance with microarray results; however, only 4
of them were statistically significant (p,0.05). FC (fold change) measurements
represent non-responder vs. responder, where a positive FC indicates the
transcript is more highly expressed in non-responders. FDR, false discovery rate.
doi:10.1371/journal.pone.0001344.t002..
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(KNN), and diagonal linear discriminant analysis (DLDA) using a
ten times 10-fold cross validation approach. Simultaneously, we
examined the prediction accuracy of robust classifiers using a
bottom-up analysis and a top-down analysis [16]. Whereas a
bottom-up analysis uses all gene expression data in a ‘black-box’
approach, a top-down analysis uses existing biological knowledge
to build a classifier (i.e. differentially expressed genes and/or
molecular pathways).
A training model for each classification algorithm was

established using a cross-validation method, i.e. 9/10th of the
cohort was used to establish a prediction model (training set) and

the remaining 1/10th was used as a test set [31]. This process was
repeated 10 times for each algorithm to assess variability in
prediction accuracy. In all cases, prediction accuracy was
compared to the ‘no information’ algorithm result that places all
subjects in the majority class (i.e. for adipose tissue gene expression
data = 51%; for Golub cancer data = 65%), where a value above
the ‘no information’ result was considered an improvement in
prediction accuracy. Using the entire microarray dataset (i.e.
10592 genes), a bottom-up analysis led to insignificant improve-
ments in prediction accuracies versus the ‘no information’
algorithm (Table 3). KNN performed best, giving a prediction

Figure 3. A. Differentiating populations by PLS-DA. Global gene expression analysis in sub-cutaneous tissue reveals a separation trend between
dietary responders (black squares) and non-responders (red circles); however, there is a significant overlap between the two populations (R2 = 0.547
and Q2 =20.096). B. ALL patients (black squares) can be clearly separated from AML patients (red circles), apart from a single patient (identified by
the green circle) (R2 = 0.795 and Q2 = 0.622). R2 explains the cumulative variation of the first two components and Q2 indicates the variation explained
by the model according to cross validation. Only a Q2.0.5 indicates a good model.
doi:10.1371/journal.pone.0001344.g003
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accuracy of 61.1%68.1%. SVM, RF, and DLDA were able to
predict 45.9%65.7%, 52.9%611.3%, and 52.6%68.2%, respec-
tively. In contrast, using the entire Golub cancer dataset (processed
identically to our complete adipose gene expression dataset),
tumor prediction accuracy soared to 98.6%60.0%, 96.9%62.2%,
92.0%62.9%, and 89.0%64.1% using SVM, RF, KNN, and
DLDA, respectively. The single outlier identified by PLS-DA
(Figure 3B–green circle) was the only subject in the Golub
dataset to be consistently misclassified by all supervised learning
methods.
In an attempt to improve our prediction accuracy, we examined

gene sets obtained by Fisher and Student’s T-tests. As the goal is to
identify reliable predictors that can be used to screen whether new
patients will lose weight with a hypocaloric diet or not, predictors
need to be identified in a training set and not the entire dataset, i.e.
valid predictors should consistently differentiate responders from
non-responders in all possible comparisons, and not be dependent
on a single comparative analysis. Therefore, the Fisher and
Student’s T-tests were performed using only gene expression data
in the training set (corresponding to 9/10ths of dataset) to identify
the top 100 differentially expressed genes. These 100 differentially
expressed genes were then subsequently tested in the remaining 1/
10th of the dataset. Neither of these tests led to improvements in
prediction accuracies (Table 3).
Finally, using a purely top-down approach, the results obtained

from the SAM, Fisher, and Student’s T-test analyses were
examined to determine whether these lists of differentially
expressed genes could serve as reliable ‘predictors’. These gene
lists can be found in the supplementary materials (Table S2). In
contrast to the previous Fisher and Student’s T-test analyses, these
different gene sets were obtained using all 53 microarrays and not
a cross-validation method. The 34 differentially expressed genes
identified by SAM led to prediction accuracies of 70.2%65.7%,
75.0%68.1%, 73.7%64.5%, and 80.9%62.2% for SVM, RF,
KNN, and DLDA, respectively. While prediction accuracies
improved overall with a top-down approach, neither the top 100
genes identified with a Fisher test, the top 100 genes identified with
a Student’s T-test, nor the 9 common genes performed better than
the 34 genes identified by SAM (Table 3).

DISCUSSION
The ability to predict whether an individual will respond
successfully to dietary intervention with a significant weight loss
clearly has important clinical ramifications. Indeed if a clinician

could, a priori, know whether a patient’s health status will improve
in response to the consumption of a given diet then disease
management will be profoundly modified in many aspects. The
analysis of gene expression has been positioned, in large part
because of its success in the field of oncology, as one means by
which an individual’s response to an intervention could be
predicted. The present study revealed that while a single
comprehensive snapshot of gene expression immediately prior to
the 10-week consumption of a hypocaloric diet can differentiate
responders from non-responders, at this stage it is insufficient for
the accurate class prediction required for clinical use.
Studies in the oncology field suggest that classifying tumors by

microarray analysis can be achieved, but despite these encourag-
ing findings there is, up to now, no evidence that this approach can
be useful in the study of nutrition related diseases such as obesity.
When one considers that adipose tissue metabolism is regulated by
not only an individual’s genetic make-up, but also the obesogenic
environmental factors an individual is exposed to (e.g. diet,
physical activity, gut microbiota, viruses, etc.), then one must
clearly consider the individual (or subset of individuals) to identify
eventual responders from non-responders [13,32]. As previously
reported, significant inter-individual differences in response to
dietary interventions demonstrate that weight loss is governed by
both genetic and lifestyle components [19,33,34]. Indeed, class
prediction would be simplified considerably if the aforementioned
diseases arose purely because of gene dysfunction, rather than
having both a genetic and environmental component.
Profiling subcutaneous adipose gene expression in 53 human

subjects participating in the NUGENOB trial prior to the start of a
10-week hypo-caloric diet has revealed that responders (subjects
losing between 8–12 kg) can be distinguished from non-responders
(subjects losing less than 4 kg); however, the differences are
minimal and do not cleanly separate, as illustrated by multivariate
analysis. This was in contrast to the distinct separation of AML
versus ALL subjects seen in the Golub cancer dataset. Thus, while
differences in adipose gene expression profiles were identified
(using SAM, Fisher and Student’s T-test analyses), we hypothesize
that the considerable overlap seen with PLS-DA confounds our
ability to predict class (61.1% accurate at best using a bottom-up
analysis). Furthermore, the low accuracies suggest that there are
no dominant predictors within the gene expression dataset
analyzed in this study. This is dramatically different from the
Golub cancer dataset were we observed a nearly perfect class
prediction (98.6% accuracy). Even though prediction accuracies
were improved when we used a top-down analysis using

Table 3. Prediction accuracies using ten times 10-fold cross validation with different gene subsets.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data Used Learning Models

SVM RF KNN DLDA

All Genes (10592 genes) 45.9%65.7 52.9%611.3 61.1%68.1 52.6%68.2

Fisher Analysis using a Training Set (Top 100 genes) 49.3%611.3 53.4%67.6 53.0%66.6 54.2%65.4

Student’s T-Test Analysis using a Training Set (Top 100 genes) 45.7%610.5 51.6%65.7 47.9%613.9 56.6%66.1

SAM Analysis with an FDR= 8% (34 genes) 70.2%65.7 74.9%68.1 73.7%64.5 80.9%62.2

Fisher Analysis (Top 100 genes) 67.8%611.2 69.8%64.6 54.9%66.3 70.6%64.0

Student’s T-Test Analysis (Top 100 genes) 77.8%67.9 71.0%64.9 74.0%64.9 78.8%62.8

Combined SAM, Fisher, & Student’s T-Test (9 genes) 73.0%67.1 68.5%65.3 66.5%64.0 69.2%63.2

Golub Cancer Data (7129 genes) 98.6%60.0 96.9%62.2 92.0%62.9 89.0%64.1

SVM, support vector machine; RF, random forest; KNN, K-nearest neighbour, DLDA, diagonal linear discriminant analysis; SAM, significance analysis of microarrays; FDR,
false discovery rate. Values represent mean6standard deviation corresponding to the 95% confidence interval.
doi:10.1371/journal.pone.0001344.t003..
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differentially expressed gene sets, we still could not identify a
classifier that performed as well as the classifier inferred from the
Golub dataset. It is important to note that the differentially
expressed gene sets used for the top-down analysis were generated
using all 53 microarrays. Thus, even though we could achieve
upwards to 80% prediction accuracy, the predictive power of these
gene subsets requires validation in new subjects as they risk being
specific to only the subjects used in the present study and therefore
of little clinical relevance [10,17]. This finding also highlights an
important difference between our data and the Golub dataset–
namely that we have attempted to predict an individual’s response
rather than classify an individual’s disease state. As such, the
present study implies that classifying tumor type might be less
complex than predicting an individual’s response to an interven-
tion. Nevertheless the Golub dataset was perfectly suited to
confirm that our prediction methodologies were functioning
correctly. Therefore we believe that predicting a response to diet
using a single snapshot of global gene expression prior to an
intervention is not sufficient to identify responders from non-
responders.
Examples exist in which an individual or subset of predictive

genes have been proposed; however, these studies have performed
class comparison rather than class prediction. For example, Tseng
and colleagues performed microarray analysis of brown preadi-
pocytes and postulated insulin receptor substrates and necdin as
predictive genes for differentiation [35]. And more recently, Koza
et al. profiled adipose tissue gene expression and revealed that mice
with low or high body fat gain could be distinguished prior to the
consumption of a high fat diet [36]. While these studies may
suggest that identifying predictive genes using a gene expression
snapshot is possible, there are several critical differences between
our work and these two aforementioned studies. Firstly, neither of
these studies used humans. As such, using genetically identical
mice eliminates a major confounder present in human studies.
Secondly, neither study used supervised methods to identify
predictors; rather, they both used statistical approaches to identify
differentially regulated genes. As such, the actual predictive value
of their candidates was not assessed. Thus, while these previous
studies provide molecular insight into fat mass expansion, they
have yet to definitely demonstrate that their molecular targets are
clinically-reliable predictors.
To the best of our knowledge, the use of gene expression to

predict a response to dietary intervention in humans has not been
previously performed; however, examples do exist in which the

efficacy of anti-obesity drugs (sibutramine and orlistat) have been
explored. Drug efficacy for an individual subject was determined
by assessing weight loss in the first 3 months of treatment [37,38].
Subjects reaching a given threshold for weight loss in the first
months of treatment were predicted to benefit from the long term
administration of these anti-obesity drugs. Relating these findings
to our microarray results suggests that predicting classes in obesity
may be improved by studying changes in gene expression once
dietary intervention has begun (rather than single time points).
Such an approach would allow one to assess how the biological
system responds once it has been challenged with an exogenous
factor, and thereby possibly improve class prediction.
In conclusion, microarrays can provide sound molecular insight

into the biological mechanisms underlying adipose tissue metab-
olism; however, their potential in a clinical context to assist in the
optimized nutritional counseling of obese individuals remains in its
infancy. Nevertheless, alternate strategies to maximize the wealth
of information on microarrays are being explored and suggest that
predicting diet response for an individual will become more
increasingly more accurate in the near future.

SUPPORTING INFORMATION

Table S1 Primer sequences for transcripts validated by real-time
reverse-transcriptase PCR.
Found at: doi:10.1371/journal.pone.0001344.s001 (0.02 MB
XLS)

Table S2 Gene lists used for the top-down analyses. The gene
lists indicate the 34 genes identified with SAM and the top 100
genes identified by Fisher or Student’s t-test analyses. SAM,
significance analysis of microarrays; FDR, false discovery rate.
Found at: doi:10.1371/journal.pone.0001344.s002 (0.04 MB
XLS)
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