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Lipid nanoparticles for cancer therapy: state of the art and future prospects 
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Abstract 

Introduction: Cancer is a leading cause of death worldwide and it is estimated that deaths 

from this disease will rise to over 11 million in 2030. Most cases of cancer can be cured 

with surgery, radiotherapy or chemotherapy if they are detected at an early stage. 

However, current cancer therapies are commonly associated with undesirable side effects, 

as most chemotherapy treatments are cytotoxic and present poor tumor targeting.  

Areas covered: Lipid nanoparticles (LN) are one of the most promising options in this 

field. LN are made up of biodegradable generally recognized as safe (GRAS) lipids, their 

formulation includes different techniques, and most are easily scalable to industrial 

manufacture. LN overcome the limitations imposed by the need for intravenous 

administration, as they are mainly absorbed via the lymphatic system when they are 

administered orally, which improves drug bioavailability. Furthermore, depending on their 

composition, LN present the ability to cross the blood brain barrier, thus opening up the 

possibility of targeting brain tumors.  

Expert opinion: The drawbacks of chemotherapeutic agents make it necessary to invest in 

research to find safer and more effective therapies. Nanotechnology has opened the door 

to new therapeutic options through the design of formulations that include a wide range of 

materials and formulations at the nanometer range, which improve drug efficacy through 

direct or indirect tumor targeting, increased bioavailability and diminished toxicity.  
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1. Introduction  

According to the World Health Organization [1], cancer is one of the leading causes of 

death worldwide, and cancer deaths are projected to continue rising to over 13.1 million in 

2030. The main types of cancer are: lung, stomach, liver, colorectal, breast and cervical 

cancer; nevertheless, it can affect any part of the body and people of any age. Early 

detection of this disease through screening prevents the cancer from spreading to other 

parts of the body (metastasization) and thus improves survival rates. Cancer treatment 

frequently comprises a combination of surgery, radiotherapy and chemotherapy. Cure 

rates of surgically removable primary tumors that have not spread to other parts of the 

body are high (e.g. breast, colorectal). However, even when complete resection of the 

tumor is possible, chemotherapy is generally required.  

Chemotherapy has been used for more than 70 years, since mustard gas was used for the 

first time in the treatment of lymphomas [2], but it still presents severe side effects and 

limited efficacy. Most chemotherapeutic drugs act through interaction with DNA that 

causes irreparable damage or by impeding cell division, which finally leads to cell 

apoptosis. Chemotherapeutic drugs are generally classified as: alkylating agents 

(platinums, nitrogen mustard derivates, oxazophosphorines), anti-metabolites (pyrimidine 

analogues, anti-folates), mitotic inhibitors (vinka alkaloids, taxanes), topoisomerase 

inhibitors (topoisomerase-I inhibitors, topoisomerase-II inhibitors) and antitumor 

antibiotics (anthracyclines, bleomycin, mitoxantrone). Even if these drugs present efficacy 

against the disease, multi drug resistance (MDR) to chemotherapeutic agents complicates 

cancer treatment. This mechanism is mainly related to P-glycoprotein (P-gp), which 

extrudes the drug from the cell, decreasing the intracellular drug concentration and thus 

inhibiting its antitumor action. The group of alkyl lysophospholipids, which are non-DNA 
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affecting molecules, comprises another class of antitumor agents. Edelfosine, the 

prototype of these new drugs discovered in the late 1980s, presents several advantages 

over conventional antitumor drugs. It is a drug that can be administered orally, it acts 

selectively in tumor cells sparing healthy tissues and its mechanism of action is not based 

on DNA targeting but membrane triggered apoptosis [3]. Chemotherapy is mainly 

administered intravenously, a route which is generally associated with poor patient well-

being and compliance, and high clinical cost [4]. Moreover, it is also associated with a 

wide variety of severe side effects (mainly due to the poor targeting of cancer cells) such 

as myelosupression, gastrointestinal toxicity, alopecia, neuropathy, infertility or cardiac 

ischemia, among others. Bearing in mind all the drawbacks of chemotherapy, researchers 

are still investigating into new drugs and new delivery systems to obtain safer and more 

effective therapies that allow oral administration. 

Among drug delivery systems, lipid nanoparticles (LN) are promising drug carriers due to 

their effectiveness in targeting tumor tissue. They provide higher drug efficacy, as a result 

of an increased concentration of drug in tumor cells, and lower side effects [5]. LN can be 

divided into solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid 

drug conjugates (LDC). In general, they can be defined as nanometer sized solid particles 

made up of biodegradable generally recognized as safe (GRAS) lipids. Besides the above-

mentioned advantages, LN can be administered orally, avoiding all the disadvantages of 

the intravenous route. Like other nanosystems, LN are passively targeted to the tumor 

tissue due to the well-known enhanced permeability and retention effect (EPR effect) [6, 

7]. Moreover, when given orally, they are absorbed via the lymphatic system avoiding first 

pass hepatic metabolism and targeting lymph nodes [8, 9]. Depending on their 

composition, they also have the ability to cross the blood brain barrier (BBB), thus 
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opening up the possibility of targeting brain tumors [10]. Furthermore, active targeting 

offers the possibility of directing the drug toward different tissues. This review focuses on 

the most recent advances in the use of LN in the treatment of cancer. Specifically, studies 

published in the last 5 years will be reviewed and discussed. 

 

2. Lipid Based Nanosystems  

The LN concept begins with lipid nanosuspensions. O/W emulsions were first used in 

clinic in the 1950s to administer parenteral nutrition. Afterwards, Etomidat-Lipuro
®
 and 

Diazepam-Lipuro
®

 were successfully marketed [11]. At this time, the only purpose of 

these emulsions was to reduce the side effect of pain after diazepam injection. Despite the 

success of the O/W emulsions, the number of products on the market is low due to their 

physical instability and low drug solubility.  

Lipid based nanosystems were first launched on the market in 1986 by the Dior brand 

[12]. The Dior commercial formula was followed by the first pharmaceutical liposome 

formulations. Epi-Pevaryl
®
 (antimycotic topical therapy) was introduced in the market in 

the 1980s, and Alveofact
®
 (pulmonary instillation) and Ambisome

®
 (intravenous 

injection) in the following decade. One of the major disadvantages of liposomes is their 

rapid plasma clearance. Consequently, pegylated liposomes (stealth liposomes) were 

developed by Allen et al. in 1994 [13] as a solution to the short half-life of liposomes in 

plasma as a result of the reticuloendothelial system (RES) clearance. However, the number 

of commercialized liposomal formulations is low due to disadvantages such as physical 

instability, insufficient drug solubility and the need for expensive technology. Besides, 

regardless of the potentiality of these formulations in reducing drug-side effects, their poor 

controlled release posed a challenging drawback.  
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In this sense, LN, invented in the 1980s, represent significant progress in the development 

of lipid based nanosystems.  

2.1 Types of lipid Based Nanosystems 

2.1.1 Solid Lipid Nanoparticles  

SLN were discovered by Speiser et al. in the 1980s when they formulated SLN by spray 

drying and nanopellets for peroral administration for the first time [14, 15]. SLN are 

colloidal carriers composed of lipids that are solid at body temperature. The use of solid 

lipids prevents the drug from immediate release. The drug is included in a solid matrix that 

makes the diffusion of the drug to the surface difficult. In addition, the lipids used to form 

SLN provide low acute and chronic toxicity [5]. In the 1990s, SLN were further developed 

by Müller et al. using high-pressure homogenization (HPH) methods [16, 17] and by 

Gasco et al., who used a warm microemulsion technique [18, 19]. The most important 

advantages of SLN over liposomes are controlled drug release and the physical stability of 

the preparations. Nevertheless, they still present some limitations such as limited drug 

loading and drug expulsion during storage. Anticancer drugs have been encapsulated into 

SLN by many different authors [5]. Most of these studies have developed SLN to be 

administered intravenously, with successful results; nevertheless, SLN can also be a very 

promising oral drug delivery system. Several studies have demonstrated that these 

nanocarriers are absorbed via the lymphatic system, improving drug bioavailability [8, 9, 

20]. Consequently, the oral administration of antitumor agents might have a large impact 

on clinical practice both in patient well-being and in treatment costs [4]. 

2.1.2 Nanostructured Lipid Carriers  

NLC are the second generation of LN. They were developed by Müller et al. to solve the 

low drug loading capacity of SLN [21]. The difference between the two formulations is 
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their lipid composition: in NLC the solid lipid is mixed with a liquid lipid in order to 

obtain a solid structure and to avoid crystallization after particle solidification The 

applications of NLC are the same as Müller et al. described for SLN [17]. Several recent 

studies endorse the efficacy of NLC in cancer treatment [22-26].  

2.1.3 Lipid Drug Conjugates  

Although SLN and NLC are able to incorporate hydrophilic drugs, their lipophilic nature 

makes them more suitable to incorporate lipophilic compounds. LDC were developed in 

the late 1990s in order to achieve better drug loading rates for hydrophilic drugs [27]. 

Their manufacture consists of binding the drug to the lipid prior to forming the O/W 

emulsion. The drug is first conjugated with the lipid by salt formation or by covalent 

linkage, and afterwards, LDC are formed by homogenizing the drug-lipid complex with a 

surfactant aqueous solution by HPH.  

 

2.2. Preparation Methods 

To date, different methods have been developed to produce LN. Most of them are based 

on traditional emulsion techniques. The two principal methods used are the HPH, patented 

by Müller and Lucks in 1993 [17], and microemulsion techniques patented by Gasco in 

1993 [19]. However, several variations of these methods have been proposed in order to 

optimize the characteristics of LN formulations. Table I brings together all these methods 

and variations along with the drugs used in cancer therapy that have been successfully 

loaded in these systems. Research efforts have been focused on the improvement of 

particle stability, surfactants at considerable concentration, particle size control according 

to the administration routes, functionalization of the particle surface for targeting a 

specific cell, drug controlled release, minimal mechanical and thermal energy input, risk 
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of organic solvent residues, cost-effective process and industrial scalability, among others. 

The main advantages and drawbacks of all the production techniques are summarized in 

Table II. 

 

3. Scaling-up of LN  

After the development and optimization of a formulation on a small scale, the next step is 

usually to find the way to produce it on a larger scale. However, in most cases, the scaling 

up of a process implies an increase in problems [28]. In the case of LN production based 

on HPH, which is the most widely used method in the pharmaceutical industry, it has been 

observed that the use of larger scale machines leads to an even better quality of the 

product with regard to a smaller mean particle size and polydispersity index (PDI) [29]. 

The most typical devices for lab-scale production are the Avestin C5 (capacity: 5 L/h, 

batch: 7 mL to 1 L, Avestin Europe) and the Micron LAB 40 (batch: 20–40 mL, APV 

Deutschland GmbH). In the case of very high-cost drugs, or if there is a limited amount 

available (e.g., new chemical entities), it is positive to reduce the batch size. Avestin B3 

(Avestin Europe) can be employed in order to reduce the batch size, achieving a final 

volume of 0.5–3.2 mL [30].  

The next scaling up step implies a minimum batch size of 2 kg and a maximum of 10 kg. 

This aim can be achieved using the Micron LAB 60 (APV Deutschland GmbH), which has 

a homogenization capacity of 60 L/h. The next step in scale-up is the use of a Gaulin 5.5 

(APV Deutschland GmbH) with a homogenization capacity of 150 L/h (nearly 150 kg) 

[31]. In this case, the pre-emulsion is formed in larger containers. The product containers 

and homogenizer are manufactured from pharmaceutical grade materials. Another feature 

is that the product containers can be sterilized by autoclaving; formation of the pre-
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emulsion under protective gas is also feasible. It is noteworthy that a batch size of about 

500 kg can be produced in approximately 3-h homogenization time using this machine.  

For even larger scales, a Rannie 118 (APV Deutschland GmbH) or an Avestin EmulsiFlex 

C1000 (Avestin Europe) can be used [30, 31]. Their capacity is much higher than that of 

the previous machines, ranging from 1,000 to 2,000 L/h at the low pressure required for 

the production of LN.  

 

4. Physical-chemical characterization of LN 

Physical-chemical characterization of the LN is essential due to the fact that these systems 

present colloidal sized particles [32]. Nevertheless, proper characterization of the 

formulations is necessary to control the product quality, stability, and release kinetics. The 

most important parameters of LN to be characterized include particle size and shape, the 

surface charge, the degree of crystallization and the kind of lipid modification. All these 

properties must be well characterized because any contact of the LN dispersion with new 

surfaces might be able to induce changes in their structure, causing, for example, an 

alteration in the lipid crystallization or modification leading to the formation of a gel, or to 

the drug expulsion. Among all the parameters that should be considered for 

characterization of LN, size is crucial and critical for determining the interactions of 

nanoparticles with living systems. For instance, particle sizes below 300 nm are suitable 

for intestinal transport to the thoracic duct [33], while sizes no larger than 5 µm are 

required in order not to cause embolisms after parenteral administration of LN due to the 

blocking of the thin capillaries [34]. Besides, particle size also plays a very important role 

in the clearance of the LN by the RES. A great number of methods are available for 

determining the size of nanoparticles [35]; however, dynamic light scattering (DLS) is 
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generally used to determine the size distribution profile of LN. Alternatively, electron 

microscopy and/or atomic force microscopy (AFM) are often used to corroborate the 

results. 

The zeta potential is the overall charge a particle gains in a specific medium, and its value 

indicates the degree of repulsion between close and similarly charged particles in 

dispersion. Most authors calculate this value by laser-doppler anemometry [36, 37-40]. 

Colloids with high zeta potential (negative or positive) are electrically stabilized, while 

colloids with low zeta potentials tend to coagulate or flocculate. In general, absolute 

values greater than 30 mV have been found to be enough for good stabilization, and hence 

indicate good physical stability [41]. In terms of stability, any contact of the LN dispersion 

with new surfaces might be able to induce changes in their structure, causing, for example, 

an alteration in the lipid crystallization or modification leading to the formation of a gel or 

to the drug expulsion [42]. Therefore, the crystallinity and polymorphic behavior of the 

components of the LN should be studied, as these both influence drug incorporation and 

release rates to a high degree. Differential scanning calorimetry (DSC) and X-ray 

diffractometry (XRD) are two of the main tools employed. Bunjes and coworkers [43-46] 

report on crystalline properties of lipids and their recrystallization patterns during 

nanoparticle preparation and the influence of nanoparticle size on recrystallization pattern 

in a very extensive way.  

It is imperative to obtain a dry product to ensure their stability, thus allowing their long-

term storage. Lyophilization is one of the most widely used techniques for obtaining dry 

powders from nanoparticulate suspensions [47-51] and provides an increase in chemical 

and physical stability over extended periods of time [34]. In general, cryoprotectant agents 

are used so as not to achieve a final LN aggregated product, which will commonly acquire 
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a rubbery appearance. Saccharides are the most widely employed cryoprotectant agents in 

the formulation of LN, namely trehalose, sucrose, sorbitol, maltose, glucose and mannose 

[52-54].  

 

5. Drug release from LN 

The solubility of the drug in the aqueous release medium and the lipid component of the 

formulation, and the partitioning between them, are considered very important factors in 

predicting the in vitro drug release behavior. It is known that increasing the production 

temperature and surfactant concentration leads to increased drug solubility in the water 

phase [55]. Cooling the LN suspension again will decrease the water solubility and the 

repartition to the lipid, forming drug core-enriched or drug shell-enriched LN, depending 

on the lipid recrystallization temperature [56]. These two drug distribution models lead to 

too slow and too fast release rates of the drugs, respectively.  

In order to study the drug release kinetic profile of drugs from LN, various assays can be 

performed. The most widely employed assays are based on the use of dialysis membranes, 

Franz-type diffusion cells and rotating vials.  

5.1 Dialysis membranes 

Among all assays, dialysis tubes are the most widely used to study the drug release 

kinetics from LN formulations [53, 57-59]. Briefly, a definite amount of prepared LN, free 

from any unentrapped drug, is separately placed in the dialysis tube of different molecular 

weight cut-off (MWCO) (usually between 12-14 kDa), tied at both ends and suspended in 

different beakers (receptor compartment) each containing the appropriate medium to study 

the release (namely, PBS, gastric or intestinal media). The medium is stirred continuously 

to favor the crossing of the membrane, and the whole system is usually assembled at 
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physiologic temperature throughout the experiment (Figure 1). Samples are withdrawn 

periodically and after each withdrawal of sample the same volume of appropriate medium 

is added in the receptor compartment so as to maintain a constant volume throughout the 

study.  

5.2 Franz-type diffusion cell 

This assay is relatively similar to the method based on dialysis membranes, with the 

difference of the use of a specific system [60-52]. A Franz diffusion cell system is 

composed of a receptor and a donor cell (Figure 2). This cell has a static receptor solution 

reservoir with a side-arm sampling port. The membrane (usually of a MWCO of 12 kDa) 

is mounted between the cell compartments. The receptor compartment is filled with the 

appropriate medium to study the release (namely, PBS, gastric or intestinal media). It is 

kept at physiological temperature by circulating water through an external water jacket. 

After a certain time of equilibration of the membrane with the receptor solution, a definite 

amount of the LN formulation is applied in the donor compartment. The donor 

compartment can then be covered to prevent evaporation of the solvent. The receptor 

solution is continuously stirred by means of a spinning bar magnet. Receptor solution 

samples are withdrawn through the sampling port of the receptor compartment at various 

time intervals and the cells are refilled with receptor solution to keep the volume of 

receptor solution constant during the experiment.  

5.3 Rotating vials 

In this method, an amount of LN is placed in small vials contaning the appropriate 

medium to study the release (PBS, gastric or intestinal media). The vials undergo 

continuous rotational mixing using a rotating device kept at physiologic temperature 
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throughout the experiment (Figure 3). At the time of sample withdrawal, vials are 

centrifuged and the supernatant is recovered for analysis [36]. 

 

6. Application in cancer therapy 

6.1 Surface modified lipid based nanosystems 

Antitumor drugs imply many remarkable side effects as a result of their impaired toxicity. 

The poor selectivity of these compounds makes them accumulate in healthy tissues 

causing severe damage. This unspecific drug accumulation also decreases their 

effectiveness [2]. Nanotechnology has overcome this problem thanks to passive and active 

targeting of the tumor. Lipid-based nanocarriers are not only able to accumulate in tumor 

tissues passively, but these systems can also be actively targeted at tumors by attaching 

different molecules to their surface (Figure 4). 

6.1.1 Passive targeting 

The EPR effect is the principal mechanism of tumor accumulation of nanocarriers [7]. 

Tumor tissues grow very quickly, promoting special tissue architecture and the 

development of blood vessels with wide fenestrations between endothelial cells. These 

particular vessels permit an easier exchange of nutrients and oxygen to support the high 

demand of this abnormal growth. These wider spaces facilitate the extravasation and 

accumulation of nanoparticulated systems from the blood vessels into the tumor tissues. 

Therefore, lipid-based nanosystems are targeted at tumor tissues in a passive way, which is 

based on the shape and size and is independent of the surface nature.  

In contrast to other nanocarriers, LN offer another possibility in passive targeting when 

they are administered orally. After oral administration, LN are absorbed via the lymphatic 

system and the drug is passively targeted at the lymph nodes [20, 61]. This might represent 
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a promising strategy in the treatment of general cancer metastases and in lymph generated 

tumors (lymphomas) [9]. 

Another passive targeting approach is the use of certain tensoactive excipients that enable 

the lipid nanocarriers to penetrate into the central nervous system (CNS). Several studies 

suggest that LN including tensoactive excipients such as polysorbate 80 (Tween 80) or 

polyoxyethylene 20-stearyl ether (Brij 78) may overcome the BBB, allowing the drug to 

penetrate into the CNS [10, 62]. Taking into consideration the difficulties of anticancer 

drugs in crossing the BBB, LN present high potential as therapeutic tools against brain 

tumors. 

6.1.2 Active targeting 

Passive targeting is mainly used in nanotechnology to target nanocarriers at the tumor; 

nevertheless, many authors have developed active targeted LN. In this section we will 

discuss the main strategies developed to target LN to cancer cells. Efficacy studies will be 

described and documented in section 6.2. Active targeting consists of attaching molecules 

to the surface of the nanoparticle. The main strategy in active targeting consists of using 

ligands that specifically bind to molecules that are selective or over-expressed in tumor 

cells. However, other approaches like hepatic cell targeting [63] and magnetic targeting 

[64] are also common.  

Among all the molecules used for specific cancer cell targeting, transferrin (Tf) attachment 

is a widely used strategy [65-67]. Tf receptor is the ubiquitous cell surface glycoprotein 

related to cell proliferation and is over-expressed in malignant tissues because of the 

higher iron demand of malignant cells for fast growth and division [65]. Tf binds to its 

specific receptor on the cell surface and is internalized into the cell by endocytosis.  
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The attachment of ferritin to the nanoparticle surface is another approach related to the 

increased iron requirements of cancer cells. Ferritin is an intracellular protein complex, 

which is intended to store iron in the cell in a non-toxic form. Jain et al [68] developed 

ferritin-mediated LN containing 5-fluorouracil (5-FU) to assess their targetability to breast 

cancer cells. 

Mannose has been also used as a ligand in active targeting of lipid nanocarriers [69]. 

Cancer cells tend to over-express lectin-like receptors with high affinity for polysaccharide 

molecules on their surface. This occurs as a result of the increased requirement for 

carbohydrate molecules by tumor tissues. Mannosylated LN containing doxorubicin 

(DOX) showed enhanced in vitro and in vivo efficacy compared to non-targeted LN or 

free drug [58].  

Taking advantage of the cancer cell augmented metabolism, another targeted strategy 

developed is the use of hyaluronan (HA) of different molecular weights [70, 71]. HA is a 

linear glycosaminoglycan with many biological functions that make it essential in tumor 

development. HA can be covalently attached to the surface of LN to target epithelial 

cancer cells and leukocytes over-expressing HA receptors (CD44 and CD168). Mizrahy et 

al. [70] demonstrated that low molecular weight HA might be used as a secure substitute 

for polyethylene glycol (PEG) if macrophage or complement activation must be avoided. 

Previous studies demonstrated that low molecular weight HA (LMW-HA) but not high 

molecular weight HA (HMW-HA) induced inflammatory response [72]; however, 

Mizrahy et al. showed that macrophage activation avoidance was HA molecular weight 

independent. This could be explained by the low quantity of HA attached to the LN 

surface compared to preceding studies. Besides, HMW-HA may be used to efficiently 
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target CD44 over-expressing tumors due to the strong binding of HMW-HA to the 

receptor. 

Folate-mediated LN has also been developed to achieve active targeting [73, 74]. Folate 

receptor has been identified as a useful tumor marker because it is over-expressed in 

cancer cells. Folate is essential in eukaryotic cells for the biosynthesis of nucleotide bases 

and, as in the previous cases, its requirement is increased in cancer cells by reason of its 

accelerated metabolism.  

αvβ3 integrins are another target in nanocarrier design. These receptors are over-expressed 

in angiogenic vessels and in some cancer cells. In a study carried out by Goutayer et al. 

[75], NLC containing a fluorochrome were functionalized with cyclic triad peptide 

sequence RGD (Arg-Gly-Asp) in order to target αvβ3 integrins. Functionalized LN were 

shown to have a long half-life in plasma and were distributed widely except for the CNS. 

Fluorochrome signal was higher in tumor tissues over-expressing target receptors, 

indicating a targeted distribution of LN. 

Apart from this selective targeting of cancer cells, there is another strategy that consists of 

targeting a specific tissue such as liver or brain. In this sense, selective targeting to hepatic 

cells is another common approach in nanomedicine. Asialoglycoprotein (ASGP) receptor 

is commonly used as a therapeutic target in hepatic disease [63]. In contrast to the 

previous approaches, attaching a hepatic ligand implies targeting of all hepatic cells 

including healthy tissue. Nevertheless, the EPR effect may help to overcome this 

drawback, by promoting uptake of nanocarriers by tumor.  

CNS has also been targeted through the binding of ligands to the LN surface. Cationic 

bovine serum albumin (CBSA) promotes transport across the brain capillary endothelial 

cells [76, 77]. CBSA has recently been used to target LN of DOX to the CNS [78]. In this 
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case, ligand attachment delays in vitro drug release from the nanoparticle. Moreover, 

CBSA-mediated LN were uptaken by cells in a higher rate.  

LN can be also targeted through physical approaches using magnetic fields [64]. Besides, 

drug release from magnetic LN can be controlled when nanoparticles are exposed to an 

alternating magnetic field [79]. 

Summarizing, all these possibilities of targeting lead to the conclusion that, although 

passive targeting has clearly increased antitumor drug efficacy, active targeting clearly 

improves drug efficacy and security. In fact, active targeting of lipid nanocarriers might be 

considered an added improvement of passive targeting. LN accumulate in tumor tissue not 

only due to their physical characteristics but also because of specific binding to cancer 

cells.  

6.2 Cancer therapy using LN  

This review is intended to discuss the treatment of cancer with lipid nanocarriers focusing 

on the past five years. Tumor extirpation combined with radiotherapy, chemotherapy and 

monoclonal antibodies are conventional treatments in early stages of the disease. 

However, these therapies are not always effective and entail severe side effects. For this 

reason, new therapeutic strategies are being investigated. Among all these possibilities, 

LN are promising drug delivery systems due to the possibility of selectively targeting the 

nanoparticles at tumor tissues, providing effective and secure therapies. 

6.2.1 Lung cancer 

Lung cancer is the leading cause of cancer death in the world. This high mortality rates are 

mainly caused by a late diagnosis of the disease that is associated with non-operable 

stages. Non-small cell lung cancer (NSCLC) is the most common lung cancer type [80]. 

NSCLC is composed of heterogeneous aggregates of histologies that include epidermoid 
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or squamous cell carcinoma, adenocarcinoma and large cell carcinoma. Despite 

improvements in NSCLC therapy, the overall survival at 5 years depends on the cancer 

stage at diagnosis varying from 49% or 16% to 2% for patients with local, regional, and 

distant stage, respectively. NSCLC responds badly to radiotherapy and chemotherapy, so 

patients are frequently included in clinical trials [81]. With this basis in mind, novel 

formulations are being developed in order to obtain more secure therapies.  

In the last five years, different authors have incorporated antitumor drugs into lipid 

nanocarriers to treat lung cancer [52, 82, 83]. These studies show that lipid vehicles 

protect labile drugs from degradation, increase drug bioavailability, enhance drug tumor 

uptake and decrease toxicity. Wan et al [83] studied the in vitro efficacy of pegylated-LN 

containing vinorelbine bitartrate (VB) in A-549 cancer cells. VB is a semi-synthetic vinca 

alkaloid currently registered for the treatment of NSCLC in many countries. It is a very 

labile and hydrophilic drug that possesses rapid clearance [84]. Pegylation, coupling of 

PEG to the surface of the nanocarriers, is a common strategy to avoid macrophage uptake 

and subsequent LN clearance by the reticuloendothelial system (RES) [85]. Pegylated-LN 

containing VB were able to reduce macrophage cell uptake by RAW264.7 cells because of 

PEG coupling on their surface; furthermore, they were internalized in a higher rate than 

the free drug in A-549 lung tumor cells. These results might increase in vivo efficacy of 

VB. Another study carried out by Jain et al. [58] was based on the use of LN to 

encapsulate DOX, which is a cytostatic antibiotic with a narrow therapeutic index and 

severe cardiac toxicity. These authors developed a mannosylated LN formulation of DOX, 

which was tested in vitro in A-549 cells. The hemolytic effect of DOX was avoided when 

it was encapsulated into LN. In vivo studies in male BALB/c mice showed that 

intravenously administered LN increased biodisponibility of DOX, which is cleared from 
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plasma very quickly when it is administered in its free form. Moreover, vehiculized DOX 

accumulated in tumor tissue (xenograft A-549) at a higher rate than the free drug, avoiding 

toxicity in healthy cells.  

Gene therapy has also been combined with lipid nanosystems in the treatment of lung 

cancer. Shi et al. [82] investigated the effect of encapsulating anti-microRNA 

oligonucleotides (AMOs) for suppression of microRNA-21 (miR-21) functions in human 

lung cancer cells. A-549 human cancer cell line presents over-expression of miR-21, 

which causes cell proliferation and inhibits apoptosis. These AMOs cannot be 

administered in their free form due to their labile nature, and therefore LN constitute a 

promising drug delivery system in gene therapy. The in vitro results of the study clearly 

indicate that AMOs transfection efficacy is enhanced when it is encapsulated into LDC. 

Besides, this is the first time that AMOs is encapsulated instead of complexed. The high 

rate of transfection in A-549 cells inhibited cell proliferation and promoted apoptosis; 

moreover, cell motility was also inhibited. 

6.2.2 Colon cancer 

Colon cancer is one of the most common cancers worldwide. The prognosis of the disease 

is directly related to the penetration of the cancer through the bowel wall. Bowel localized 

cancer is removed by surgery and is curable in only 50% of the cases because recurrence 

is very frequent. Moreover, as in most cancer types, tumors are detected at an advanced 

stage and so radiotherapy and chemotherapy are the only feasible treatments [86]. 

Antitumor drugs against colon cancer have been encapsulated into LN by several authors 

lately [87, 88]. 5-FU is an antimetabolite widely used in colorectal cancer treatment but it 

presents large individual variability in pharmacokinetics and its toxicity is closely related 
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to this variability. Yassin et al. [87] incorporated this drug into LN successfully; however, 

they did not test the efficacy of the formulation either in vitro or in vivo.  

6.2.3 Breast cancer 

Breast cancer is the second leading cause of cancer death in women after lung cancer. It 

causes death in about 3% of the cases. The decline in death rates since 1990 is mainly a 

result of early detection programs. These preventive measures have allowed the complete 

elimination of most tumors by surgical resection. This measure is commonly associated 

with local radiotherapy, systemic chemotherapy, hormone therapy or targeted therapy 

[89].  

Many drugs have been vehiculized through lipid nanocarriers to achieve better drug 

efficacy and decrease toxicity in breast cancer treatment [58, 65, 68, 75, 83, 90-94].   

Capecitabine is a prodrug of 5-FU that must be converted by enzymes that are mainly 

restricted to the liver and tumor site. In this sense, capecitabine and its analogues have 

fewer side effects than 5-FU; nevertheless, its rapid plasma clearance requires frequent 

dose regimens. LN are a promising tool due to their ability to provide controlled drug 

release and, subsequently, improved dose regimens. Capecitabine analog (5-FCPal) was 

encapsulated by Gong et al. in LN [93]. The in vitro results in MCF-7 breast cancer cells 

showed that encapsulated 5-FCPal was as effective as capecitabine and less toxic than 5-

FU. In vivo study on a mouse breast cancer model in female BALB/c mice did not show 

any significant differences between free capecitabine and encapsulated 5-FCPal analog 

administered via orogastric gavage; however, a tendency to higher efficacy was observed 

in the LN group. The authors also postulate that LN containing 5-FCPal might be 

administered on an intermittent basis obtaining similar efficacy due to controlled drug 
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release. More studies are required in order to demonstrate that LN administered 

intermittently could provide similar efficacy to the free drug administered daily.  

Lu et al. [90] encapsulated the antitumor drug mitoxantrone (MTO) in LN. Heart toxicity, 

myelosupression and local toxicity at injection site are reported frequently when using this 

drug against breast cancer. Authors efficiently overcame these drug drawbacks by using 

LN to vehiculize the drug. A breast cancer model in BALB/c-nu nude mice was 

established and MTO-LN were subcutaneously injected. Not only were LN containing 

MTO more effective in restricting the action of the drug to the tumor site, but additionally, 

they were also able to avoid macrophage uptake by using the PEG derivated surfactant S-

40. Local injection of MTO-LN avoided hepatonecrosis and interstitial pneumonia that is 

caused by the free drug. The breast tumor model was not satisfactory in all animals and, 

therefore statistically significant results were not obtained. Preliminary histopathological 

results showed more necrotic areas and thinner overgrown tumor layer when mice were 

treated with the encapsulated drug. 

Wan et al. [83] evaluated the in vitro efficacy of including the antitumor drug VB in LN. 

As in the preceding study, these authors also aimed to protect LN from macrophage 

uptake, and so they decided to cover the LN surface with PEG. The increment in PEG 

percentage on the surface of the LN increases its hydrophilicity, thus avoiding macrophage 

uptake. In vitro efficacy in MCF-7 cells of nanoencapsulated VB was enhanced about 6.5 

fold compared to the free drug.  

Another approach in breast cancer therapy is the use of hormonal therapy. Most breast 

cancers need estrogen to grow, and estrogen-receptor antagonists are therefore used to 

block the receptor and hamper cancer development. Tamoxifen citrate (TC) is a 

nonsteroidal estrogen antagonist commonly used after mastectomy or in early breast 
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cancer stages. One study from Reddy et al. [91] incorporated TC in LN to evaluate the in 

vivo pharmacokinetics of the encapsulated drug in rats. They showed that 

nanoencapsulation of the drug produced higher plasma concentrations of TC and slower 

clearance, thus demonstrating again the potential use of LN as a secure and efficient drug 

delivery system in breast cancer. 

Tumor targeting improvement through functionalized LN has been demonstrated in a wide 

variety of studies. In the last few years, many studies have focused on the treatment of 

breast cancer with lipid nanocarriers possessing active targeting. Goutayer et al. [75] 

investigated the in vivo distribution of LN and the effect of functionalizing them in their 

biodistribution. They targeted the nanoparticles to αvβ3 integrins, over-expressed on 

angiogenic vessels and tumor tissues, achieving longer nanoparticle plasma circulation 

time. Nanoparticles were accumulated mainly in tumor tissue followed by uterus, ovarian 

and adrenal glands. Tumor targeting was achieved in the case of a cell line over-

expressing the target: in this case, functionalized nanoparticles accumulate in tumor tissue 

in a higher rate than non-targeted LN. Another study conducted by Jain et al. [58], in 

which LN were labeled with mannose, affirmed that functionalized lipid nanocarriers are 

more effective than free drug in inhibiting proliferation in breast cancer cells. Besides, in 

vivo bioavailability and tumor accumulation were enhanced when using LN, especially 

when they were coupled with mannose. Tf mediated LN has also been utilized to target 

antitumor drugs at breast cancer cells [65]. In this study, curcumin efficacy in MCF-7 cells 

was enhanced due to the use of functionalized nanoparticles. Curcumin is a physically 

labile antitumor drug that presents a low bioavailability profile. LN were effective in 

protecting the drug from degradation. Non-targeted LN were also effective but at a lower 

rate than Tf mediated LN. 
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5-FU is one of the most commonly used drugs in the treatment of breast cancer due to its 

effectiveness against several solid tumors; however, it presents serious drawbacks due to a 

lack of specificity for tumor cells [95]. Jain et al. [68] studied the possible advantages of 

using LN to target the drug towards the tumor tissue while avoiding its toxic effects. This 

also included the targeting of the LN with ferritin. In vitro results demonstrated that 

ferritin mediated LN containing 5-FU were internalized at a significant rate by breast 

cancer cells (MDA-MB-468) through a saturable mechanism. Furthermore, drug half-life 

in plasma was significantly enhanced when the drug was encapsulated in nanoparticles. 5-

FU accumulates in the tumor 7.7 times more than drug included in non-targeted LN or free 

drug.  

6.2.4 Brain cancer 

Nowadays brain diseases remain one of the most challenging pathologies to treat. Many 

circumstances make treatment of cerebral tumors particularly complicated. They are in 

many cases inoperable due to their location, and the BBB prevents drugs from crossing 

into the brain. BBB consists of physical (tight junctions) and metabolic (enzymes) 

barriers, which hamper the passing of drugs and toxins from circulation blood to the 

extracellular fluid of the brain. Lastly, the broad heterogeneity of brain malignancies 

makes the individual response to the treatment very unpredictable. Brain tumors are 

associated with high mortality rates despite their low incidence compared to other tumors. 

The pharmacology of brain cancer is always difficult but LN have provided a new insight 

in its treatment alternatives [10, 59, 78, 96-98].  

Several active and passive strategies have been used to enhance targeting of LN at the 

CNS. The inclusion of certain tensioactive agents has been demonstrated to be an 

effectively passive targeting strategy to bypass the BBB. Tensioactives such as Tween 80 
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enhance the binding of plasma proteins, with specificity for the BBB, to the LN surface 

[99]. Moreover, Tween 80 temporarily inhibits the MDR effect mediated by P-gp protein 

avoiding drug efflux [10]. Estella-Hermoso de Mendoza et al. investigated the in vitro 

efficacy and in vivo biodistribution of edelfosine-LN. Edelfosine is an antitumor drug with 

in vitro activity against several cancer cells [5, 10, 100, 101]. This study demonstrated that 

LN are able to inhibit P-gp in vitro and that they can thus revert the C6 cell line resistance 

to the free drug. Moreover, biodistribution studies showed drug accumulation in brain 

tissue after oral administration of the nanoencapsulated drug.  

Active targeting to the brain was also carried out by Agarwal et al. [78]. In this study they 

conjugated DOX LN with CBSA. They based their strategy on previous studies that 

demonstrated that CBSA promotes transport of nanoparticles across the BBB [76, 77]. The 

results of the study showed that CBSA conjugated LN provided slower drug release rates 

than empty-LN; this effect is commonly seen in lipid nanocarriers with attached ligands on 

their surface, which might happen because these added molecules act as extra barriers. 

Drug targeting was successfully achieved in vitro and in vivo through intravenous 

administration. CBSA conjugated-LN were able to target DOX to the CNS improving its 

brain concentration and avoiding side effects in healthy tissues. Kuo and Liang [59, 97] 

also applied active targeting attaching anti-EGFR to the nanoparticle surface, and since 

EGFR is normally expressed in glioma, the attachment of an antibody against this receptor 

can certainly improve drug efficacy. These authors have published two studies in which 

they encapsulate DOX and carmustine into EGFR-targeted LN. Both studies evaluated the 

in vitro efficacy on U87MG cells, and showed that the efficacy of chemotherapy was 

enhanced as a result of the EGFR targeting. 

6.2.5 Ovarian cancer 
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According to the American Cancer Society [102], ovarian cancer accounts for about 3% of 

all cancers in women and causes more deaths than any other cancer of the female 

reproductive system. It mainly affects older women, half of the diagnosed women being 

older than 60 years. As in other tumors, surgical removal of the tumor is the first option. 

Nevertheless, chemotherapy and radiotherapy must be administered in many cases if the 

main tumor cannot be removed or it has metastasized to other parts of the body. 

Chemotherapy in ovarian cancer is usually administered in combination therapy using a 

platinum compound, such as cisplatin or carboplatin, and a taxane, such as paclitaxel 

(Taxol
®
) or docetaxel (Taxotere

®
). Encapsulating, for example, docetaxel, into LN 

increased their efficacy compared to the commercial formulation (Taxotere
®
) [92]. 

Many researchers are investigating new drug delivery systems that may overcome MDR to 

common chemotherapy drugs. Among these new strategies, LN have been successfully 

evaluated in ovarian cancer [62, 70, 92, 103-105].  

As we have seen before, MDR can be overcome by using LN that include specific 

surfactants in their formulation. On this basis, one study developed by Dong et al. [62] 

confirmed that Brij 78 can also inhibit P-gp efflux pump and, consequently, increase not 

only drug internalization but also drug retention inside the cells. The study, which consists 

of LN containing DOX and paclitaxel, showed that both, blank-LN and LN containing the 

antitumor drugs were able to inhibit the P-gp mechanism in P-gp over-expressing human 

ovarian carcinoma cell line NCI/ADR-RES. This inhibition is followed by a transitory 

ATP depletion, which induces mitochondria stress and swelling as a desperate mechanism 

to obtain energy and supply ATP depletion. This study proves that LN containing certain 

tensioactive agents have an effect on the MDR mechanism that helps to achieve higher 

intracellular drug accumulation. In fact, the addition of free DOX after treating the cells 
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with non-loaded LN produced an in vitro cytotoxic effect similar to the drug loaded 

nanocarriers, probably due to the transitory P-gp inhibition.  

6.2.6 Hematological cancer 

Blood cancer includes leukemia, lymphoma and myeloma. Leukemia develops in the bone 

marrow and affects white blood cells; it has different subtypes depending on its speed of 

development and the subtype of white cells involved. Childhood leukemia is the most 

common cancer in children. Lymphoma is a blood cancer that appears as a solid tumor and 

is commonly located in the lymph nodes. It causes the production of abnormal 

lymphocytes. There are two types of lymphoma: non-Hodgkin (more common) and 

Hodgkin. Non-Hodgkin lymphoma is the most common blood cancer in teenagers and 

young people. Myeloma affects the plasma cells on the blood unbalancing the immune 

system. Myeloma mainly occurs in people over the age of 40.  

As has been mentioned before, lymphomas develop in lymph nodes, and so LN might be 

an appropriate tool to fight this cancer. Several studies support the theory that LN are 

absorbed by a lymphatic route after oral administration [8, 20, 61, 106]. LN can passively 

target lymph nodes by concentrating unmetabolized drug at the cancer origin. So far, the 

only study of orally administered LN to treat hematological cancers was performed by 

Estella-Hermoso de Mendoza et al [9]. In this work, very promising results were obtained 

after the oral administration of edelfosine loaded LN to mantle cell lymphoma bearing 

mice. These authors proved that the administration of drug loaded LN every four days was 

as effective as the daily free drug in decreasing tumor growth. Moreover, while the daily 

administration of the free drug was able to reduce the metastases by a half, the 

administration of drug loaded LN orally every four days completely eradicated the 
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metastatization process. This study offers new hopes in orally administered chemotherapy 

to treat this kind of cancer. 

In another study Reddy et al. [107] demonstrated that LN containing etoposide were more 

effective than the free drug after intraperitoneal administration in Dalton’s lymphoma 

ascites bearing mice. Controlled release of etoposide in this kind of intraperitoneal tumors 

is essential due to the necessity of prolonged exposure to the drug to obtain a cytotoxic 

effect. LN remains in the peritoneal cavity after intraperitoneal administration, providing 

sustained release of the drug and thus increasing its antitumor efficacy. Antitumor drug 

encapsulation into LN has been carried out by several authors for treating hematological 

tumors [9, 66, 108, 109]. Idarubicin and DOX were encapsulated into LN by Ma et al. 

[108] in order to avoid P-gp mediated MDR in leukemia patients and subsequent disease 

relapses. The results of the study showed that idarubicin inclusion into LN did not increase 

its efficacy. This could be explained because idarubicin uptake rate is much higher than its 

P-gp mediated efflux because of its lipophilic properties. DOX-LN were, in contrast, more 

effective than the free drug, probably due to the P-gp inhibition mechanism mediated by 

the surfactants (Brij 78 and Vitamin E TPGS) included in the formulation. 

Gene therapy has also been combined with LN in the treatment of leukemia leading to 

protection from serum nucleases, longer blood circulation and increased tumor 

concentration of oligodeoxyribonucleotides [109]. In addition, the coupling of these LN 

with Tf improves its targeting to leukemia cells over-expressing Tf-receptor. Moreover, 

targeting can be enhanced with a pretreatment with defeoxamine, a clinically used iron 

chelator which is known to up-regulate Tf-receptor expression in cells. 

6.2.7 Other cancer types 
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Many other studies have been performed in relation to other cancer types such as prostate, 

tongue, hepatocellular cancer, melanoma and sarcoma [57, 62, 63, 74, 92, 110-113]. In 

these studies, antitumor drugs and genetic material are encapsulated into LN.  

As in other approaches, genetic material is protected from plasma nuclease degradation 

and LN show higher in vitro transfection efficiency than commercially available gene 

carriers [110, 111]. Besides, an in vivo study carried out by Bauman et al. [110] with 

oligonucleotides that down-regulate Bcl-x (an anti-apoptotic member of the Bcl-2 family) 

demonstrated that they are able to induce splicing modification in tumor cells. 

Radiotherapy has also been combined with nanotechnology in the treatment of head and 

neck cancers. Some studies show that β-emitting radionuclides that are included in LN 

better accumulate and localize radiation in the tumor, sparing healthy tissues after 

intratumor administration [112]. 

LN are also a good strategy for topical oral delivery of poorly water soluble drugs used in 

oral cancer chemoprevention strategy [113]. Moreover, LN can reach connective tissue 

and, therefore, they could be used for systemic therapeutics through the oral mucosa. It is 

remarkable that this study also showed that LN must be in a high concentration in the 

treatment site to avoid MDR efflux; at a low concentration they conjugate with glutathione 

and are effluxed by cell proteins.  

The taxanes, including paclitaxel and docetaxel, have broad activity and are extensively 

used in clinical practice in the treatment of cancer. As explained before, several authors 

have vehiculized them into LN to treat ovarian and colorectal cancer; however, prostate, 

hepatocellular or sarcoma, among others, have also been investigated [57, 62, 63, 92]. As 

major antitumor drugs, taxanes comprise severe side effects because of their poor targeting 

and high toxicity; moreover, they exhibit poor water solubility. The studies mentioned 
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above demonstrated that, in all cases, encapsulated drug effects were more potent and 

toxic effects were avoided due to a lower accumulation in healthy tissues.  

 

7. Biodegradation, safety and toxicity aspects 

Over the past years, the development of lipid drug delivery systems has entailed a wide 

range of tasks such as the development of nanosystems that are suitable to specific 

applications, the type of release kinetics (pulsatile, fast, slow) and proof of efficacy. 

Furthermore, it is very important to prove the systems’ safety, which implies at least two 

major entities: the biocompatibility of the delivery system and the safety of the 

systemically distributed drug [114]. The control of the systemic drug distribution can be a 

relatively simple matter of engineering release kinetics so that blood levels are lower. 

Being in the solid state, the lipid components of LN will be degraded more slowly 

providing a longer lasting exposure to the immune system. Degradation can be slowed 

down even more when using sterically stabilizing surfactants that hinder the anchoring of 

enzyme complexes. Reducing biocompatibility problems can be much harder, involving 

drug-tissue interactions and material properties that are still not well understood. However, 

LN are biocompatible and biodegradable and have been used for controlled drug delivery 

and specific targeting. Furthermore, in terms of safety issues, one clear advantage of the 

use of LN as drug carrier systems is the fact that the matrix is composed of physiological 

components, that is, excipients with GRAS status for oral, topical and intravenous 

administration [5, 29, 101, 115, 116], which decreases the possible cytotoxicity. LN have 

been already tested as site-specific carriers mainly for drugs that present a relatively fast 

metabolism and are quickly cleared from the blood, that is, peptides and proteins [117, 

119]. LN are generally well tolerated, and as stated above they are mainly formulated 
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using biocompatible or physiological compounds that can be included in different 

metabolic pathways after degradation [120, 121].  

The biodegradation velocity of nanoparticles affects their toxicological acceptance (e.g. 

concentration of degradation products). As a result, many studies have been focused on the 

toxicology of LN, including genotoxicity and cytotoxicity studies [122]. It was observed 

that these effects usually occur at rather high concentrations, but the effects that happen at 

lower concentrations, without necessarily causing cell death, also should be taken into 

consideration.  

 

8. Concluding remarks  

LN have been shown to be effective carriers in cancer. The inclusion of anticancer drugs 

in LN improves drug efficacy and decreases side effects. Among all the advantages that 

these carriers offer, it is noteworthy that they protect labile drugs from degradation or 

rapid RES clearance. This is particularly relevant in the case of gene therapy or in 

antitumor drugs that have short plasma half-lives. Besides, they not only decrease toxicity 

but they also generally provide longer circulation times and higher concentration of the 

drug in tumor tissue. This proved efficacy is mainly based on passive and active targeting. 

Apart from these general considerations, LN present some particularly relevant 

advantages. First of all, they can be administered orally avoiding the tedious intravenous 

route in chemotherapy. When administered by this route, they are mainly absorbed via the 

lymphatic system, thus opening a new window in treatment of cancer metastases and 

lymphomas. Secondly, they can be targeted to the brain due to its capacity to cross the 

BBB when specific tensioactive compounds (Tween 80, Brij 78) are used in the 

formulation. In vitro studies have demonstrated that these molecules inhibit MDR by 
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inhibiting P-gp efflux pump. LN can easily be scaled up, even obtaining improved results 

over those produced in the laboratory.  

 

9. Expert opinion 

Nowadays, LN are widely being investigated in the field of pharmaceutical technology. 

LN formulations are based on traditional emulsion techniques and a broad spectrum of 

manufacturing methods are currently available. Production methods for LN have been 

widely modified since their invention by Speiser [14] in the 1980s. Most of these methods 

are based on the HPH and warm microemulsion technique developed respectively by 

Müller [17] and Gasco [19] in the 1990s. The investigations carried out in this field have 

led to improved nanoparticles due to the avoidance of degradation of thermolabile 

compounds, non-energy consuming methods, reproducibility, and low surfactant 

concentrations, among other factors. Most of them can be easily scaled up, HPH-based 

procedures being the most suitable for this purpose, as homogenizers have been used for a 

long time in the pharmaceutical industry. Indeed, LN produced on a large scale have been 

seen to present better size quality [29]. Regarding safety issues, LN present the advantage 

of being composed by GRAS lipids for oral, topical and intravenous administration. 

Therefore, LN matrix composition would not be potentially toxic unless large non-ionic 

surfactant or organic solvent quantities are used in the formulation. Several in vivo studies 

demonstrate that the intravenous administration of LN lower than 5 µm does not produce 

macroscopic toxicity [57, 58, 75, 110]. Besides, in vitro toxicity experiments have shown 

that LN do not affect Caco-2 cell viability [123], which makes this system suitable for oral 

administration. However, regardless of the potential safety of these nanosystems, further 

research is necessary in order to elucidate nanoparticle behavior after in vivo 
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administration, emphasizing the study of LN barrier crossing (e.g. intestinal barrier or 

BBB) and cell interaction. The knowledge of this basis would enable us to anticipate 

possible toxic effects.  

The antitumor activity of these nanosystems loaded with antitumor drugs has been widely 

demonstrated since their discovery. Studies carried out in the last five years show that 

antitumor drug toxicity is dramatically reduced when the drug is encapsulated into LN [63, 

92, 124]. Besides, LN provide higher bioavailability rates and prolonged plasma 

circulation times, thus improving drug efficacy [10, 58, 78, 125]. The advantages of LN 

over the administration of free drugs can be mainly explained by the passive and active 

targeting of the tumor tissue, mediated by the lipid vehicle. Another important 

improvement in these systems is that when some tensioactive molecules are used in the 

formulation, LN are able to overcome MDR [10, 62]. This benefit is due to the ability of 

LN to inhibit P-gp protein, which mediates the efflux of antitumor drugs from the cell and 

thus enhances intracellular drug concentration. Targeting anticancer drugs at the tumor 

avoids severe chemotherapy side effects. Although most studies in cancer treatment with 

LN are based on intravenous route, some authors have considered the oral route [9, 10], 

which is better tolerated in terms of patient welfare. These studies suggest that LN are 

absorbed via the lymphatic system after oral administration, achieving high drug 

concentration in lymph nodes. This fact might be very relevant in the avoidance of 

metastases and in lymphoma treatment. Bearing in mind the benefits of orally 

administrated LN, current research efforts should be focused on this route. Further studies 

are required in order to fully characterize their lymphatic absoption. Besides, intracellular 

uptake and interactions between cells and LN must be evaluated with the aim of clarifying 

the biodegradation, safety and toxicity aspects of these vehicles. Despite the need for 
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further research concerning these aspects of the field, and considering all the reviewed 

studies, in our opinion LN should provide more secure and effective antitumor treatments 

in the near future. 

 

Article highlights 

LN have been widely studied since their discovery in the 80’s. The broad spectrum of 

fabrication methods and targeting strategies have improved nanoparticles efficacy in 

tumor treatment.  

Their composition based on GRAS lipids for oral administration, guarantees less potential 

toxicity than other nanovehicles and their scaling-up is currently feasible.  

LN reduce drug toxicity and enhance antitumor activity mainly due to: a) passive and 

active targeting; and b) MDR overcoming (P-gp inhibition). 

Current investigations suggest two relevant advantages of LN in cancer treatment: a) the 

oral administration and further absorption through the lymphatic system; b) BBB 

penetration due to certain formulation components.  
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