Preparation method	Advantages	Disadvantages
High Pressure Homogenization (Hot and Cold)	 Good reproducibility Well established homogenization technology on large scale Organic solvent free method 	 High temperature process High energy input Complex equipment required Possible degradation of the components caused by high pressure homogenization
Microemulsion Technique	 Reduces mean particle size and narrow size distribution Organic solvent free method No energy consuming method Easy to scale up 	 High concentration of surfactants and co-surfactants Concentration of final formulation is required
Microemulsion Precursor Technique	 Rapid, reproducible and cost- effective method Dilution of the final formulation is not needed Organic solvent free method Non energy-consuming method 	 High concentration of surfactants and co-surfactants
Coacervation method	 Allows incorporation of thermosensitive drugs Inexpensive for laboratory and industrial application Possibility to control shape and size of SLNs by reaction conditions 	 Possible degradation of the components under acidic conditions
Phase Inversion Temperature Method	Organic solvent free methodNon-energy consuming methodEasy to scale up	 Not suitable for thermosensitive molecules like peptides or proteins
Emulsion Formation Solvent-Evaporation or -Diffusion Method	 Allows incorporation of thermosensitive drugs Reduces mean particle size and narrow size distribution Good reproducibility 	 Concentration of final formulation is required Possible organic solvent residues in the final formulation
Water-in-Oil-in- Water (w/o/w) Double Emulsion Method	 Allows incorporation of hydrophilic drugs 	 Concentration of final formulation is required Large particle size of the final formulation
Emulsification Dispersion Followed by Ultrasonication	 Allows incorporation of thermosensitive drugs 	 Possible metal contamination
Hot Homogenization by High Shear Homogenization and/or Ultrasonication	 Easy to handle No complex equipment is required High concentration of surfactants and co-surfactants are not required Organic solvent free method 	 High energy input Polydisperse distributions Possible metal contamination Concentration of final formulation is required
Solvent Injection Method	 Easy to handle and fast production process 	• Possible organic solvent residues in the final formulation