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Abstract

Elevated plasma concentrations of remnant-like particle cholesterol (RLP-C) are atherogenic. However, factors that

determine RLP-C are not fully understood. This study evaluates which factors affect RLP-C in the fasting and postprandial

state, using multiple regression analyses in a large cohort of lean and obese participants. All participants (n ¼ 740)

underwent a test meal challenge containing 95 energy % (en%) fat (energy content 50% of predicted daily resting

metabolic rate). Fasting and postprandial concentrations of circulating metabolites were measured over a 3-h period.

Obese participants (n ¼ 613) also participated in a 10-wk weight loss program (22510 kJ/d), being randomized to either a

low-fat or a high-fat diet (20–25 vs. 40–45en% fat). Postprandial RLP-C was associated with fasting RLP-C, waist:hip ratio

(WHR), HOMAIR (homeostasis model assessment index for insulin resistance) (P , 0.001), and age, independently of BMI

and gender [adjusted R2 (adj. R2) ¼ 0.70). These factors were also related to fasting RLP-C (P , 0.010), along with gender

and physical activity (adj. R2 ¼ 0.23). The dietary intervention resulted in significantly lower fasting RLP-C concentrations,

independently mediated by weight loss, improvements in HOMAIR, and the fat content of the prescribed diet. However,

after inclusion of plasma triglyceride (TG), HDL-cholesterol, and FFA concentrations in the models, HOMAIR and WHR no

longer significantly predicted fasting RLP-C, although WHR remained a predictor of postprandial RLP-C (P ¼ 0.002).

Plasma TG was strongly associated with both fasting and postprandial RLP-C (P , 0.001). In conclusion, plasma RLP-C

concentrations are mainly associated with plasma TG concentrations. Interestingly, the high-fat diet was more effective at

decreasing fasting RLP-C concentrations in obese participants than the low-fat diet. J. Nutr. 138: 2399–2405, 2008.

Introduction

Insulin-resistant conditions like obesity and type 2 diabetes mellitus
are strongly associated with hyperlipidemia and an increased risk

for atherosclerosis and cardiovascular disease (1). An atherogenic
lipoprotein profile is characterized by high plasma concentrations
of triglyceride (TG)11-rich lipoproteins (TRL), small, dense LDL,
and low plasma concentrations of HDL-cholesterol (HDL-C) (2).
Moreover, high plasma concentrations of remnant-like particles
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(RLP), which are formed when TRL are partly depleted of TG by
lipoprotein lipase, are considered to be highly atherogenic (2,3). In
this context, it has been suggested that plasma RLP-cholesterol
(RLP-C), and not plasma TG, is an independent risk factor for the
development of cardiovascular disease (4–6).

Several studies have been performed to determine which
factors may play a role in RLP metabolism and show associations
with insulin resistance, BMI, upper body obesity, other blood
lipids, gender, and age (7–15). However, most of these studies
were performed in a relatively small number of participants so
that multiple factors could not be taken into account. Moreover,
data on the influence of lifestyle factors such as diet and physical
activity are limited.

Results of a study investigating the effect of dietary compo-
sition on plasma RLP-C suggest that a 2-wk high-carbohydrate
diet [60 energy % (en%) carbohydrate] increased plasma TG
and decreased plasma HDL-C concentrations but also led to
increased fasting and postprandial RLP-C concentrations com-
pared with a 2-wk low-carbohydrate diet (40en% carbohydrate)
(16). On the other hand, it has been shown that reducing the
total fat content of the diet causes weight loss and better weight
maintenance, which can also have a favorable effect on the
blood lipid profile (17). Nevertheless, little information is
available on the relative effects of weight loss and dietary fat
modification on plasma RLP-C concentrations.

The objective of this part of the European multicenter trial
Nutrient-Gene Interactions in Human Obesity–Implications for
Dietary Guidelines (NUGENOB) was to take the drawbacks of
earlier studies into account and investigate the factors that affect
plasma RLP-C concentrations in a large cohort of lean and obese
participants with a detailed phenotype, both in the fasting state
and postprandially after the consumption of a high-fat meal.
Second, we investigated determinants of change in fasting RLP-C
concentration after a 10-wk hypo-energetic diet with either a
high- or low-fat content in the obese participants who partici-
pated in the NUGENOB trial.

Materials and Methods

The study was a randomized, parallel, 2-arm, open-label, 10-wk dietary

intervention of 2 hypo-energetic diets performed in 8 different centers

across 7 European countries: United Kingdom, The Netherlands, France
(2 centers), Spain, Czech Republic, Sweden, and Denmark. The trial was

part of the multicenter EU FP5 project NUGENOB.

Participants. In total, 740 Caucasian participants (552 women) were
included in the NUGENOB study. Inclusion criteria were age 20–50 y,

BMI between 18.5 and 25 kg/m2 for lean participants and BMI $30.0

kg/m2 for obese participants. After baseline measurements, only the

obese participants were allowed to enter the weight loss program.
Details on participant recruitment and exclusion criteria are described

elsewhere (18).

All participants were informed about the nature of the study and gave
written informed consent prior to study participation. The study protocol

was approved by the ethical committee at each of the participating centers.

Experimental design. All participants underwent a 1-d clinical in-
vestigation protocol. Participants arrived at the research center after a 12-h

overnight fast and a preceding 3-d dietary run-in period, during which they

were to keep their habitual diet and avoid excessive physical activity and

alcohol consumption. After the participants voided their bladders, they
underwent anthropometric and body composition assessments [as de-

scribed in Petersen et al. (18)]. Thereafter, participants stayed on a bed for

3.5 h, during which circulating hormones and metabolites were deter-

mined before and after a high-fat test meal. At least 30 min before the start

of the resting measurement, a catheter was inserted in an antecubital

forearm vein for blood sampling. Blood was drawn in the fasting state and

every 60 min following the test meal for the next 3 h. Plasma
concentrations of glucose, insulin, FFA, TG, total cholesterol, HDL-C,

and RLP-C were determined pre- and postprandially. Furthermore,

postprandial RLP-C was also measured 6 h postprandially in a subgroup

of 113 participants to compare 3-h and 6-h RLP-C concentrations. During
the whole experiment, the room was kept thermoneutral at 25�C.

The obese participants who participated in the weight loss program

also underwent a second clinical investigation; at the end of the 10-wk

dietary intervention, anthropometric measurements and body composi-
tion assessments were repeated and a venous blood sample was obtained

after an overnight fast.

Test meal. The fluid test meal (double cream with 40% fat/100 g ad-

justed with butter in 2 centers) consisted of 95 en% (percent of total
energy content fat load) fat, 60% of which was saturated fat, 3 en%

carbohydrate, and 2 en% protein. Based on the predicted metabolic rate,

the energy content was fixed at 50% of the predicted basal metabolic rate

(19) and ranged from 1697 to 6590 kJ. Participants were asked to drink
the test meal within 10 min.

Dietary intervention. Stratified block randomization was used with

center, gender, and 3 age groups (20–29, 30–39, and 40–50 y) as strata

and a block size of 12 to assign obese participants to either a low-fat

diet or a high-fat diet. The target macronutrient composition of the low-
fat diet was 20–25% of total energy from fat, 15% from protein, and

60–65% from carbohydrate. The target macronutrient composition of

the high-fat diet was 40–45% of total energy from fat, 15% from

protein, and 40–45% from carbohydrate. Both diets were designed to
provide 2510 kJ/d less than the individually estimated energy require-

ment based on an initial resting metabolic rate multiplied by 1.3.

Information about how the diet was controlled is given in detail
elsewhere (18).

Biochemical analyses. All blood analyses were performed in the
laboratory of one of the centers. Plasma glucose concentrations (ABX

diagnostics), TG (Sigma; ABX diagnostics), and total cholesterol

(cholesterol 100; ABX diagnostics) were measured on a COBAS MIRA
automated spectrophotometric analyzer (Roche Diagnostica). Plasma

FFA (NEFA C kit; Wako Chemicals) and HDL-C (HDL-C Roche) were

measured on a COBAS FARAH centrifugal spectrophotometer (Roche

Diagnostica). Standard samples with known concentrations were included
in each analysis for quality control. Plasma insulin concentrations were

measured with a double antibody RIA (Insulin RIA 100; Kabi-

Pharmacia). RLP-C concentrations were measured in plasma using an

immunoseparation technique developed by Nakajima et al. (20). The
RLP fraction was prepared by mixing 5 mL of plasma with 300 mL

immunoseparation gel suspension, containing a mixture of 2 monoclonal

antibodies, i.e. anti-human apolipoprotein A-I (H-12) and anti-human
apolipoprotein-B-100 (JI-H). The reaction mixture was gently shaken

for 2 h at room temperature on a special mixer (RLP-mixer J100-A,

Photal, Otsuka Electronics). After incubation, 200 mL of supernatant

was used for the measurements of cholesterol (RLP-C) on a COBAS
MIRA S auto-analyzer (ABX diagnostics).

Calculations. The homeostasis model assessment for insulin resistance

(HOMAIR) was calculated from fasting glucose and fasting insulin
according to the equation of Matthews et al. (21). An estimate of total

habitual physical activity was obtained by means of the Baecke

questionnaire using the sum of work, sport, and leisure scores of the

questionnaire (22,23). For comparing postprandial responses, we calcu-
lated the incremental area under the curve (iAUC) according to the

trapezium rule. Postprandial RLP-C is expressed as the plasma concen-

tration of RLP-C at t¼ 180 min, because only baseline and 3-h values of
RLP-C were available.

Statistical methods. Statistical analyses were performed using SPSS

14.0 for Windows (SPSS Inc.). All variables were checked for normal

distribution and non-normally distributed data were ln-transformed to
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satisfy conditions of normality. Student’s t test for unpaired samples was

used to compare participant characteristics at baseline (lean vs. obese,

low- vs. high-fat diet group) and repeated-measures ANOVA was used to
test for differences in time between groups.

Multiple regression analysis was performed to evaluate which factors

were associated with plasma RLP-C concentrations, both in the fasting

state and postprandially after a high-fat meal. The dependent variable in
each multiple regression model was ln-transformed to satisfy conditions

of normality. Independent variables were included in the analyses in

2 steps; gender, BMI, age, HOMAIR, waist:hip ratio (WHR), baseline

dietary fat intake, total physical activity, and/or fasting plasma RLP-C
were included in model 1 and plasma concentrations of TG, FFA, and

HDL-C (fasting or as iAUC in the postprandial model) were included in

model 2.
Determinants of change (D) in fasting RLP-C were also evaluated in 2

models, with the independent variables gender, diet, age, D weight,

D HOMAIR, and D WHR in model 1 and change in fasting plasma TG,

FFA, and HDL-C in model 2. The D was calculated as (10 wk 2 0 wk)
and the models were corrected for the mean values of each D variable (10

wk 1 0 wk/2). Furthermore, all models as described above were

corrected for center (dummy variables) and, in the postprandial model,

for the energy content of the high-fat test meal. To avoid multicollin-
earity, predictors with a correlation . 0.80 were not included in the

model simultaneously. The relative impact of the predictors is demon-

strated as the standardized b-coefficient and its significance value. The
adjusted R2 (adj. R2) of each model is indicated in the tables. Significance

was set at P , 0.05.

Results

At baseline, obese participants had higher plasma concentrations
of RLP-C, TG, FFA, and total cholesterol and a higher HOMAIR

than lean participants (P , 0.001) (Table 1). Furthermore, the
obese participants in the low- and high-fat groups at baseline did
not differ. Fasting plasma RLP-C concentrations decreased in
both groups due to the hypocaloric diet, with a greater reduction
in the high-fat group (20.07 6 0.01 mmol/L) than in the low-fat
group (20.03 6 0.01 mmol/L; P ¼ 0.019). Also, the decrease in
fasting TG was greater in the high-fat group (20.17 6 0.03
mmol/L) than in the low-fat group (20.03 6 0.02 mmol/L; P ¼
0.007), whereas participants that consumed the low-fat diet had
a greater reduction in plasma total cholesterol and HDL-C

concentrations (Table 1). Dietary goals were achieved in this
study (Table 2) and are, along with the flow of participants in the
NUGENOB study, described in detail elsewhere (18).

After the high-fat meal, plasma RLP-C, TG, and insulin
concentrations increased and there was a postprandial decrease
in plasma FFA concentrations (Fig. 1).

Determinants of fasting RLP-C concentrations. In multiple
regression, HOMAIR, gender, age, WHR, and total physical
activity were positively associated with fasting RLP-C (adj.
R2 ¼ 0.23), with higher concentrations in men than in women
(Table 3). In model 2, fasting TG was the strongest positive
predictor (P , 0.001) for fasting RLP-C concentrations (adj.
R2 ¼ 0.60), whereas the degree of insulin resistance and
WHR were no longer significantly associated with fasting
RLP-C.

Determinants of postprandial RLP-C after a high-fat load.

Fasting RLP-C, HOMAIR, WHR (all P , 0.001), and age (P ¼
0.023) were significantly associated with the plasma RLP-C
response to the high-fat meal (adj. R2 ¼ 0.70) (Table 4). Means
of postprandial RLP-C according to WHR and HOMAIR

quartiles are illustrated in Figure 2. Furthermore, WHR was
still associated with postprandial RLP-C after inclusion of TG,
HDL-C, and FFA iAUC in model 2 (P ¼ 0.002), whereas
HOMAIR was not (P ¼ 0.274). Plasma TG iAUC was strongly
related to postprandial RLP-C (b¼ 0.278; P , 0.001) (adj. R2¼
0.76), which was also confirmed in a correlation analysis (Fig. 3).
Plasma concentrations of RLP-C at 3 and 6 h postprandially
were strongly correlated (rs¼ 0.779; P , 0.001) in a subgroup of
113 participants (data not shown).

Determinants of change in fasting RLP-C after dietary

intervention. Both weight loss and improvement in insulin
resistance were significantly related to a decrease in fasting
RLP-C (adj. R2 ¼ 0.29) after dietary intervention (Table 5).
Furthermore, model 1 confirmed the observation we described
above, i.e. that the high-fat diet was more beneficial than the
low-fat diet in improving RLP-C concentrations in obese partic-
ipants (b¼20.075; P¼ 0.030) and this diet effect was independent

TABLE 1 Participant characteristics at baseline and after a 10-wk hypocaloric diet1

Baseline D after dietary intervention2

Lean Obese Low-fat diet High-fat diet

n 127 (38 M) 613 (150 M) 317 (82 M) 296 (71 M)

Age, y 34 6 1 37 6 0a

BMI, kg/m2 23.8 6 0.3 36.0 6 0.2a 22.5 6 0.1 22.4 6 0.1

WHR 0.81 6 0.01 0.89 6 0.00a 20.02 6 0.00 20.02 6 0.00

HOMAIR 1.11 6 0.06 2.61 6 0.07a 20.29 6 0.09 20.38 6 0.10

Dietary fat intake, % energy 34.4 6 0.6 36.4 6 0.3a

Total physical activity,3 AU 8.22 6 0.10 7.42 6 0.05a

Fasting metabolites

Plasma RLP-C, mmol/L 0.25 6 0.01 0.33 6 0.01a 20.03 6 0.01 20.07 6 0.01c

Plasma TG, mmol/L 0.74 6 0.03 1.10 6 0.03a 20.03 6 0.02 20.17 6 0.03b

Plasma FFA, mmol/L 418 6 12 520 6 6a 233 6 10 228 6 11

Plasma HDL-C, mmol/L 1.34 6 0.03 1.12 6 0.01a 20.09 6 0.01 20.04 6 0.01b

Plasma total cholesterol, mmol/L 4.59 6 0.08 4.92 6 0.04a 20.37 6 0.04 20.25 6 0.03b

1 Values are means 6 SEM. a P , 0.001, lean vs. obese, Student’s t test for unpaired samples; b P , 0.01; c P , 0.05, diet 3 time

interaction, repeated-measures ANOVA.
2 The change (D) of each value is calculated as (10 wk–baseline).
3 AU, Arbitrary units.
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of the degree of weight loss and the change in insulin resistance. In
model 2, however, these diet and HOMAIR effects disappeared
and a decrease in fasting TG concentrations was the strongest
predictor of a decrease in fasting RLP-C concentrations (adj. R2¼
0.51).

Discussion

Elevated plasma concentrations of RLP-C are atherogenic and
have been shown to be an independent risk factor for the
development of cardiovascular disease (5). However, factors that
are associated with plasma RLP-C concentrations are not fully
understood. This study demonstrates that both fasting and

postprandial plasma RLP-C are strongly related to HOMAIR and
WHR, which is consistent with earlier indications from the
literature (7–11,24,25). When adding plasma TG, FFA, and
HDL-C to the models, however, plasma TG was the strongest
predictor of both fasting and postprandial RLP-C, and in the
fasting model, the associations with HOMAIR and WHR were no
longer significant. It has been shown before in a study in obese
children that fasting RLP-C was significantly associated with
systolic blood pressure and HOMAIR, whereas only TG was
associated with RLP-C after inclusion of other lipids in the model
(7). This may be due to the high correlation between plasma RLP-
C and plasma TG, which is not surprising, because a large part of
plasma TG is carried in TRL and RLP particles. It may well be
that although RLP represent the more atherogenic fraction,
measuring RLP-C is not necessary to assess this risk, because
plasma TG mirrors plasma RLP-C.

Men had significantly higher fasting RLP-C concentrations
than women and RLP-C concentrations increased with age,
which is consistent with previous findings (14,26). In the post-
prandial response to the high-fat meal, however, the gender
effects on plasma RLP-C were explained by the effect of body fat
distribution; WHR was significantly associated with postpran-
dial RLP-C, independent of gender, BMI, the degree of insulin
resistance, and postprandial circulating TG concentrations,
suggesting that body fat distribution is directly linked to RLP-
C in the postprandial phase. Abdominal obesity plays an
important role in postprandial TRL metabolism in both men
and women (13,27). Based on our results, the association
between WHR and postprandial RLP-C seems to be stronger
than the association with gender.

The postprandial response after the high-fat meal was
measured over a 3-h period, which is a relatively short time
for studying postprandial lipid profiles. Therefore, we analyzed
RLP-C concentrations 6 h postprandially in a subgroup of the

TABLE 2 Composition of the habitual diet of lean and obese
participants at baseline and the composition of the
low- and high-fat hypocaloric intervention diets in
obese participants1,2

Habitual diet Low-fat diet High-fat diet

n 740 3023 2853

Energy intake, kJ/d 9118 6 103 6518 6 88 6846 6 85a

Fat, % energy 36.1 6 0.3 25.1 6 0.3 41.3 6 0.3a

Carbohydrate, % energy 45.8 6 0.3 56.6 6 0.3 41.5 6 0.3a

Protein, % energy 16.3 6 0.1 17.8 6 0.2 17.0 6 0.2a

Alcohol, % energy 1.8 6 0.1 0.4 6 0.1 0.2 6 0.1b

Dietary fiber, g/d 18.5 6 0.3 22.6 6 0.4 19.1 6 0.4a

1 Values are means 6 SEM. a P , 0.01; b P , 0.05, low-fat vs. high-fat diet, Student’s

t test for unpaired samples.
2 The composition of the diets is based on a 3-d-weighed food record.
3 A small number of participants did not complete a 3-d-weighed food record after the

10-wk dietary intervention period.

FIGURE 1 Plasma concentrations of RLP-C (A), HDL-C (B), FFA (C), TG (D), glucose (E), and insulin (F) during fasting (t ¼ 0) and after

consumption of a high-fat meal according to BMI categories: BMI ,25 kg/m2 (d) (n ¼ 92), BMI 25–30 kg/m2 (s) (n ¼ 35), BMI 30–35 kg/m2 (:)

(n ¼ 294), BMI 35–40 kg/m2 (n) (n ¼ 185), and BMI .40 kg/m2 (n) (n ¼ 106). Values are means 6 SEM.
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total cohort and showed that RLP-C concentrations at 3 h were
highly correlated with 6-h values. Although this indicates that
our postprandial model reflects conditions after a 6-h postpran-
dial period, it remains a limitation of this study that we could
not measure RLP-C accumulation over the total postprandial
period.

To detect disturbances in lipid metabolism, a pure high-fat
load was administered as a metabolic stressor. We acknowledge
that the very slight insulin response after this high-fat load may
have induced slightly different postprandial lipid responses in
this study compared with, e.g., a high-fat mixed meal. Despite
this, we observed similar associations between plasma RLP-C
and HOMAIR, WHR, and plasma TG concentrations to those
shown previously (10,11).

We observed a small positive association between habitual
physical activity and fasting RLP-C, which is not consistent with
earlier findings about the relationship between total physi-
cal activity and plasma lipoprotein concentrations (12,28,29).
The underlying mechanisms for this association remain to be
elucidated.

Weight loss improved fasting RLP-C concentrations, even after
correction for age, gender, and changes in HOMAIR and WHR,
showing that weight loss per se can be an appropriate tool to
improve fasting and postprandial RLP concentrations (30).
Furthermore, weight loss was comparable after both diets,
indicating that it was not the macronutrient composition of the
diet that influenced a reduction in body weight but the total
energy intake, because both diets were designed to provide 2510
kJ/d less than the individually estimated daily energy require-
ment (18). Therefore, it is interesting that despite a similar
weight loss, a high-fat diet leads to a better improvement in both

FIGURE 2 Postprandial plasma RLP-C concentrations (3 h) accord-

ing to WHR and HOMAIR quartiles. Quartile 1 corresponds to the

lowest WHR and HOMAIR values and quartile 4 to the highest values.

Values are means.

TABLE 3 Determinants of fasting plasma RLP-C in multiple
regression analyses1

Model 12 Model 22

n ¼ 740 b P-value b P-value

(Constant) ,0.001 ,0.001

Gender, male vs. female 0.156 ,0.001 0.109 0.001

BMI, kg/m2 0.041 0.315 0.082 0.008

Age, y 0.096 0.007 0.042 0.102

HOMAIR 0.235 ,0.001 20.029 0.326

WHR 0.157 0.004 0.011 0.781

Dietary fat intake, % energy 0.027 0.463 0.030 0.266

Total physical activity, AU 0.085 0.012 0.074 0.003

Plasma TG (fasting), mmol/L — — 0.712 ,0.001

Plasma FFA (fasting), mmol/L — — 20.020 0.474

Plasma HDL-C (fasting), mmol/L — — 20.001 0.985

1 The dependent is fasting plasma RLP-C in mmol/L. For statistical analyses, the

dependent variable was ln-transformed. —, variable not included in model 1.
2 Both models include the indicated variables in addition to center. Model 1 adj. R 2 ¼
0.23, model 2 adj. R 2 ¼ 0.60.

TABLE 4 Determinants of postprandial plasma RLP-C after a
high-fat meal containing 95en% fat1

Model 12 Model 22

n ¼ 712 b P-value b P-value

(Constant) ,0.001 ,0.001

Gender, male vs. female 0.041 0.156 0.029 0.269

BMI, kg/m2 0.028 0.288 0.032 0.185

Age, y 0.052 0.023 0.036 0.079

HOMAIR 0.104 ,0.001 0.026 0.274

WHR 0.142 ,0.001 0.100 0.002

Dietary fat intake, % energy 0.025 0.307 0.009 0.685

Total physical activity, AU 0.040 0.067 0.018 0.358

Plasma RLP-C (fasting), mmol/L 0.669 ,0.001 0.599 ,0.001

Plasma TG iAUC, mmol/L�180

min

— — 0.278 ,0.001

Plasma FFA iAUC mmol/L�180

min

— — 0.045 0.022

Plasma HDL-C iAUC, mmol/L�180

min

— — 20.031 0.109

1 The dependent is 3-h plasma RLP-C in mmol/L. For statistical analyses, the

dependent variable was ln-transformed. —, variable not included in model 1.
2 Both models include the indicated variables in addition to center and the energy% fat

meal of measured basal metabolic rate. Model 1 adj. R 2 ¼ 0.70, model 2 adj. R 2 ¼
0.76.

FIGURE 3 Strong relationship between the postprandial response

of plasma TG (iAUC) and plasma RLP-C (3 h) after a high-fat meal.

rs and P are shown in the figure.
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fasting RLP-C concentrations and fasting TG concentrations
than a low-fat diet in obese participants. This observation extends
the results of Abbasi et al. (16), showing that in healthy par-
ticipants, both fasting and postprandial RLP-C concentrations
are significantly lower after a high-fat diet than after a low-fat diet
and may be explained by the higher carbohydrate content of the
low-fat diet compared with the high-fat diet. It has been described
previously for the total NUGENOB cohort that the beneficial
effects of the dietary intervention on plasma TG, LDL-C, and
total cholesterol were mainly the result of weight loss per se, with
additional effects of diet composition (18).

Furthermore, improvements in insulin resistance were also
significantly related to a decrease in fasting RLP-C, independent
of weight loss. Again, after inclusion of fasting TG in the model,
these effects disappeared and only weight loss and a decrease in
fasting TG were associated with decreased plasma RLP-C,
emphasizing the outcomes of the baseline fasting and postpran-
dial models.

In summary, this multicenter study demonstrates that plasma
RLP-C concentrations are related to body fat distribution (WHR)
and the degree of insulin resistance (HOMAIR), both fasting and
3 h postprandial after a high-fat load. However, taking other
plasma lipid concentrations into account, plasma TG appeared to
be a strong determinant of plasma RLP-C.

The present mode of dietary intervention shows that, in-
dependent of weight loss, a high-fat diet is more effective in
lowering fasting plasma RLP-C concentrations in obesity than a
low-fat diet.
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