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Abstract

Composition of fuzzy operators often appears

and it is natural to ask when the order of compo-

sition does not change the result. In previous pa-

pers, we characterized permutability in the case

of fuzzy consequence operators and fuzzy inte-

rior operators. We also showed the connection

between the permutability of the fuzzy relations

and the permutability of their induced fuzzy op-

erators. In this work we present some examples

of permutability and non permutability of fuzzy

operators and fuzzy relations in order to illustrate

these results.

Keywords: Permutability, Fuzzy Consequence

Operator, Fuzzy Preorder, Similarity Relation.

1 INTRODUCTION

Composition of fuzzy operators often appears in fields like

fuzzy mathematical morphology or approximate reason-

ing. In fuzzy mathematical morphology, fuzzy operators

are used as morphological filters for image processing [6],

[7]. In approximate reasoning, fuzzy consequence opera-

tors perform the role of deriving consequences from certain

premises and relations [5], [9], [11]. These two fields are

closely related and several results can be transfered from

one field to the other [10]. In previous papers [3], [4] we

studied permutability of the composition of fuzzy conse-

quence operators and fuzzy interior operators in a general

context and we related it to the preservation of the operator

type through composition. We also connected permutabil-

ity of fuzzy relations with permutability of the operators

they induce through Zadeh’s compositional rule. We fo-

cused in the case of fuzzy consequence operators induced

by fuzzy preorders and fuzzy indistinguishability relations.

The aim of this paper is to show that all the studied cases

exist and to provide examples to illustrate each of them.

Our paper is organized as follows: In Section 2 we recall

the main definitions and results that will be used throughout

the paper. In Section 3 we recall the main results about

permutability from our previous work. Finally, in Section

4 we provide a collection of examples to illustrate each of

the studied cases.

2 PRELIMINARIES

In this paper, X will denote a non-empty classical universal

set, [0,1]X will be the set of all fuzzy subsets of X with truth

values in [0,1] and ∗ a left-continuous t-norm.

Definition 2.1. A fuzzy (binary) relation on X is a map

R : X ×X −→ [0,1]. Γ
′ will denote the set of fuzzy binary

relations defined on X. A fuzzy relation R∈ Γ
′ is said to be:

1. Reflexive if R(x,x) = 1 ∀x ∈ X

2. Symmetric if R(x,y) = R(y,x) ∀x,y ∈ X

3. ∗-Transitive if R(x,y)∗R(y,z)≤ R(x,z) ∀x,y,z ∈ X

A reflexive and ∗-transitive fuzzy relation is called a fuzzy

∗-preorder. If it also satisfies symmetry, then it is called a

fuzzy ∗-similarity or ∗-indistinguishability relation. Given

R,S ∈ Γ
′, we say that R ≤ S if and only if R(x,y) ≤ S(x,y)

for all x,y ∈ X.

Composition of fuzzy relations is given by the sup-∗ com-

position.

Definition 2.2. Let R,S ∈ Γ
′ be fuzzy relations on a set X

and ∗ a t-norm. The sup-∗ composition of R and S is the

fuzzy relation defined for all x,y ∈ X by

R◦S(x,y) = sup
w∈X

{R(x,w)∗S(w,y)} (1)

The transitive closure of a fuzzy relation R is the smallest

upper approximation of R which is ∗-transitive [2]. More

precisely,
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Definition 2.3 . W e define the ∗-tr a nsitiv e closur e R of a

fuzzy relation R as the fuzzy relation given by

R= inf
S∈Γ̂

R≤S

{S} (2)

where Γ̂ denotes the set of all ∗-transitive fuzzy relations in
X.

The explicit formula for the transitive closure is given

by R = supn∈NR
n where the power of R is defined using

the sup-∗ composition. The ∗-transitive closure of a

refl exive fuzzy relation is a fuzzy ∗-preorder and the

∗-transitive closure of a refl exive and symmetric relation is

an ∗-indistinguishability relation.

A fuzzy operator is a mapC : [0,1]X −→ [0,1]X . We denote

Ω
′ the set of fuzzy operators defined from [0,1]X to [0,1]X .

Definition 2.4 . A fuzzy operator C ∈ Ω
′ is called a fuzzy

consequence operator (FCO for short) when it satisfies for

all µ,ν ∈ [0,1]X :

1. Inclusion µ ⊆C(µ)

2. Monotony µ ⊆ ν ⇒C(µ)⊆C(ν)

3. Idempotence C(C(µ)) =C(µ)

Ω will denote the set of all FCO on X.

Definition 2.5 . [ 1] A fuzzy operator C ∈ Ω
′ is called a

fuzzy interior operator (FIO for short) when it satisfies for

all µ,ν ∈ [0,1]X :

1. Anti-inclusion C(µ)⊆ µ

2. Monotonicity µ ⊆ ν ⇒C(µ)⊆C(ν)

3. Idempotence C(C(µ)) =C(µ)

Λ will denote the set of all FIO on X.

The inclusion of fuzzy subsets is given by the pointwise

order, i.e. µ ⊆ ν if and only if µ(x) ≤ ν(x) for all x ∈ X .

G iven two fuzzy operators C1, C2 we say that C1 ≤ C2

if C1(µ) ⊆C2(µ) for all µ ∈ [0,1]X .

E very fuzzy relation induces a fuzzy operator using

Zadeh’s compositional rule.

Definition 2.6 . Let R ∈ Γ
′ be a fuzzy relation on X. The

fuzzy operator induced by R through Z adeh’s composi-

tional rule is defined by

C∗R(µ)(x) = sup
w∈X
{µ(w)∗R(w,x)} (3)

L et us recall the definitions of fuzzy closure and fuzzy inte-

rior of a fuzzy operatorC. The fuzzy closure is the smallest

FCO which is greater than or equal to C. The fuzzy inte-

rior is the greatest FIO which is smaller than or equal to C.

Formally,

Definition 2.7 . Let C : [0,1]X −→ [0,1]X be a fuzzy opera-

tor. W e define the fuz z y closur e C of C as the fuzzy operator

given by

C = inf
φ∈Ω

C≤φ

{φ} . (4)

Definition 2.8 . Let C : [0,1]X −→ [0,1]X be a fuzzy opera-

tor. W e define the fuz z y inte r ior
◦
C of C as the fuzzy operator

given by
◦
C = sup

φ∈Λ

C≥φ

{φ} . (5)

3 PERMUTABILITY

First of all, let us recall the definitions of permutability for

fuzzy relations and fuzzy operators.

Definition 3 .1. Let R,S ∈ Γ
′ be fuzzy relations. W e say

that R and S pe r mute (or that R and S are permutable) if

R◦S= S◦R where ◦ is the sup-∗ composition.

Definition 3 .2. Let C,C′ be fuzzy operators. W e say that

C and C′ pe r mute (or that C and C′ are permutable) if

C ◦ C′ =C′ ◦ C where ◦ is the usual composition.

3 .1 PERMUTABILITY OF FCO AND FIO

In [3] we proved the following results which character-

ize permutability between FCO and the dual case of FIO.

Proofs are provided there.

For two fuzzy consequence operators to permute it is nec-

essary and sufficient that their composition gives a FCO in

both directions:

Th eorem 3 .1. Let C,C′ be fuzzy consequence operators.

Then, C and C′ permute if and only if C ◦C′ and C′ ◦C are

fuzzy consequence operators.

H ence, permutability appears when the operator type is

preserved.

Proposition 3 .2. LetC,C′ be fuzzy consequence operators.

Then, C ◦C′ is a fuzzy consequence operator if and only if

C ◦C′ = max(C,C′).

A s a consequence of the previous result we have thatC and

C′ permute if and only if both C ◦C′ and C′ ◦C coincide

with max(C,C′).

The dual results hold for fuzzy interior operators. For two

fuzzy interior operators to permute it is necessary and suffi-

cient that their composition gives a FIO in both directions.

In this case, their composition is the interior of their mini-

mum.

Th eorem 3 .3 . Let C,C′ be fuzzy interior operators. Then,

C and C′ permute if and only if C ◦C′ and C′ ◦C are fuzzy

interior operators.
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Proposition 3 .4 . Let C,C′ be fuzzy interior operators.

Then, C ◦C′ is a fuzzy interior operator if and only if

C ◦C′ =
◦

min(C,C′).

H ence,C andC′ permute if and only if bothC◦C′ andC′◦C

coincide with
◦

min(C,C′).

3 .2 PERMUTABILITY OF FCO INDUCED BY

FUZ Z Y RELATIONS

It was proved in [13] that two ∗-indistinguishability re-

lations defined on a finite set X permute if and only if

E ◦ F is an ∗-indistinguishability relation. In this case,

E ◦F = max(E,F).

In [4], this result was extended to general fuzzy preorders

and any set X , finite or not.

Th eorem 3 .5 . Let R and P be two fuzzy ∗-preorders on X.

Then, R and P are permutable if and only if R◦P and P◦R
are fuzzy ∗-preorders. In this case, R◦P coincides with the

∗-transitive closure max(R,P) of max(R,P).

N otice that both compositions are needed in order to obtain

permutability. In Section 4 we will illustrate this fact with

an example.

Since indistinguishability relations are preorders that also

satisfy the symmetric property, we can soften this con-

straint.

Proposition 3 .6 . Let E and F be two ∗-indistinguishability
relations on X. Then, E and F are permutable if and only

if E ◦ F is a ∗-indistinguishability relation. In this case,

E ◦F coincides with the ∗-transitive closure max(E,F) of
max(E,F).

Composition of fuzzy operators induced by fuzzy relations

using Zadeh’s compositional rule can be described in terms

of the inducing relations as shown in the following propo-

sition. This description makes natural to think that per-

mutability of fuzzy relations is connected to permutability

of the operators they induce.

Proposition 3 .7 . Let R,S be two fuzzy relations and let

C∗R and C∗S be the corresponding fuzzy operators induced

through Z adeh’s compositional rule. Then,

C∗R ◦C
∗
S =C∗S◦R (6)

where S ◦ R denotes the sup-∗ composition of fuzzy rela-

tions.

L et us focus on the case of operators induced by fuzzy

preorders. It is well known that fuzzy operators induced

from fuzzy relations through Zadeh’s compositional rule

are fuzzy consequence operators if and only if the relation

is a fuzzy preorder [8]. H owever, not every FCO can be

induced by a preorder. The relation between permutabil-

ity of fuzzy preorders and permutability of their induced

consequence operators can be summarized in the following

theorem.

Th eorem 3 .8 . [ 4 ] Let R,P be fuzzy ∗-preorders. Then,

C∗R ◦C
∗
P = C∗P ◦C

∗
R ⇔ R◦P = P◦R

If the preorders are fuzzy indistinguishability relations, the

induced operators behave specially well.

Proposition 3 .9 . [ 12] Let E be a fuzzy ∗-
indistinguishability relation and let C∗E be the fuzzy

operator induced through Z adeh’s compositional rule.

Then,

1. C∗E is a fuzzy consequence operator.

2. C∗E(
⋃

i∈I µi) =
⋃

i∈IC
∗
E(µi) for any index set I and all

µi ∈ [0,1]X .

3. C∗E({x})(y) = C∗E({y})(x) for all x,y ∈ X where {x}
denotes the singleton of x.

4 . C∗E(α ∗µ) =α ∗C∗E(µ) for any constant α ∈ [0,1] and
µ ∈ [0,1]X .

Moreover, every fuzzy operator satisfying conditions of

Proposition 3.9 can be written in the form C∗E for a cer-

tain ∗-indistinguishability relation E. H ence, there is a bi-

jection between the set of ∗-indistinguishability relations

and the set of fuzzy operators satisfying the conditions of

Proposition 3.9.

E ven if C∗E and C∗F do not permute, their composition al-

ways satisfy the following properties.

Proposition 3 .10 . Let E,F be fuzzy ∗-indistinguishability
relations. Then, C∗E◦F satisfies properties 2, 4 of Proposi-

tion 3.9 . Moreover, it satisfies the inclusion and monotony

properties from the definition of FCO .

In [4] we proved that permutability of operators induced by

similarity relations can be characterized as follows:

Th eorem 3 .11. Let E, F be ∗-indistinguishability rela-

tions. Then, their consequences C∗E and C∗F permute if and

only if E ◦F is an indistinguishability relation.

Corollary 3 .12. Let C,C′ be fuzzy operators satifying all

the conditions of Proposition 3.9 . Then, C and C′ permute

if and only if C ◦C′ also satisfies all these conditions.

4 EX AMPLES

The aim of this section is to illustrate the results given in

Section 3 with different examples. We will provide cases

of fuzzy operators and fuzzy relations that do and do not

permute.

The first example shows that the condition in Theorem 3.5

cannot be softened. Preservation of the operator type in
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one direction is not enough to obtain permutability between

fuzzy consequence operators.

Example 4 .1. Let X be a non empty classical set and let

α,β ∈ R such that 0 < β < α < 1. Let C′ and C be FCO

defined as follows:

C′(µ)(x) =





1 i f µ(x)> β

β i f µ(x)≤ β

C(µ)(x) =





1 i f µ(x)> α

α i f µ(x)≤ α .

Note that C′ ◦C is a FCO . In fact, C′ ◦C = max(C,C′) = X

where X(µ)(x) = 1 for all x ∈ X and µ ∈ [0,1]X . H owever,
C and C′ d o not pe r mute . Indeed, one has

(C ◦C′)(µ)(x)





1 i f µ(x)> β

α i f µ(x)≤ β

which is not a FCO since it does not satisfy idempotence.

The next example proves that there exist fuzzy conse-

quence operators that permute.

Example 4 .2. Let X be a non empty classical set. Let

x1,x2 ∈ X with x1 6= x2 and let C′ and C be defined as

C′(µ)(x) =





1 i f x= x1

µ(x) otherwise

C(µ)(x) =





1 i f x= x2

µ(x) otherwise

Notice that C and C′ are FCO and pe r mute , i.e. C ◦C′ =
C′ ◦C, and by Thm. 3.2, their composition

C′ ◦C(µ)(x) =





1 i f x= x1 or x= x2

µ(x) otherwise

is a FCO .

L et us show some cases of permutability and non-

permutability of min-preorders. From Theorem 3.8, their

induced consequence operators behave in the same way as

the relations do.

For simplicity, we shall write C∗R instead of Cmin
R .

Example 4 .3 . Let R and P be fuzzy min-preorders (but not

similarities) defined as follows:

R=




1 0.3 0.6

0.7 1 0.75

0.4 0.3 1


 P=




1 0.7 0.8

0.55 1 0.7

0.4 0.4 1




R and P pe r mute and therefore, their consequences also

do.

max(R,P) = R◦P= P◦R=




1 0.7 0.8

0.7 1 0.75

0.4 0.4 1




Tak ing for example, µ =
(

0.2 0.8 0.5
)
, it is easy to

see that

C∗R ◦C
∗
P(µ) =C∗P ◦C

∗
R(µ) =

(
0.7 0.8 0.75

)

Example 4 .4 . Let Q and S be fuzzy min-preorders (but not

similarities) defined as follows.

Q=




1 0.4 0.5

0.6 1 0.5

0.3 0.3 1


 S=




1 0.3 0.6

0.7 1 0.75

0.4 0.3 1




Their compositions are given by

Q◦S=




1 0.4 0.6

0.7 1 0.75

0.4 0.3 1




S◦Q=




1 0.4 0.6

0.7 1 0.75

0.4 0.4 1




Notice that max(S,Q) = S◦Q but Q and S d o not pe r mute .

Tak ing µ =
(

0.2 0.3 0.5
)
, it is easy to see that

C∗Q ◦C
∗
S(µ) =

(
0.4 0.4 0.5

)

C∗S ◦C
∗
Q(µ) =

(
0.4 0.3 0.5

)

Example 4 .5 . Let E and F be fuzzy min-

indistinguishability relations defined as follows.

E =




1 0.8 0.7 0.7

0.8 1 0.7 0.8

0.7 0.7 1 0.7

0.7 0.8 0.7 1




F =




1 0.6 0.5 0.8

0.6 1 0.5 0.6

0.5 0.5 1 0.5

0.8 0.6 0.5 1



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Notice that E and F pe r mute .

max(E,F) = E ◦F = F ◦E =




1 0.8 0.7 0.8

0.8 1 0.7 0.8

0.7 0.7 1 0.7

0.8 0.8 0.7 1




Therefore, C∗E and C∗F also pe r mute .

Example 4 .6 . Let E and F be fuzzy min-

indistinguishability relations defined as follows.

E =




1 0.4 0.4 0.4

0.4 1 0.8 0.7

0.4 0.8 1 0.7

0.4 0.7 0.7 1




F =




1 0.5 0.7 0.8

0.5 1 0.5 0.5

0.7 0.5 1 0.7

0.8 0.5 0.7 1




E and F d o not pe r mute .

F ◦E =




1 0.7 0.7 0.8

0.5 1 0.8 0.7

0.7 0.8 1 0.7

0.8 0.7 0.7 1




E ◦F =




1 0.5 0.7 0.8

0.7 1 0.8 0.7

0.7 0.8 1 0.7

0.8 0.7 0.7 1




H owever, as seen in Proposition 3.10 , both compositions

C∗E ◦C
∗
F and C∗F ◦C

∗
E satisfy properties 2, 4 of Proposi-

tion 3.9 and the inclusion and monotony properties from

the definition of FCO .
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