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ABSTRACT 

The characteristics of the lipid matrix surrounding sterols exert a great influence in their thermal oxidation process. The objective of 

this work was to assess the oxidation susceptibility of equal amounts of cholesterol and stigmasterol within a sunflower oil lipid matrix 

(ratio 1:1:200) during heating (180 ºC, 0 to 180 min). Remaining percentage of sterols was determined and seven sterol oxidation 

products (SOPs) were analyzed for each type of sterol along the heating treatment. Evolution of the fatty acid profile and vitamin E 

content of the oil was also studied. Overall oxidation status of the model system was assessed by means of Peroxide Value (PV) and 

TBARS. PV remained constant from 30 min onwards and TBARS continued increasing along the whole heating treatment. 

Degradation of both cholesterol and stigmasterol fitted a first order curve (R
2
= 0.937 and 0.883, respectively), with very similar 

degradation constants (0.004 min
-1

 and 0.005 min
-1

, respectively). However, higher concentrations of oxidation products were found 

from cholesterol (79 µg/mg) than from stigmasterol (53 µg/mg) at the end of the heating treatment. Profile of individual oxidation 

products was similar for both sterols, except for the fact that no 25-hydroxystigmasterol was detected. 7α-hydroxy and 7-keto-

derivatives were the most abundant SOPs at the end of the treatment. PUFA and vitamin E suffered a significant degradation along the 

process, which was correlated to sterols oxidation. 

 

Keywords: sterols, vitamin E, polyunsaturated fatty acids 



 3 

HIGHLIGHTS 

1. Cholesterol and stigmasterol fitted a first order degradation curve, with similar kinetic constants. 

2. Higher concentrations of oxidation products were found from cholesterol than from stigmasterol. 

3. Profile of individual oxidation products was similar for both sterols 

4. PUFA and vitamin E degradation correlated to sterols oxidation. 

 

 

 

 

 

 

ABBREVIATIONS 

PV Peroxides Value 

TBARS Thiobarbituric Acid Reactive Species 

SOPs Sterol Oxidation Products 

COPs Cholesterol Oxidation Products 
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StOPs Stigmasterol Oxidation Products 

PUFA Polyunsaturated Fatty Acids 

MUFA Monounsaturated Fatty Acids 

SFA Saturated Fatty Acids 
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1. Introduction 

Sterol oxidation products (SOPs) have been extensively reported to be involved in a variety of pathologies and diseases [1-4]. Their 

formation occurs endogenously both by enzymatic or non-enzymatic pathways, from sterols present in plasma and tissues [5]. 

Furthermore, sterol oxidation can also take place in foods before consumption [6]. In this issue, both cholesterol, as the main animal 

sterol, and plant sterols, which are used to enrich foods due to their hypocholesterolemic capacity, are susceptible to be oxidized in 

certain conditions, generating oxysterols. The incorporation of these exogenously formed oxysterols into the organism through the diet 

has been widely discussed. Although the intestinal absorption of these compounds (both from cholesterol and plant sterols) has been 

demonstrated [7-9], the relevance of phytosterol absorption versus endogenous formation of these compounds is still under debate, and 

some scientific evidence has been achieved [10-11]. So, assessment and control of factors affecting sterol oxidation in foodstuffs is a 

matter of interest for food safety purposes. 

Among these influencing factors, processing, cooking and storage conditions clearly affect the oxysterols formation [12-14]. 

Furthermore, the presence of the surrounding lipids and their unsaturation degree exert some kind of effect, affecting the pattern of 

resulting oxidation products and also modulating the intensity and rate of oxidative reactions [15-18]. Additionally, both synthetic and 

natural antioxidants have presented promising results against sterol oxidation, being phenolic compounds and some vitamins some of 

the most studied compounds [19-20]. To study in detail all these influencing factors, model systems have been frequently used: from 

net model studies where only chemical standards are used as integrants of the experiments [16-17], often using stigmasterol as the 
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plant sterol, to intermediate model systems, where chemical standards are mixed within foods [15, 20, 21]. This strategy allows 

isolating factors to be assessed, avoiding ambiguity from interferences among them. Thus, a deeper understanding of the underlying 

mechanisms is allowed and kinetic curves can be determined easily. Previous studies have been made in this regard, obtaining some 

mathematical models for sterols’ degradation under thermal treatment, when they were heated alone and in the presence of pure 

triacylglycerols of increasing unsaturation degree [18, 22]. 

Considering all this, and taking into account that a combination of both animal and plant sterols can be found in foods intended for 

cholesterol-lowering purposes, the aim of the current study was to assess the thermal stability and oxidation susceptibility of a mixture 

of cholesterol and stigmasterol within a highly unsaturated oil (sunflower oil). The influence of both the saponifiable and 

unsaponifiable fractions of the oil on these processes was analyzed. 

2. Experimental 

2.1 Reagents and materials 

Cholesterol, stigmasterol, 5α-cholestane, heptadecanoic acid, α-tocopherol, tocopherol acetate, ammonium thyocianate and 

thiobarbituric acid were purchased from Sigma-Aldrich Chemical (Steinheim, Germany). 19-hydroxycholesterol was obtained from 

Steraloids (Wilton, NH, USA). Tri-sil
®
 reagent was obtained from Thermo-Scientific (Rockford, IL, USA). Hexane, heptane, acetone, 

chloroform, ethyl acetate, butanol, methanol, 2-propanol, hydrochloric acid, cyclohexanone, trichloroacetic acid, potassium chloride, 

potassium hydroxide, ammonium iron (II) sulphate, barium chloride, anhydrous sodium sulphate and sodium phosphate were obtained 
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from Panreac (Barcelona, Spain). Strata NH2 (55 µm, 70 A) 500 mg / 3 mL Solid Phase Extraction cartridges were obtained from 

Phenomenex (Torrance, USA). Sunflower oil was purchased in a major local distributor. 

2.2 Heating process 

Cholesterol (30 mg), stigmasterol (30 mg) and sunflower oil (6 g) were solved in 25 mL of chloroform. Then, aliquots (1 mL) were 

placed in tubes and the solvent was evaporated under a gentle stream of N2. Tubes were then placed in a Tembloc (P Selecta, Spain) 

and heated at 180 ºC for 0, 5, 10, 20, 30, 60, 120 and 180 min. After each corresponding time, tubes were rapidly cooled down and 

each sample was solved in 1 mL chloroform and shaken vigorously. Samples were kept under -20 ºC until analysis (except for 

Peroxides Value, that was determined immediately after heating). The experiment was performed in triplicate. 

2.3 Peroxides value 

Peroxides Value (PV) was analysed following the method of Shanta and Decker [23] with slight modifications. Briefly, an aliquot (50 

µL) of sample was transferred to a tube and chloroform was evaporated under a stream of N2. The residue was solved in 5 mL of a 

mixture butanol:methanol, (2:1). SCNNH4 (30 % in distilled water, 25 µL) was added and tubes were vortexed for 4 s. Then, a solution 

of FeCl2 (36 mM in HCl, 25 µL) was added and tubes were vortexed. After 15 min, absorbance was measured at 510 nm in a 

FLUOStar Omega spectrofluorometric analyzer (BMG Labtechnologies, Offenburg, Germany). A calibration curve with Cumene 

hydroperoxide was done for quantification. Results were expressed as meq O2 / Kg sample, being the data the average of 2 

measurements per replicate (n=6). 
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2.4 TBARS 

TBARS values were determined according to the method described by Poyato et al. [24]. Briefly, an aliquot (1 mL) of sample was 

transferred to a tube and chloroform was evaporated under a stream of N2. Distilled water (0.5 mL), BHT (20 µL, 1%) and the TBARS 

reagent (2 mL) were vortexed, placed in a boiling water bath for 15 min and then cooled down in an ice bath to room temperature. 

Cyclohexanone (4 mL) and ammonium sulphate (1 mL, 4M) were added to the mixture and vortexed. The mixture was centrifuged at 

1300 g for 10 minutes. The absorbance was measured at 532 nm in a FLUOStar Omega spectrofluorometric analyzer (BMG 

Labtechnologies, Offenburg, Germany). Results were expressed in mg of malondialdehyde (MDA) / Kg sample. 

2.5 Sterols determination 

An aliquot (50 µL) of sample was transferred to a tube and chloroform was evaporated under a stream of N2. Cholesterol and 

stigmasterol determination was performed as described in Barriuso et al. [22], with slight modifications that only affected the 

chromatographic conditions applied. In this case, the equipment used was an Agilent 6890N-5975, a Column Varian VF-5ms CP8947 

(50 m x 250 µm x 0.25 µm) with the oven conditions as follows: temperature started at 85 ºC, increased to 290 ºC at a rate of 50 

ºC/min, increased to 291 ºC at a rate of 0.05 ºC/min. 

2.6 Sterol oxidation products determination 

An aliquot (800 µL) of sample was transferred to a tube and chloroform was evaporated under a stream of N2. 19-hydroxycholesterol 

(1 mL of 20 μg/mL in hexane:2-propanol, 3:2) was added as internal standard. Solid phase extraction (SPE) was performed for 
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purification of SOPs as described in Ansorena et al.[18]. The sample solutions of cholesterol and stigmasterol oxidation products were 

derivatized to trimethylsilyl (TMS) ethers. Their chromatographic analysis, identification and quantification were performed according 

to the validated method of Menéndez-Carreño et al. [25]. Calibration curves of COPs were also used to quantify StOPs, as it has been 

demonstrated that the response factor obtained for cholesterol oxidation products are also valid for quantitative work regarding 

phytosterol oxidation products [26]. Seven different SOPs from each sterol were determined: 7α-hydroxy (7α-H), 7β-hydroxy (7β-H), 

5,6β-epoxy (β-E), 5,6α-epoxy (α-CE), 3,5,6-triol (T), 25-hydroxy (25-H), 7-keto (7-K).  

2.7 Fatty acids determination 

An aliquot (800 µL) of sample was transferred to a round bottom flask and chloroform was evaporated under a stream of N2. Fatty acid 

profile was obtained by gas chromatography FID detection, previous preparation of the fatty acid methyl esters, as described in 

Ansorena et al. [27]. 

2.8 Vitamin E determination 

The α-tocopherol (α-TOH) content was determined by HPLC-UV analysis according to the method described by Berasategi et al. [28]. 

Briefly, an aliquot (800 µL) of sample was transferred to a volumetric flask and chloroform was evaporated under a stream of N2.  α-

tocopherol acetate (0.1 mL, 10 mg/mL solved in methanol) was added as internal standard and the flask was filled up to 10 mL with 

previously warmed (30 ºC) supergradient HPLC grade methanol. Dilution was vortexed for 30 sec and filtered with 0.20 μm filter 

(Syringe-driven Filter Unit, Millex
®
). The sample (10 µL) was injected into the HPLC system and a isocratic elution with 
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methanol/water (97:3) at 1.5 mL/min flow was performed. UV spectra were recorded at 295 nm on a Perkin Elmer UV-Vis Lambda 

200 Series equipped with a photodiode array detector Series 200 PDA, using an analytical precolumn (3.8 mm x 8 mm with 4 mm x 3 

mm of C18 cartridges, Phenomenex, California, USA) and a LC18 column (150 mm x 3.9 mm, 4 μm particle size; Waters). 

Identification of α-tocopherol was done using the retention time of the pure standard compound and its characteristic UV spectra. The 

quantification was performed using a calibration curve previously plotted with tocopherol acetate. 

2.9 Statistics 

For the statistical analysis of the data, Stata 12 program was used. Mean and standard deviation of data obtained from each replicate 

were calculated. One factor ANOVA, with Bonferroni’s post hoc multiple comparisons (p<0.05), was applied to evaluate the 

significant differences on sterols and SOPs amounts along heating time. t-Student was applied to evaluate the significant differences 

between cholesterol and stigmasterol data. For the mathematical modelling of cholesterol and stigmasterol degradation, the non-linear 

regression analysis was used. Correlations were assessed by Pearson´s correlation test. 

3. Results and discussion 

Overall oxidation status of samples at every point of analysis was assessed by means of both primary and secondary oxidation products 

(Figure 1). These methods inform about the presence of oxidation compounds originated both from the lipid matrix and the added 

sterols. Peroxides Value (PV) sharply increased, reaching a maximum at 30 min and maintaining a constant formation-degradation rate 

afterwards. The maximum value found (16 meq O2 / Kg) was significantly lower than that reported in a previous study [18] in which 
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sterols were heated within unsaturated matrices lacking antioxidants (up to 40 meq O2 / Kg). On the other hand, TBARS values 

increased progressively along the whole heating process. Evolution of both parameters was the expected ones for oxidation processes. 

3.1 Sterol-structure effect 

Figure 2a showed the evolution of the remaining amounts of cholesterol and stigmasterol during heating. They both followed a very 

similar degradation pattern, fitting a first order curve (R
2 

= 0.937 and 0.883) with similar kinetic constants: [cholesterol] = 93.34e
-0.004 t 

; [stigmasterol] = 89.19e
-0.005 t

. This pattern was also observed by Xu et al. [30], where cholesterol and sitosterol degraded equally 

under heating treatment. Despite this similar degradation rate during heating, some differences were noticed between the two sterols 

for the formation of their respective polar oxysterols (Figure 2b). Higher concentrations of oxidation products were found from 

cholesterol than from stigmasterol already after 60 min heating. After 180 min treatment, a similar percentage of cholesterol and 

stigmasterol were still remaining (around 40 %) and a difference of 30 µg/mg for oxysterols was detected. This is in accordance to 

previous works in model and food systems, where similar degradation rates had been noticed for different sterols, but higher amounts 

of COPs than of StOPs were found within the same experiment [22, 29]. Additionally, Xu and coworkers [30] reported slightly higher 

amounts of oxysterols from cholesterol than those from sitosterol after heating samples in several oil matrices.  

Cholesterol and stigmasterol are structurally very similar, only differing in their side alkyl chain. Therefore, similar susceptibility to 

oxidation is expected for their 5, 6 and 7 ring-positions (which were the major oxidation sites found in this work, as it will be 

explained later). Lengyel et al. [31] calculated the enthalpy for C-H bond breakage in position 7 and obtained exactly the same value 



 12 

for both sterols: 328 KJ/mol. Nevertheless, a variety of other factors different than thermodynamics might be involved in the 

differential oxysterol formation from cholesterol compared to stigmasterol. Different kinetics, distinct dimers formation rate and steric 

hindrance of the molecule could be taken into account to explain these frequently found results. 

3.2 Oxysterols distribution 

Despite the different total amount of COPs and StOPs, the distribution and evolution pattern of individual oxidation products was 

similar for both sterols (Table 1). All oxysterols except for epoxides, increased their presence during heating, being 7-keto derivative 

the major one during the first stages of the treatment. After 30 min, and simultaneously to the drastic vitamin E loss, a sharp increase 

of oxysterols was found, finding a maximum at 120 min heating. At this point, percentage of 43, 40 and 15 % for cholesterol derived 

compounds and 45, 38 and 17 % for stigmasterol derived ones were achieved for 7-hydroxydes, epoxides, and 7-ketones, respectively. 

Although this is not an unusual distribution [14, 32], 7-keto derivatives are more frequently found as the major ones, mainly in 

advanced stages of oxidation. This point was also critical for epoxydes behavior, which started to decrease afterwards, with beta-

isomers being formed in higher amounts than alpha ones, as the steric hindrance of hydroxyl group in position 3 determines [33]. 

Oxysterols degradation after long-term high thermal treatments is commonly found. This behavior has been related to the formation of 

dimers and oligomers of varying polarity [34, 35]. Regarding oxidation that affects the side chain, whereas a small content on 25-

hydroxycholesterol could be noticed, no 25-hydroxystigmasterol was detected in the sample. Although the theoretically calculated 

enthalpies for C25 would indicate a more labile bond for stigmasterol than for other sterols (and the subsequent higher formation of 
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25-hydroxycholesterol) [31], no formation of this compound under heating conditions of stigmasterol solved in vegetable oils has been 

previously reported [15]. 

3.3 Surrounding matrix effect 

The effect of the lipid matrix on sterols oxidation is dependant on temperature and experimental conditions [36]. So, to study the effect 

of the sunflower oil towards cholesterol and stigmasterol oxidation, data of a previous study performed in the same experimental 

conditions but without any lipid surroundings were considered [22]. Sterols heated alone suffered a more intense degradation than 

within the sunflower oil matrix. After 5 min treatment, the percentages of remaining cholesterol were 60 and 90 % in absence and 

presence of sunflower oil, respectively. Considering stigmasterol results, 50 and 90 % of the initial sterol content remained in same 

conditions.  On the other hand, oxysterols were formed much faster when sterols were heated alone, reaching after 5 min heating 

similar values than after 180 min in the presence of sunflower oil. The amount of oxysterols formed was, after 10 min, 79 Vs 4 µg 

COPs / mg cholesterol and 51 Vs 7 µg StOPs / mg stigmasterol for sample alone Vs sample within sunflower oil.  

The protective effect of the lipid surrounding matrix to sterol oxidation was also described by Ansorena et al. [18], using pure 

triacylglycerols, and by Yen and co-workers [37, 38], who reported that cholesterol was oxidized more slowly within lard than alone. 

This behavior could be related to dilution of the sample, physical protection or competition for oxygen of the surrounding lipids [39]. 

Furthermore, vitamin E content of the sunflower oil could also be behind this protective effect against the sterol oxidation. In this 

sense, Xu et al. (2009) attributed to tocopherol the slower oxidation rate of both cholesterol and β-sitosterol in the presence of corn and 
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olive oil. In our work, vitamin E was rapidly affected by heating, being lost already a 17 % after 5 min treatment, and continued 

dropping until a 80 % loss after 180 min (Table 2). This table also reported the evolution of fatty acids along treatment. Linoleic, the 

most abundant one in sunflower oil, decreased significantly from the first 10 min of treatment, and a 36 % loss was noticed at the end 

of the heating process. Modification of the rest of fatty acids was less noticeable from the quantitative standpoint. 

Figure 3 plotted the evolution during heating of both sterols (Fig 3a) and their oxides (Fig 3b) along with the evolution of the 

vitamin E and the main lipid fractions [total polyunsaturated fatty acids (PUFA), total monounsaturated fatty acids (MUFA) and total 

saturated fatty acids (SFA)]. Correlation coefficients among these curves were calculated (Table 3). These data indicated that the 

highest correlation values for cholesterol and stigmasterol were obtained for PUFA (0.94 and 0.93), followed by vitamin E (0.85 and 

0.89). MUFA behavior did not correlate with sterol degradation as these fatty acids only suffered a small degradation from 10 min, and 

neither SFA correlated as they remained practically stable along time. The same trend was observed for total COPs and StOPs (Figure 

3b and Table 3): their formation was highly correlated to PUFA and vitamin E degradation. 

In conclusion, when heated within sunflower oil at 180 ºC, cholesterol and stigmasterol presented a very similar degradation 

pattern. Although a similar distribution of individual oxides was noticed, higher values of total oxysterols from cholesterol than from 

stigmasterol were observed at the end of the heating treatment. The oil matrix protected sterols from oxidation, with vitamin E and 

PUFA content playing a relevant role in this issue. 
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Figure 1. Peroxides Value meq O2 / Kg and TBARS (mg MDA / Kg) along the heating process. Different letters for each 

parameter denote statistical differences (p<0.05) along time. 
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Figure 2. Remaining sterols (a) and content on total oxysterols (b) along the heating process. Different letters denote statistical 

differences (p<0.05) along time. t Student test compared stigmasterol and cholesterol (and their oxysterols) at every time of 

analysis ( * p<0.05; ** p<0.01; *** p<0.001). 
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Figure 3. Vitamin E, PUFA (polyunsaturated fatty acids), MUFA (monounsaturated 

fatty acids) and SFA (saturated fatty acids) evolution as compared to sterols degradation 
(Figure 3a) or oxysterols formation (Figure 3b) in the sample along the heating process. 

COPs: total cholesterol oxidation products; StOPs: total stigmasterol oxidation 

products. 
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Table 1. Individual oxysterols from cholesterol and stigmasterol along the heating process (µg oxysterol / mg sterol) 

 

 time (min) 

 0 5 10 20 30 60 120 180 

COPs (Cholesterol oxidation products) 

7α-HC 0.02 ± 0.01 0.07 ± 0.00 0.64 ± 0.12 1.32 ± 0.13 2.31 ± 0.06 6.44 ± 0.42 13.98 ± 0.69 20.24 ± 0.94 

7β-HC 0.00 ± 0.00 0.06 ± 0.01 0.51 ± 0.10 1.14 ± 0.13 2.05 ± 0.07 5.99 ± 0.55 12.46 ± 0.65 17.58 ± 0.63 

β-EC 0.05 ± 0.02 0.15 ± 0.01 0.95 ± 0.14 1.59 ± 0.09 2.80 ± 0.13 7.33 ± 0.56 14.84 ± 1.20 12.44 ± 0.41 

α-EC 0.13 ± 0.02 0.18 ± 0.00 0.91 ± 0.10 1.54 ± 0.12 2.51 ± 0.21 6.09 ± 0.41 10.48 ± 0.90 6.84 ± 0.37 

CT 0.00 ± 0.00 0.02 ± 0.00 0.04 ± 0.01 0.10 ± 0.02 0.11 ± 0.00 0.25 ± 0.05 0.45 ± 0.00 0.62 ± 0.08 

25-HC 0.16 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.11 ± 0.00 0.16 ± 0.01 0.35 ± 0.03 1.29 ± 0.18 1.79 ± 0.23 

7-KC 0.11 ± 0.06 0.33 ± 0.02 1.07 ± 0.17 1.45 ± 0.18 2.03 ± 0.14 4.38 ± 0.45 9.28 ± 1.00 19.51 ± 4.66 

StOPs (Stigmasterol oxidation products) 

7α-HS 0.39 ± 0.02 0.51 ± 0.00 0.95 ± 0.08 1.44 ± 0.08 2.17 ± 0.04 5.02 ± 0.36 9.94 ± 0.45 14.08 ± 0.78 

7β-HS 0.36 ± 0.08 0.60 ± 0.00 1.02 ± 0.07 1.55 ± 0.10 2.28 ± 0.06 5.34 ± 0.39 10.03 ± 0.52 13.62 ± 0.88 

β-ES 0.40 ± 0.15 0.57 ± 0.03 1.12 ± 0.11 1.52 ± 0.08 2.37 ± 0.10 5.59 ± 0.44 10.19 ± 0.86 7.47 ± 0.60 

α-ES 0.39 ± 0.14 0.46 ± 0.00 0.95 ± 0.09 1.25 ± 0.15 1.88 ± 0.14 3.93 ± 0.13 6.53 ± 0.84 3.25 ± 0.42 

ST 0.10 ± 0.03 0.14 ± 0.00 0.15 ± 0.01 0.15 ± 0.01 0.19 ± 0.01 0.27 ± 0.01 0.43 ± 0.04 0.49 ± 0.09 

25-HS 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

7-KS 1.88 ± 0.39 2.32 ± 0.04 2.37 ± 0.15 2.39 ± 0.06 2.70 ± 0.05 4.33 ± 0.29 7.69 ± 0.73 14.43 ± 2.25 
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Table 2. Content on vitamin E (mg / 100 g) and fatty acids (g / 100 g) along the heating process. Different letters denote statistical 

differences (p<0.05) along time. 

 

 

 

 time (min) 

 0 5 10 20 30 60 120 180 

Vitamin E 71.09 ± 0.83 a 59.21 ± 8.71 b 48.67 ± 2.55 b 26.79 ± 4.89 c 23.79 ± 4.40 cd 20.81 ± 4.71 cd 16.10 ± 1.11 cd 14.24 ± 1.62 d 

Palmitic 6.30 ± 0.72 a 6.04 ± 0.09 a 6.00 ± 0.14 a 6.15 ± 0.20 a 6.05 ± 0.28 a 6.01 ± 0.11 a 6.48 ± 0.23 a 6.96 ± 0.01a 

t-Palmitoleic 0.02 ± 0.01 a 0.03 ± 0.00 a 0.03 ± 0.00 a 0.03 ± 0.00 a 0.05 ± 0.03 a 0.03 ± 0.00 a 0.03 ± 0.00 a 0.04 ± 0.00 a 

Palmitoleic 0.11 ± 0.03 a 0.04 ± 0.00 b 0.05 ± 0.00 b 0.05 ± 0.01 b 0.04 ± 0.00 b 0.05 ± 0.01 b 0.05 ± 0.00 b 0.06 ± 0.00 b 

Stearic 4.08 ± 0.26 a 3.61± 0.04 ab 3.55 ± 0.11 b  3.62 ± 0.13 ab 3.64 ± 0.15 ab 3.56 ± 0.13 b 3.97 ± 0.05 a 4.15 ± 0.04 a 

Elaidic 0.27 ± 0.13 a 0.02 ± 0.00 b 0.02 ± 0.00 b 0.02 ± 0.00 b 0.02 ± 0.00 b 0.02 ± 0.00 b 0.02 ± 0.00 b 0.03 ± 0.00 b 

Oleic 23.71 ± 0.93 a 22.45 ± 0.08 ab 21.91 ± 0.35 b 21.83 ± 0.64 b 21.83 ± 0.56 b 21.10 ± 0.48 b 22.50 ± 0.46 b 21.91 ± 0.38 b 

Vaccenic 0.74 ± 0.11 a 0.73 ± 0.00 a 0.66 ±0.08 a 0.68 ± 0.10 a 0.58 ± 0.08 a 0.30 ± 0.03 b 0.70 ± 0.01 a 0.34 ± 0.02 b 

t-Linoleic 0.12 ± 0.03 ab 0.05 ± 0.00 b 0.20 ± 0.01 a 0.13 ± 0.02 ab 0.11 ± 0.07 ab 0.09 ± 0.01 ab 0.12 ± 0.02 ab 0.19 ± 0.04 a 

c-t linoleic 0.21 ± 0.02 a 0.20 ± 0.00 a 0.22 ± 0.03 a 0.21 ± 0.01 a 0.20 ± 0.03 a 0.20 ± 0.02 a 0.20 ± 0.01 a 0.22 ± 0.01 a 

t-c linoleic 0.20 ± 0.06 a 0.21 ± 0.00 ab 0.22 ± 0.01 ab 0.22 ± 0.01 ab 0.21 ± 0.01 ab 0.22 ± 0.02 ab 0.22 ± 0.01 ab 0.25 ± 0.02 b 

Linoleic 63.45 ± 3.38 a 57.50 ± 0.40 ab 55.41 ± 1.12 bc 54.34 ± 1.21 bc 51.35 ± 3.80 cd 47.85 ± 0.75 d 46.93 ± 0.98 d 40.50 ± 0.88 e 

γ-linolenic 0.05 ± 0.03 a 0.01 ± 0.00 a 0.01 ± 0.00 a 0.01 ± 0.00 a 0.01 ± 0.00 a 0.01 ± 0.00 a 0.01 ± 0.00 a 0.02 ± 0.00 a 

Eicosenoic 0.09 ± 0.02 a 0.01 ± 0.00 b 0.08 ± 0.00 a 0.09 ± 0.00 a 0.09 ± 0.00 a 0.09 ± 0.01 a 0.09 ± 0.01 a 0.08 ± 0.02 a 

α-linolenic 0.07 ± 0.01 a 0.06 ± 0.02 a 0.06 ± 0.00 a 0.06 ± 0.00 a 0.06 ± 0.01 a 0.05 ± 0.01 ab 0.04 ± 0.00 b 0.03 ± 0.00 b 
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Table 3. Correlations between sterols or total oxysterols and vitamin E, PUFA (polyunsaturated fatty acids), MUFA (monounsaturated 

fatty acids) and SFA (saturated fatty acids), along the heating process. R denotes Pearson coefficient  

and P denotes P value (statistical significance). 

 

      vitamin E                 PUFA           MUFA SFA 

         R    P                R    P                   R    P        R    P 

cholesterol 0.8535 0.0000 0.9449 0.0000 0.3508 0.0935 - 0.5127 0.0140 

stigmasterol 0.8929 0.0000 0.9345 0.0000 0.3877 0.0615 - 0.4538 0.0259 

COPs 
a
 - 0.7248 0.0001 - 0.8855 0.0000 - 0.1924 0.3697 0.6817 0.0002 

StOPs 
b
 - 0.7325 0.0000 -0.8889 0.0000 -0.2092 0.3282 0.6642 0.0004 

 

a 
Total cholesterol oxidation products 

b 
Total stigmasterol oxidation products 

 

 



 Esta obra está bajo una licencia de Creative Commons Reconocimiento-
NoComercial-SinObraDerivada 4.0 Internacional. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

