ENERGY PERFORMANCE USING OPENSTUDIO AND BUSINESS PROCESS DATA

César Martín-Gómez, María Eguaras, Marina Vidaurre
Universidad de Navarra

SEMANCO workshop. 11th-12th April 2013, Barcelona, Spain
Adapt4EE overview

• The mission
 – Adapt4EE aims at augmenting the contemporary architectural envelope by incorporating business and occupancy related information to the early construction products.
 – Provides a holistic approach to the design and evaluation of the energy performance of construction products at an early stage and prior to their realization.
Adapt4EE Concept

Towards Energy Efficient Building Design

Real Life (Pilot Facilities)

Construction & Design

Designers & Engineers

Monitoring – Real Life Data Acquisition & Analysis

TRAINING

Adapt4EE Enterprise Building Data Modeling (eeBDM)

Business Process Model

Occupancy Model

Building Information Model

Towards Energy Efficient Building Design

Energy Performance Evaluation & Visualization

SIMULATION

SEMANCO workshop, 11th-12th April 2013, Barcelona, Spain
Adapt4EE Innovation

• To identify the relation between energy performance and business performance taking into account *occupant behavior* in the intersection of BPM and BIM.

 – Incorporation of BPM and Simulation data within Enterprise Energy Performance Modeling

• To introduce a *hybrid method engineering* process to conceptualize and design (or adapt existing) modeling languages focusing on energy efficiency in buildings.

• To advance Energy Building Management Systems (EBMS) with *semantically enhanced* middleware framework for efficient and dynamic management of its multi-sensorial cloud.
To provide a **semantically enhanced** Device Middleware

- Extension of the Hydra Middleware to support conceptually the use of devices (e.g. sensors, actuators, etc).
- Assure efficient interfacing between energy efficiency, business process and asset management
- Delivery of a generic set of ontologies with different levels of abstraction (generic and specific domain models) that combine business, assets and other building information with energy profile definitions.

To develop **visualization** and appropriate interaction mechanisms for the efficient detection of complex spatio-temporal patterns of space occupancy and energy consumption.
Why OpenStudio?

• The free software OpenStudio is being used to model the energy performance of the Pilot Sites

• Strengths
 – OpenStudio is a **free tool**.
 – OpenStudio is an **open source project**.
 – The OpenStudio graphical applications include the SketchUp Plug-in, the stand alone OpenStudio application, and ResultsViewer, providing a **friendly GUI** to Energy Plus.
 – The tools’ analysis engine used is **EnergyPlus**.
 – Provides **templates** (constructions, schedules, loads) for a variety of building types.
OpenStudio Models

• Models of the Clinica Universidad de Navarra
 → Basic models ready using default OpenStudio (OS) templates
 - Eighth floor, four models:
 • Doctors and MIR offices
 • Two MIR meeting rooms
 • Day Care Hospital & Dialysis area
 • Consultation area
 - Ground floor, two models:
 • Administration Area (complete and only Coordination area)
 → Gather real info regarding loads (people, lights, equipment) and schedules and collect BPM data. Construct new schedules and loads.
OpenStudio Models

8th floor

Ground floor

SEMANCO workshop, 11th-12th April 2013, Barcelona, Spain
• Doctors and MIR offices
OpenStudio Models

- MIR meeting rooms
OpenStudio Models

- Day Care Hospital & Dialysis area
OpenStudio Models

- Consultation area
OpenStudio Models

- Administration area

SEMANCO workshop, 11th-12th April 2013, Barcelona, Spain
Comparing Results

• Comparing templates and real data

 • OpenStudio provides **two templates for building types** that can be used in the CUN pilot site: Hospital and Outpatient.

 • We have modeled the two MIR meeting-working rooms using the Hospital Office and the Outpatient Office space types.

 • We have used the **info gathered** for the BPM and the actual data of loads (people, schedules, type of lights, number and type of equipment) to create a more realistic model of these meeting rooms, creating **new schedules and loads according to reality**.

SEMANCO workshop, 11th-12th April 2013, Barcelona, Spain
Comparing Results

- Comparing templates and actual data
 - After this **first approach to a more realistic model** we have the following results regarding **energy consumption**, and the **heat addition due to the loads**.
Comparing Results

- Comparing templates and actual data

![Diagram showing energy consumption comparison for different models]

- Hospital Templ: +10% (4.82 GJ), -39% (4.03 GJ)
- Outpatient Templ: +17% (13.03 GJ), -49% (7.9 GJ)
- New Model: -10% (11.16 GJ)
Comparing Results

- Comparing templates and actual data

ANNUAL HEATING LOADS

<table>
<thead>
<tr>
<th>Annual Sum</th>
<th>NEW MODEL</th>
<th>HOSPITAL TEMPLATE</th>
<th>OUTPATIENT TEMPLATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.82</td>
<td>-39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.03</td>
<td>-49%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMANCO workshop, 11th-12th April 2013, Barcelona, Spain
Comparing Results

- Comparing templates and actual data

ANNUAL COOLING LOADS

<table>
<thead>
<tr>
<th>Annual Sum</th>
<th>10.00</th>
<th>10.50</th>
<th>11.00</th>
<th>11.50</th>
<th>12.00</th>
<th>12.50</th>
<th>13.00</th>
<th>13.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW MODEL</td>
<td>11.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.26</td>
<td></td>
<td>13.03</td>
</tr>
<tr>
<td>HOSPITAL TEMPLATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+10%</td>
<td></td>
</tr>
<tr>
<td>OUTPATIENT TEMPLATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+17%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMAMCO workshop, 11th-12th April 2013, Barcelona, Spain
Comparing Results

- Comparing templates and actual data

![Sensible Heat Addition Diagram]

- NEW MODEL
 - People: 6,628 GJ
 - Lights: 9,129 GJ
 - Equipment: 7,365 GJ
 - Total: 23,022 GJ
 - Percentage: 68%

- HOSPITAL TEMPL
 - People: 11,153 GJ
 - Lights: 8,863 GJ
 - Equipment: 5,491 GJ
 - Total: 25,487 GJ
 - Percentage: 84%

- OUTPATIENT TEMPL
 - People: 12,223 GJ
 - Lights: 11,024 GJ
 - Equipment: 3,643 GJ
 - Total: 26,890 GJ
 - Percentage: 16%
Comparing Results

• Comparing templates and actual data
 • Despite the effort of making **real schedules and loads** there are a lot of **uncertainties** so we can not rely on this until the Pilot Sites are monitored.
 • **Occupant behavior**, Actual Weather and Infiltration, are the **main** un-knowns.
 • We have made many assumptions to design the schedules for lights and equipment. We can not know whether the users switch off lights or computers when they all leave the rooms in the morning or at night.
 • We have used average values recommended by ASHRAE 2009 to consider energy consumption of computers and monitors.
 • We are trying to do this effort with the Day Care Model but the degree of assumptions is even higher as the nurses move around the area the whole time.

SEMANCO workshop, 11th-12th April 2013, Barcelona, Spain
Planning Next Period

- Pending tasks:
 - Gather more data of the different areas and design schedules and loads closer to real use of the building.
 - Include in the model the real HVAC systems (now ideal).
 - Enter into the models the data provided by the smart meters.
 - Compare results using the OpenStudio templates and the actual data.