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"When something is important enough, you do it 

even if the odds are not in your favor." 

- Elon Musk  - 
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2. Abstract 

Research has made possible a continuous development of autonomous vehicles during the past 

decade. This project will provide an overview of the main technologies involved in autonomous 

driving, mentioning specific features that will make it suitable for the Formula Student Driverless 

competition. First, the sensors that capture data from the environment will be studied: LIDAR, 

camera, radar, GPS, IMU, odometry and their combination using sensor fusion. Second, object 

identification and localization will be explained with practical examples of classical methods (color 

thresholding and descriptor extraction), as well as modern techniques using convolutional neural 

networks. Third, the control components of the car will be analyzed, regarding the car model, path 

generation and optimization, and the vehicle controller. Finally, Formula Student driverless car 

examples will be presented with the goal of comparing the studied components with real life cases. 
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3. Introduction 

3.1. Motivation 

My main motivations to overview the technologies in an autonomous car have been: 1) the many 

companies in a continuous research and development environment and 2) the many technological 

fields that take part in a self-driving vehicle. Moreover, 3) I took an autonomous cars course during 

my exchange semester at the University of Michigan, leading to my becoming more interested in the 

topic. Furthermore, 4) I wanted to contribute my study to the Formula Student team as a there are 

plans to take part in the Driverless Vehicle competition class in the future. 

1) On the one hand, even though autonomous vehicles have been around for many years now, 

it has been last decade that the race towards a fully functional self-driving vehicle has become tighter. 

Worldwide known companies such as Tesla, Waymo and Zoox have been leading the market with 

their own innovative solutions. 

2) On the other hand, autonomous cars can be considered robots, and they cover a wide variety 

of fields ranging from image processing to controller design. This makes it an interesting topic for 

further specialization in one of those fields. Diving into each of these will help me further decide 

which path to take after finishing my master studies. 

3) Regarding my time at the University of Michigan, the autonomous cars course was a graduate 

course where many of the key points in autonomous driving where explained. However, I did not get 

to understand how the components worked as a whole, and how they could be implemented. This 

made me become eager to deepen my understanding on this global vision of the car. 

4) Finally, another of my main motivations in learning about unmanned vehicles was providing 

the Formula Student team from Tecnun-University of Navarra a background guide on the topic. This 

would help them in in the future so that they can segment their work and develop their own system 

for the vehicle. At first, the goal of the project was to start implementing self-driving techniques into 

it, however, I was lacking a general vision of how each of the components worked together. 

In a nutshell, this overview should serve as an overall study of autonomous vehicles and their 

technologies, serving as a summary to the Formula Student team by introducing each of the concepts 

that are convenient to understand to develop a fully autonomous vehicle. Practical examples will be 

implemented to facilitate this understanding of the topic. 

 

  



Self-Driving Car Autonomous System Overview                        Daniel Casado Herráez 

 

10 
 

3.2. Objectives and Scope 

The main goal of this project is to gather existing information of all the different components that 

make the autonomous component of a car. This will make possible studying each of the parts 

separately and knowing the available options that have already been developed.  

Another objective is developing a summary that will serve the Formula Student team from 

Tecnun-University of Navarra when developing their self-driving model for the competition.  

As for the scope of the project, it will include: 

• Terms & definitions before each section for a better understanding of certain keywords 

• Study of the control techniques used for autonomous driving: 

o Car models 

o Path planners 

o Controllers 

• Study of the perception techniques used for autonomous driving: 

o Lane detection 

o Object detection 

▪ Implementation of classical methods 

▪ Implementation of modern convolutional neural networks 

• Study of the sensors necessary for autonomous driving 

• Recommend possible features for the Formula Student autonomous driving challenge. 

• Review existing autonomous self-driving Formula Student solutions. 

• Useful references to dive deeper into each topic. 

And it will not include: 

• In depth explanation and development of each self-driving method 

• Implementation of autonomous driving algorithms in simulators or real life 

• Available market models of physical components such as sensors 

• A self-built Convolutional Neural Network 

• Controller development from scratch 

• Specific information about the Formula Student Driverless Vehicle challenge  
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3.3. Introduction to Autonomous Vehicles 

Autonomous vehicles have been researched since 1920, when they were first called ‘phatom autos’ 

[1]. These cars were impressive technological breakthroughs for the time, being remotely controlled 

through Morse keys and a radio signal. People saw the invention as the future of driving safety. 

The Defense Advanced Research Projects Agency launched its first prototypes in the 1980s, 

driving for 600 meters. This same agency launched the ‘DARPA Challenge’  in 2004, that boosted 

the innovation from universities around this field. The challenge goal was to drive autonomously for 

240km in the Mojave Desert region, and the winner would get $1 million prize. None of the 

participants managed to achieve the objective. A year later, five vehicles completed the 2005 

Challenge of 212km off-road drive [2]. 

More inventions have become popular over time, and new companies have joined the challenge 

of creating a fully autonomous commercial vehicle. The most popular nowadays include Tesla, 

Waymo, Zoox and Aptiv. As well as branches of automotive companies such as Ford and Mercedes. 

In 2017, Formula Student Germany introduced the new Driverless Vehicle class to their 

competition, allowing the teams to use a previously-built car adapted to autonomous driving. 

Currently 75 times have joined with top performing teams like TUfast from the Technical University 

of Munich and AMZ from ETH Zürich. 

In addition, unmanned cars are grouped into five different levels of automation defined by the 

Society of Automotive Engineers (SAE), shown in Figure 3-1. The autonomous vehicles studied in 

this project will be between Level 3 and Level 5.  

 

Figure 3-1: SAE Levels of Automation 1 

 

 
1 https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-
%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles 

https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
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To achieve autonomy in a car, a cyclic process illustrated in Figure 3-2 needs to be carried out.  

First, the sensors (Chapter 0) will capture the surroundings and the vehicle state, then perception and 

localization (Chapter 6) will find the vehicle position with respect to its obstacles so that path planning 

and motion planning (Chapter 7) can take place. The desired route will be computed and sent to the 

car controller (Chapter 7.2.) This will generate the outputs that go to the actuators so that the car can 

respond to the environment. All these topics except the actuators will be introduced in the project. 

 

Figure 3-2: Autonomous driving steps 
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4. Project timeline and Gantt chart 

The project was divided in four different work packages spanning from the 18th of February to the 

14th of June of 2020: 

WP1: Control 

• Car model: 24th February – 1st March 6th -12th April 

• Path generation: 2nd – 29th March 

• Controllers: 18th February – 1st March; 30th March – 12th April 

WP2: Perception 

• Lane detection: 4th – 10th May 

• Classical object detection: 4th – 17th May 

• Modern object detection: 11th May – 7th June 

WP3: Sensing 

• Camera: 13th - 19th April 

• LIDAR: 13th -26th April 

• GPS, RADAR, and other sensors:  27th April – 3rd May 

WP4: Introduction and other Formula Student cases 

• Formula Student existing Autonomous Vehicles: 8th – 14th June 

• Abstract, introduction, motivation: 8th – 14th June 

 

  Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18-23 Feb 24-1 Feb/March 2-8 March 9-15 March 16-22 March 23-29 March 30-5 Mar/Apr 6-12 Apr 13-19 Apr 20-26 Apr 27-3 Apr/May 4-10 May 11-17 May 18-24 May 25-31 May 1-7 June 8-14 June

WP1 Control

T1.1 Car model

T1.2 Path generation

T1.3 Controllers

WP2 Perception

T2.1 Lane detection

T2.2 Classical 

T2.3 Modern & CNN

WP3 Sensing

T3.1 Camera

T3.2 LIDAR

T3.3 GPS, RADAR, others

WP4 State of the art

T4.1 FS Overview
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5. Sensing  

The first step for autonomy is being able to sense the surroundings. This data is essential to position 

the vehicle and detect obstacles. There is a wide variety of sensors that can be used for this purpose. 

The most used ones will be studied: LIDAR, camera, radar, GPS, IMU and odometry encoders.  

5.1. LIDAR 

Terms & Definitions: 

 K-Nearest Neighbor: K-Nearest Neighbor is a simple statistical algorithm useful for classification 

problems. It stores all the available points, and classifies new ones based on a predefined criterion, 

which is usually the distance. This distance between the new case and the K nearest neighbors will 

be measured, and the new case will be assigned to the class of the closest neighbors. A graphical 

example is shown in Figure 5-1. 

 

Figure 5-1: K-NN example 2 

5.1.1. LIDAR sensor 

Light Detection and Ranging devices are very powerful tools for autonomous driving by providing a 

point map of the surroundings that contain distance data. Subsequently, LIDAR technology should 

conveniently be used in the Formula Student vehicle. 

The main principle of LIDARs is to compute the depth of the environment by measuring the 

time difference between the emission of a light signal, and the receival of the reflected wave. This 

leads the engineer to think that it must be formed by two components, the light source, and the 

photodetector, that will determine the range of the sensor.  

In practical terms, wavelengths of 1550nm and 905nm are commercialized, the former offers a 

greater distance measurement, more power, but higher costs, complexity, and the laser utilized might 

damage human sight, while the latter will have decent ranges at relatively low prices.  

Another important parameter to consider is the Field of View (FOV) of the LIDAR. Which will 

be highly horizontal for 2D scanners, or horizontal and vertical for 3D sensors. Usually, the more 

directional the LIDAR, the larger the range. In other words, a sensor with a very small FOV will have 

a greater range than one that maps all the surroundings in a smaller radius. This is called the range-

FOV tradeoff Figure 5-2. 

 
2 https://medium.com/@equipintelligence/k-nearest-neighbor-classifier-knn-machine-learning-algorithms-ed62feb86582 

https://medium.com/@equipintelligence/k-nearest-neighbor-classifier-knn-machine-learning-algorithms-ed62feb86582
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Figure 5-2: LIDAR Field of View 3 

Finally, the rotation frequency is also to be considered, as if the car is moving at high speeds, 

the variation between one laser scan and the next one will become larger.  

The main question in the LIDAR section revolves around what does the sensor outputs, and 

how it can be used for object detection. In the context of a Formula Student racecar, how the LIDAR 

is relevant for cone detection. Figure 5-3 shows the steps to extract and process the points from the 

environment to detect objects. An open source library with various features that will run through 

most of the steps of the diagram is PCL, from PointClouds.org [3]. 

 

Figure 5-3: LIDAR point cloud processing steps 

5.1.2. Point clouds 

The LIDAR sensor output will contain the information of the surroundings related to their location 

in the form of point clouds (Figure 5-4). Let us take the example used by Tomáš Trafina in his 

bachelors thesis [4], where he studies the Velodyne VLP-16 scanner. In section 3.3 of his paper, he 

presents the output data packets of the LIDAR, showing that the main point cloud data obtained are, 

the timestamp, distance to the object, azimuth angle, vertical angle (each channel represents and angle 

with a 2º difference) and the intensity (Figure 5-5).  

 
3 http://grauonline.de/wordpress/?page_id=1233 

http://grauonline.de/wordpress/?page_id=1233
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Figure 5-4: LIDAR point cloud example 4 

 

Figure 5-5: VLP-16 LIDAR output data [4] 

After having the point set, the coordinates are based on the distance, azimuth, and vertical angle, 

so it is convenient to transform data to cartesian coordinates before processing (Figure 5-6). 

 

Figure 5-6: LIDAR coordinates vs Cartesian coordinates [4] 

 
4 https://velodynelidar.com/products/alpha-prime/ 

https://velodynelidar.com/products/alpha-prime/
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Without considering the center offset between the light transmitter and receiver, the following 

transformation needs to be applied: 

 

[
𝑥
𝑦
𝑧
] = [

𝑟 · cos(𝛼) · cos⁡(𝜔)

𝑟 · sin(𝛼) · cos⁡(𝜔)

𝑟 · sin(𝛼)
] (1) 

This will return the 𝑥𝑦𝑧 local coordinates of the points in the set. 

Accordingly, in order to collect all the data points in a single structure, a simple approach is to 

group them in a list or matrix such that: 

 
𝑃 = [𝑝1 … 𝑝𝑛] = [

𝑥1 … 𝑥𝑛
𝑦1 … 𝑦𝑛
𝑧1 … 𝑧𝑛

] (2) 

5.1.3. Ground plane and noise removal 

The second step in point cloud management is removing the ground plane and noise so that it does 

not interfere with distance to object measurements.  

There is a wide variety of algorithms that will help solve this problem, and Matlab Machine 

Learning Toolbox can be used for experimentation using K-Nearest Neighbors, Decision Trees etc. 

A paper published by Spanish researchers [5] briefly explains and compares these methods. 

A fast method for ground plane detection called fast segmentation was published by 

Himmelsbach in 2010 [6]. This algorithm has been used by AMZ in their autonomous Formula 

Student car.  

The main idea behind it is to segment 3D space into 2D segments of equal size. The LIDAR 

points will be compared to these reference lines. If they are below them, they are labelled as ground 

points, and will be deleted from the point cloud. If they are above it, they are non-ground points and 

they are kept (Figure 5-7).  

 

Figure 5-7: Fast segmentation for ground removal [6] 

  

5.1.4. Iterative Closest Point (ICP)  

Iterative Closest Point has the main goal to align two point clouds (Figure 5-8). This can be used 

either to align the depth map computed by the stereo cameras and the LIDAR point cloud, or for 

the vehicle’s localization aligning two point clouds at different timesteps. Variations of the Iterative 

Closest Point exist, such as weighted ICP [7] and Trimmed ICP [8]. 
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Figure 5-8: ICP alignment 5 

The Iterative Closest Point algorithm has the following steps, listed in the slides ‘Introduction 

to Mobile Robotics: Iterative Closest Point’ by professors at Mason University [9]. 

1) Initialize error between point clouds to infinite. 

2) Calculate correspondence of the points: 

The correspondence can be calculated by using closest point search algorithms like K-Nearest 

Neighbor. The Euclidean distance between point clouds is: 

 𝑑(𝑝1, 𝑝2) = ||𝑝1 − 𝑝2|| = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 + (𝑧1 − 𝑧2)
2 (3) 

3) Calculate rotation and translation matrices via SVD. 

Singular Value Decomposition (SVD) in linear algebra is a way of representing a matrix 𝑊 ∈

ℛ𝑛𝑥𝑛  such that 𝑊 = 𝑈 · ∑ · 𝑉𝑇, with 𝑈, 𝑉 ∈ ℛ𝑛𝑥𝑛, and ∑ ∈ ℛ𝑛𝑥𝑛  being the diagonal matrix with 

the singular values of 𝑊. 

Let 𝒫 = {𝑝1, 𝑝2… , 𝑝𝑛} and 𝑄 = {𝑞1, 𝑞 … , 𝑞𝑛} be the two sets of points in ℛ3𝑥3, and it is 

assumed that both have the same number of points, 𝑁. 

The optimization problem can be formulated as: 

 

minimize
𝑅,𝑡

⁡⁡⁡⁡⁡ ⁡
⁡

1

𝑁
·∑||𝑅 · 𝑝𝑖 + 𝑡

𝑁

𝑖=1

− 𝑞𝑖||
2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑖 = 1,2, … ,𝑁⁡ 

(4) 

 

The center of mass of each point set is defined as: 

 

𝜇𝑝 =
1

𝑁
·∑𝑝𝑖

𝑁

𝑖=1

 

𝜇𝑞 =
1

𝑁
·∑𝑞𝑖

𝑁

𝑖=1

 

(5) 

 

  

 
5 http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/17-icp.pdf 

http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/17-icp.pdf
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Before calculating the transformation, in order to shift all the points to a zero center of mass, 

the following subtraction is done to each of the points in the set: 

 𝒫′ = {𝑝1 − 𝜇𝑝} = {𝑝1′} 

𝑄′ = {𝑞1 − 𝜇𝑞} = {𝑞1′} 
(6) 

The matrix 𝑊 ∈ ℛ3𝑥3, called the cross covariance matrix, can be formed: 

 

𝑊 = ⁡
⁡
∑𝑝𝑖 · 𝑞𝑖

𝑇

𝑁

𝑖=1

 (7) 

Finally, the SVD decomposition of 𝑊 is represented as: 

 

𝑊 = 𝑈 · [
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] · 𝑉𝑇 (8) 

 

𝑈, 𝑉 ∈ ℛ3𝑥3, and 𝜎1, 𝜎2, 𝜎3 are the singular values of 𝑊. 

If 𝑟𝑎𝑛𝑘(𝑊)⁡ = 3, the solution to the optimization problem is unique and given by: 

 𝑅 = 𝑈 · 𝑉𝑇  

𝑡 = 𝜇𝑝 − 𝑅 · 𝜇𝑞 
(9) 

Where 𝑅 ∈ ℛ3𝑥3  and 𝑡 ∈ ℛ3𝑥1 are the rotation and translation matrices. 

4) Apply the transformations. 

At step 𝑘: 

 𝒫𝑘+1 = 𝑅𝑘 · 𝒫𝑘 + 𝑡𝑘  (10) 

5) Compute error. 

After the Singular Value Decomposition, the error is given by:  

 

⁡
⁡
∑(||𝑝1

′ ||
2
+ ||𝑝2

′ ||
2
)

𝑁

𝑖=1

− 2 · (𝜎1 + 𝜎2 + 𝜎3) (11) 

6) If error is greater than the threshold, restart from 2). 
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5.2. Camera 

Cameras are a crucial sensor for autonomous vehicles, as they will capture the surroundings to detect 

objects, people, and obstacles. In the Formula Student racecar, cameras will be important to identify 

cones from the track and measure their distance.  

Class notes from the University of Michigan make a distinction between two camera types based 

on the use of lenses (Figure 5-9): pinhole cameras and lensed cameras. 1) Pinhole cameras are based 

on focusing the light on a single point and directing this to the camera film. However, this limits the 

light levels that can be measured. 2) Cameras with lenses will focus the light on a point in the plane 

converging at a focal distance 𝑓. The main problem that must be addressed here is the concept of 

distortion (Figure 5-10). Therefore, it is necessary to calibrate the camera and obtain the camera matrix, 

that will reduce distortion when multiplying it by the image pixels. 

 

Figure 5-9: Pinhole camera (top) and lensed camera (bottom) 6 

 

Figure 5-10: Types of distortion 7 

  

 
6 https://momofilmfest.com/depth-of-field-the-basics-explained/ 

7 http://www.baspsoftware.org/radcor_files/hs100.html 

 

https://momofilmfest.com/depth-of-field-the-basics-explained/
http://www.baspsoftware.org/radcor_files/hs100.htm
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Once the camera is calibrated, the next issue to be solved is what is called “The Toy City 

Problem”. It is based on the following hypothesis: if a small camera is placed in a toy city, everything 

will look huge. There is no quantitative way of knowing the measurements of the toy and the real 

city. Someone might have first thought that the idea of assigning a number of pixels to be a certain 

distance, but this is tricky, because a small car placed closer to the autonomous car will look bigger 

than a truck far away from it.  

In order to obtain depth information, more than one image from a single object is necessary. 

There are two ways of tackling this problem. The first one is by using a monocular camera. Costs are 

reduced because less hardware is needed, but it might be harder to implement. One well-known 

option for monocular mapping is Structure from Motion (SFM), in which many pictures of an object 

taken at different perspectives build a depth map of that object (Figure 5-11). Additionally, and based 

on SFM, researchers from KTH in Sweden have demonstrated how to implement monocular vision 

for Simultaneous Localization and Mapping (SLAM) [10].  

The second way of getting depth information is using two cameras separated a certain distance 

from each other, and stereo vision. 

 

Figure 5-11: Structure from motion (SFM) 8 

5.2.1. Stereo Vision 

Stereo vision comes into place when triangulation can be used for distance measurement. Stereo is 

used naturally by the human eyes. The main goal is to estimate the position of 𝑃 given two 

observations 𝑂1, 𝑂2 (Figure 5-12). For this, two steps are required, to find the correspondence 

between images, and to use these observations to compute the distance. Due to the fact that only a 

small glimpse of the topic will be explained, the main sources refer to class notes from different 

universities [11] [12]. 

 
8 D. Aufderheide,  W. Krybus, G. Edwards, " Inertial-Aided Sequential 3D Metric Surface Reconstruction from Monocular 
Image Streams" University of Bolton Conferences, 
Research and Innovation Conference, 2013. 
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Figure 5-12: Stereo vision diagram 9 

It is convenient to make sure that the image planes are parallel, either by setting the cameras in 

a parallel manner, or by applying rectification. This will make the correspondence and triangulation 

problems easier (Figure 5-13). 

 

Figure 5-13: Epipolar planes make stereo easier 10 

  

 
9 University of Michigan EECS498: ‘Self-Driving Cars: Perception and Control’ Slides 
10 University of Michigan EECS498: ‘Self-Driving Cars: Perception and Control’ Slides 
 



Self-Driving Car Autonomous System Overview                        Daniel Casado Herráez 

 

23 
 

5.2.1.1. Correspondence 

The first stage before stereo image triangulation can be done is to identify the correspondence 

between the left and right images. Features will be matched, and the distance in both images will be 

compared so that the depth can be computed. Extracting the features of both images is the main 

challenge in this step. This difficulty comes from:  

• Occlusions: Objects hiding other objects may interfere with the vision of the cameras. 

One object might be seen by one of the cameras while remain hidden to the other one. 

• Fore shortening: Related to perspective distortion, in which depending on the way an 

object is observed, it may vary its shape. 

• Baseline trade-off: The higher the 
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑡𝑜⁡𝑜𝑏𝑗𝑒𝑐𝑡
 ratio, the higher the error in depth 

estimation. 

• Homogeneous regions and repetitive patterns: Areas in the images that look almost the 

same are difficult to match. For example, two completely blue skies. 

In order to detect the features, the goal is to identify interesting regions from images. These 

regions are called descriptors, and they can be extracted in three different ways: 

1) Image Patches 

This first method of extracting descriptors is based on identifying patch interest regions from 

images (Figure 5-14). Illumination and pose normalization can be performed to make the descriptors 

as generic as possible. However, image patches do not perform well when there are variations inside 

the same class, or when the pose is very different. 

 

Figure 5-14: Examples of image patches 11 

2) Filters 

Similar to the techniques used for lane detection in Javier Gonzalez’s bachelors’ thesis [13], it is 

possible to use edge detection for descriptor identification. An efficient way of doing this is by using 

Laplacian of Gaussian (LoG) [14] where derivatives of the pixels are computed to obtain blobs from 

edges smaller than a given size. Descriptor extraction using filters is a good way of dealing with pose 

changes and variations inside the same class. 

 
11 University of Michigan EECS498: ‘Self-Driving Cars: Perception and Control’ Slides 
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Figure 5-15: Descriptor extraction using filters. Original image (top left), Application of LoG (Top right) and image with descriptors (bottom) 
12 

3) Descriptors 

The best performing method for feature detection is by using descriptors that identify the most 

important points in the image. A popular descriptor algorithm is SIFT (Scale-Invariant Feature 

Transform), patented by David Lowe in 2004 [15]. It extracts scale and position invariant descriptors. 

Other alternatives to this exist such as ORB, BRIEF or SURF [16]. 

SIFT descriptors are robust and are not noticeably affected by pose variations, rotations, 

illumination, scale, and intra-class variability.  

The SIFT approach is defined by first, creating a scale space of images and using Gaussian blur 

to find local extrema. Secondly, finding the histograms in windows of the gradient directions. And 

finally, creating a feature vector out of these histograms. A similar process is observed in Figure 5-16. 

 
12 https://cvgl.stanford.edu/teaching/cs231a_winter1415/lecture/lecture10_detector_descriptors_2015_notes.pdf 

https://cvgl.stanford.edu/teaching/cs231a_winter1415/lecture/lecture10_detector_descriptors_2015_notes.pdf
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Figure 5-16: SIFT Descriptors 13 

5.2.1.2. Triangulation 

Once the features have been found and matched in both images, the disparity 𝑑 is computed by 

subtracting the point from the left image to the right image.  

 
𝑑 = 𝑥 − 𝑥′ =

𝐵 · 𝑓

𝑧
 (12) 

Knowing 𝑑, the baseline between the two cameras, and their focal length, the distance to the 

object 𝑧 can be obtained. A visual representation is shown in Figure 5-17. 

Furthermore, it can be observed that disparity is inversely proportional to depth, and the value 

𝑧, distance between the cameras and the point 𝑃, is function of the baseline. This must be taken care 

of, since if the baseline is too small, the accuracy at longer distances will be noticeably reduced. 

 

Figure 5-17: Stereo vision triangulation 14 

  

 
13 https://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O 
14 University of Michigan EECS498: ‘Self-Driving Cars: Perception and Control’ Slides 

https://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
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5.2.1.3. Color  

After overviewing the main concepts in cameras for autonomous driving, it is convenient to 

understand the characteristics of color and color spaces, since it is one of the core fields in image 

processing and feature extraction. 

The color spectrum is obtained by the reflected light, the different wavelengths will result in a 

different color. Chromatic light can be characterized depending on:  

- Radiance: Energy from the light source. 

- Luminance: Perceived amount of light. 

- Brightness: Achromatic intensity of light.  

Human eye contains three receptors, that identify the three primary colors Red, Green and Blue, 

given by a certain wavelength (Figure 5-18). The colors can be defined by:  

- Brightness: Achromatic intensity of light. 

- Hue: Dominant wavelength in a mixture of light waves. It is represented in the radial scale 

between 0 and 360º where every color in the spectrum is located 

- Saturation: Amount of white light mixed with hue. In other words, the saturation indicates 

how the color brightness refers to the brightness of the pixel 

 

Figure 5-18: Visible light color wavelengths 15 

However, the combination of these cannot generate all visible colors, and that is why other color 

spaces have been tested and compared for image processing [17]. Some common examples are 

presented: 

- HSI space (Hue Saturation Intensity, or HSB, or HSL): This model decouples intensity from 

color information. The main advantage it offers is when it comes to filtering. Using RGB, 

the program would need to filter all three levels for intensity, while in HSI only the Intensity 

layer would need to be filtered, improving efficiency. 

- HSV space (Hue Saturation Value): HSV considers the value of the color. This refers to the 

darkness or lightness of a color.  

 
15 https://www.iluminet.com/que-es-efecto-purkinje/ 

https://www.iluminet.com/que-es-efecto-purkinje/
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- LAB space: LAB has been created as a good approximation to human vision. L refers to the 

lightness value, representing the darkest black at L = 0, and the brightest white at L = 100.  

A and B are the color channels. A refers to the green-red component while B refers to blue-

yellow component. A=B=0 correspond to neutral gray  a* = 0 and b* = 0.  

Figure 5-20 shows the three channels of the color space in a road. The best channel or 

combination can be selected for lane detection or object identification. 

 

Figure 5-19: Color spaces. From left to right: RGB, HSL, HSV 16, LAB 17 

 

Figure 5-20: Color spaces applied to a road picture 18 

  

 
16 https://en.wikipedia.org/wiki/HSL_and_HSV 
17 https://www.xrite.com/blog/tolerancing-part-3 
18 https://es.slideshare.net/Yhat/finding-lanes-for-selfdriving-cars-pydata-berlin-jul-2017-ross-kippenbrock-of-yhat 

https://en.wikipedia.org/wiki/HSL_and_HSV
https://www.xrite.com/blog/tolerancing-part-3
https://es.slideshare.net/Yhat/finding-lanes-for-selfdriving-cars-pydata-berlin-jul-2017-ross-kippenbrock-of-yhat
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5.3. Radar 

The radar is a radio frequency ranging sensor that works with a similar principle as the LIDAR, 

measuring the time difference between a signal sent and received. This signal will be electromagnetic 

waves in the microwave range instead of light rays. It also measures the frequency of the received 

wave to identify the object.  

The main advantages of using radar technology are that it is not affected by atmospheric 

conditions, such as rain, snow, or dust because of the wavelength not being in the visible spectrum. 

Another beneficial point is range, which can vary depending on the application. In addition, the radar 

can easily measure the motion of surrounding objects. This last feature is especially useful when it 

comes to road driving, where other traveling vehicles must be considered.  

Figure 5-21 shows the range profile of a radar modelled in a report by Ansys HFSS High 

Frequency Electromagnetic Field simulator [18]. It can be observed how the closest objects, the 

trucks and the light posts, are detected with a higher signal return, while the ones far in the distance 

are hardly noticeable.  

 

Figure 5-21: Radar signal in an intersection [18] 

On the flip side, the signal accuracy of the radar tends to be low, so the best option is to use it 

in combination with other sensing technologies.  

All in all, as in the Formula Student competition there are no moving obstacles, and good 

precision is required for racetrack following, radar should be only considered for future use in more 

advanced driving methodologies.  
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5.4. GPS/GNSS 

Terms & Definitions: 

Coordinate Systems: As mentioned in Meng’s article aiming for a robust vehicle localization 

approach using sensor fusion [19], it is necessary to identify four coordinate systems to find the 

localization of a car: 

1) Earth-Centered-Earth-Fixed (ECEF) coordinate system (Figure 5-22, left): Origin at the Earth 

center, positive Z axis points to the north pole, X axis goes along the Greenwich meridian, 

and Y is perpendicular and obtained with the right-hand rule. 

 

2) Global coordinate system: It is defined either as North-East-Down (NED), where X points 

North, Y points East and Z points down, or North-East-Up (NEU), with X pointing East, 

Y pointing North and Z pointing up. 

 

3)  Body coordinate system (Figure 5-22, right): Depends on the body’s coordinate system. In 

the case of the autonomous car, as it was defined by the Society of Automotive Engineers, 

X points forward, Y points right and Z points down. 

 

4)  Sensor coordinate system: The reference system in each of the sensors. Calibration is done 

so that the sensor and body coordinate systems coincide.  

 

Figure 5-22: Earth reference frame 19 (left) and SAE vehicle coordinates (right) 20 

Global Positioning Systems give position and velocity information. The GPS system is divided 

into three segments: space, control, and end-user. The first one corresponds to a constellation of 24 

satellites that move in fixed orbits around the Earth, each transmitting signals that will be decoded 

by the GPS receiver module. The control segment refers to the ground stations that communicate 

and control the satellites. They use radar to make sure the satellite is well positioned. And finally, the 

user segment, in which the GPS receiver identifies any visible satellites, through which it locates itself 

in the Earth. The kind of message that will be read contains information about the satellites, location, 

as well as the time difference between the receiver and each satellite. 

 
19 http://www.dirsig.org/docs/new/coordinates.html 
20 Hashem Zamanian, Farid Javidpour , ‘Dynamic Modeling and Simulation of 4-Wheel Skid-Steering Mobile 
Robot with Considering Tires Longitudinal and Lateral Slips’ Department of Engineering, KAR University, 
Qazvin Branch, Iran 

http://www.dirsig.org/docs/new/coordinates.html
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Global Positioning System devices have noticeably improved their accuracy since they were first 

invented, centimeter precision can be obtained nowadays [20]. Most importantly, they don’t have 

accumulative error, as they measure absolute position. However, update frecuencies are low, and GPS 

efectiveness depends on the number of satellites visible.  

GNSS modules (Global Navigation Satellite System) are an alternative to GPS. They receive 

signals from more satellites, including the 24 from the GPS system, and are therefore more efficient 

in terms of finding available satellites. 

The output data of the GPS/GNSS unit will usually be represented in ECEF coordinate system, 

latitude, longitude, and altitude. This must be converted to global coordinates. A precise formula for 

this, considering the curvature of the Earth, is given using the World Geodesic System (WGS 84, 

from 1984) [21]. 

However, for small distances the Earth might be considered round, leading to a simplified 

version of the coordinate transform: 

 𝑋 = 𝑅 · cos(𝜑) · cos(⁡𝜆) 

𝑌 = 𝑅 · cos(𝜑) · sin⁡(⁡𝜆) 

𝑍 = 𝑅 · sin(𝜑) 

(13) 

Where 𝑅 is the Earth radius, latitude is denoted by 𝜑, longitude by 𝜆 and altitude ℎ. 
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5.5. IMU 

Inertial Measurement Units (Figure 5-23) are electronic devices composed by accelerometers, 

gyroscopes and sometimes magnetometers. IMUs give information about the orientation and motion 

of the vehicle. As opposed to the GPS, IMUs have a high accuracy and update frequency. However, 

they are considered dead reckoning sensors, as each state depends on relative measurements and are 

computed upon previous states. This causes accumulative error. They can be used by the vehicle 

when no GPS signal is being received, and as a way of measuring the car acceleration for the control 

system.  

It is important to consider the IMU coordinate system, which after calibration, must coincide 

with the car coordinate system. To transform it to global coordinates, the rotation matrices along the 

car’s 𝑥 axis (roll) and the 𝑧 axis (yaw) are found using Euler angles: 

 

𝑅𝑅𝑜𝑙𝑙 = [
1 0 0
0 cos⁡(𝜑𝑟) sin(𝜑𝑟)
0 −sin(𝜑𝑟) −cos⁡(𝜑𝑟)

] 

 

(14) 

 

𝑅𝑌𝑎𝑤 = [

cos⁡(𝜑𝑦) sin⁡(𝜑𝑦) 0

sin⁡(𝜑𝑦) −cos⁡(𝜑𝑦) 0

0 0 −1

] (15) 

 

 

 

Figure 5-23: Inertial Measurement Unit (IMU) 21 

  

 
21 https://www.vboxautomotive.co.uk/index.php/es/products/modules/inertial-measurement-unit 

https://www.vboxautomotive.co.uk/index.php/es/products/modules/inertial-measurement-unit


Self-Driving Car Autonomous System Overview                        Daniel Casado Herráez 

 

32 
 

5.6. Odometry sensors 

Odometry sensors are one of the most popular sensors in robotics used for many applications, as 

they estimate the change in position over time. They can be divided into incremental and absolute 

encoders.  

The first ones will measure the position of the wheel attached to it by counting the pulses it 

generates. Incremental encoders are built with two or less lines with grooves, used to measure speed 

or detect the direction of motion. Nevertheless, incremental encoders generate error over time.  

Absolute encoders will capture the exact wheel position when it is required. They are built using 

more groove channels than for the incremental encoders, and they detect the wheel position in a bit 

array, resulting in a very accurate measurement. However, neither of these sensors will measure wheel 

slippage which can increase the accumulative error values.  

A common type of odometry encoders are optical encoders (Figure 5-24), based on light 

detection. A photo-diode emits light that goes through a disk with gaps at the same distance from 

each other. This light is detected by a photosensor, and wheel position is measured based on the 

number of times a light ray has been detected. 

  

Figure 5-24: Optical incremental encoder 22 (left) and absolute encoder (right) 23 

  

 
22 https://www.analogictips.com/rotary-encoders-part-1-optical-encoders/ 

23 http://www.incb.com.mx/index.php/component/content/article?id=3299:curso-de-electronica-electronica-digital-
parte-1-cur5001s 

https://www.analogictips.com/rotary-encoders-part-1-optical-encoders/
http://www.incb.com.mx/index.php/component/content/article?id=3299:curso-de-electronica-electronica-digital-parte-1-cur5001s
http://www.incb.com.mx/index.php/component/content/article?id=3299:curso-de-electronica-electronica-digital-parte-1-cur5001s
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5.7. Sensor Fusion 

Individual sensor implementation is a useful way of studying their performance and configuring them. 

However, as it has been observed, each sensor has specific advantages and disadvantages. Combining 

them (Figure 5-25) will provide a robust way of managing data. A brief explanation will be given about 

sensor fusion based on MATLAB provided resources [22]. 

 

Figure 5-25: Generic sensor fusion diagram 

There are four main ways this will help: 

1) Increase the quality of the data: The noise and perturbances of each sensor will be 

compensated by the other sensors. As a simple example, if an accelerometer and a 

magnetometer are used together, the output could be averaged resulting in a cleaner output 

signal. 

2) Increase reliability: Failure of a sensor may occur during operation; this will reduce the system 

performance, but the other sensors will still be outputting data. 

3) Increase coverage area: Instead of averaging the output of the sensors, a coherent system 

map can be generated, and the area covered by each of the sensors can be complementary. 

4) Reduce uncertainty: By comparing the different sensors, uncertainty will be reduced 

noticeably, increasing accuracy. 

It is important to keep in mind that the main goal of sensor fusion in self-driving cars is to 

estimate the state of the vehicle. Article published by Federico Castanedo in Bilbao ‘A Review of 

Data Fusion Techniques’ [23] summarizes the existing data fusion techniques. Section 4 of the paper 

summarizes the most used ones: 1) Maximum Likelihood and Maximum Posterior, based on 

probabilistic theory, 2) Kalman Filtering, one of the most used approaches and has variations such 

as Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). It is also popular in 

autonomous cars. 3) Particle Filter, that builds a density function based on random particle 

positioning, and 4) Covariance Consistency methods. 

Something special about Kalman Filters is that they can incorporate the vehicle model. 

Therefore, they have two input states: the predictions made using the model and the measured 

position, e.g. use an accelerometer to measure motion and predict future states, and the recorded 

state updates e.g. GPS detects the actual position and makes corrections to reduce the error with the 

predicted state.  

It is important to remember that the required coordinate transformations need to be performed 

for a good estimation between all the sensors. 
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6. Perception 

Perception in self-driving vehicles has a similar meaning as it does for humans. It refers to the ability 

of being aware of the environment to interact with it. By using the sensors integrated in the car, it 

will be able to position itself and identify obstacles such as cars and people. This section will be used 

to describe two main types of perception problems that must be solved, road lane detection, and 

object detection. Simultaneous Localization and Mapping (SLAM) will also be covered briefly in this 

chapter. 

6.1. Lane Detection 

One of the most important tasks performed by a car’s driver is lane detection. This is essential to 

follow the lane and give the vehicle the appropriate steering angle. Furthermore, even though it might 

not be of direct application to a Formula Student racecar, it is convenient to understand how it works, 

and it might be useful for other autonomous model car competitions.  

Terms & Definitions: 

Canny algorithm: Canny is an edge detection algorithm in which the image is first passed through a 

Gaussian filter for noise reduction, represented in Figure 6-1 left, and then a first derivative Gaussian 

filter is applied, shown in Figure 6-1 right. 

 

Figure 6-1: Gaussian filter (left) and Gaussian derivative (right) 24 

Gaussian Blur: Gaussian Blur is the process of applying a Gaussian filter (Figure 6-1 left) to the image. 

The result will be a very similar image with blurred edges. 

A lane detection method introduced by Javier Gonzalez’s bachelor’s thesis [13] is summarized, 

with some additional suggestions.   

After camera calibration has been done, the undistorted image will be obtained. The region of 

interest is extracted to discard data that does not contain information about the lane (Figure 6-2). The 

next step in Javier’s Thesis would first transform the image to a top view of the lane, to perform edge 

detection. Afterwards the top view is obtained by applying a mattrix tranformation to the original 

image (Figure 6-3). 

 

 
24 http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.htm 

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.htm
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Figure 6-2: Region of Interest (ROI) [13] 

 

Figure 6-3: Top view of the road [13] 

Thirdly, the aerial view image is converted into binary, noise is reduced using gaussian blur, and 

the edges are extracted. However, in real world binary thresholding might not be an efficient method 

as the variety of colors in a single image will be very large. Color thresholding can be done in several 

ways, while at the same time, transforming the picture to different color spaces. 

Procedure from article ‘Lane Detection for Autonomous Vehicles’, by Sertap Kamçi et al. [24] 

gets the image through a conversion to HSV before Gaussian Blur and grayscale methods for the 

Canny edge detection algorithm to perform better. Testing should be done in order to obtain the best 

performance with the use of different color spaces (HSV, HLS…). 

 

Figure 6-4: Image after removing distortion (left) and after applying HLS Color Space thresholds (right) [24] 
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Afterwards, lane detection is done with windowing techniques. Windows are placed along the 

lane and the centroid is computed. This centroid will indicate the point where the lane is located. 

Finally, a polynomial is fitted within the points that will indicate the lane function.  

Several GitHub repositories exist that will facilitate the implementation and understanding of 

lane detection. A useful one is ‘CarND-Advanced Lane Finder’ [25] that will go from camera 

calibration to drawing the lane in the picture.  
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6.2. Object detection 

The object detection process will find the objects in the image and classify them into classes. A wide 

range of research has been done in this field and it is convenient to divide the methods into the 

classical procedure, and the modern procedure. 

Terms & Definitions: 

Batch: A batch of images is defined as a group of images into which the training set is divided. The 

pictures are selected randomly. This will lead to the convolutional neural network learning generic 

features, instead of modifying its weights for each specific image. 

6.2.1. Classical Object Detection 

Traditional methods are algorithms and conditions applied directly over the image. Their main 

advantage is their simplicity of implementation. Two common classical methods are by color 

thresholding and using descriptors. 

6.2.1.1. Color thresholding 

Strictly referring to FS cone track detection, after extracting the Region of Interest just like in lane 

detection, and focusing only on the track, the simplest way of identifying the cones in the image can 

be by simply applying a color thresholder to the camera image.  

MATLAB offers colorThresholder [26] feature as an interesting tool to experiment in different 

color spaces. Thresholds could be obtained manually to match the cones in the track. A sample image 

has been used for demonstration purposes of a segment of the Formula Student racetrack (Figure 6-5, 

top). It can be observed how after setting the RGB thresholds, the background can be erased to just 

keep the location of the cones in the track (Figure 6-5, bottom).  However, the thresholds will vary 

depending on the environment conditions. For example, if the light is low, other thresholds would 

be required in order to successfully detect the cones. This results in a non-generic method for cone 

detection prone to failure not combined with other techniques. 

 

Figure 6-5: MATLAB color thresholder (bottom) applied to an image (top) 
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6.2.1.2. Descriptors  

The second classical object detection method is the use of descriptors. This is handled by firstly, 

feeding the algorithm an image of the object to be detected, from which the feature descriptors will 

be extracted. If multiple images of the same object in different conditions are used, accuracy can be 

improved as more descriptors will be available for comparison. Secondly, these features are matched 

with the camera image for the objects to be detected.  

Accuracy and efficiency will be influenced by the type of descriptor that is being used. Multiple 

comparisons have been done with the goal of identifying the most appropriate one for each 

application. The article published by Ebrahim Karami et. al [16] compares them based on rotation, 

intensity, scaling and distortion. They conclude that for their input images, ORB descriptors lead to 

the fastest algorithm, while SIFT descriptors are the most accurate.  

With the purpose of observing descriptor extraction and matching, a basic program in Python 

has been coded using the OpenCV library [27] . ORB features are extracted, and matched using 

Brute-Force algorithm [28], which will take each descriptor of the image, compare it with all the 

descriptors from the camera image, and depending on its similarity, a distance value is given. The 

smallest one is selected and matched with the original descriptor.  

The code is presented in APPENDIX I: ORB feature extraction.  Image is read with the OpenCV 

function cv2.imread(), and then the ORB descriptors are extracted using the orb.detectAndCompute() 

function. A limited number of a 100 is set for a clear visualization. Afterwards, the key points are 

drawn in the image, shown in Figure 6-6. 

 

Figure 6-6: ORB descriptors in a blue cone picture 25 

In order to see feature matching between the sample cone and track cones with certain variation, 

the Brute-Force OpenCV algorithm was added to the code for 500 descriptors. Shown APPENDIX 

II: BruteForce matching. The results are represented in Figure 6-7. 

 

 
25 https://www.shutterstock.com/es/image-photo/blue-plastic-cone-on-crosswalk-asphalt-1387480928 

https://www.shutterstock.com/es/image-photo/blue-plastic-cone-on-crosswalk-asphalt-1387480928
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Figure 6-7: BruteForce algorithm applied to two cone images 

Even though the cones had different white stripes, and only one cone picture was used for 

training the algorithm, it can be observed that the matches are qualitatively good. Moreover, no 

specific instruction was given to the algorithm to match the original image cone with each of the road 

cones, which caused crossed matches in the image. This points out that it could be a good starting 

point for cone detection in the Formula Student vehicle.  

A more precise approach for multiple object identification is proposed by Stefan Zickler and 

Alexei Efros at Carnegie Mellon University [29], where multiple objects in the same image are 

detected using a variation of SIFT descriptors. This firstly obtains the descriptors in the camera image 

and groups them into clusters. Then the centroid of each cluster is computed and classified as a 

detected object. 
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6.2.2. Modern Object Detection: Convolutional Neural Networks  

The development of computer vision techniques has led to improvements in the classical object 

detection methods over time. One of the most well-known approaches nowadays for image analysis 

and object classification are Convolutional Neural Networks (CNNs). In this section, an introduction 

to Neural Networks and CNNs will be given, different networks for object classification will be 

overviewed and one will be selected for a sample implementation.  

6.2.2.1. Neural Networks and CNNs 

In line with Professor’s Mehlign, Artificial Neural Network professor at Gothenburg University [30], 

neural networks are computing models based on the biological net that makes up the brain. It is a 

collection of artificial neurons, called perceptrons, connected to each other through weighted links, 

through which information is sent and received.  

 

Figure 6-8: Neural Network Perceptron 

Figure 6-8 shows a perceptron 𝑦 with various inputs 𝑥1, 𝑥2, 𝑥3… , 𝑥𝑛 and the corresponding 

weights 𝑤1, 𝑤2 , 𝑤3… ,𝑤𝑛. The weights define the importance of each input, and an activation 

function will determine the output of the perceptron. A linear activation function will be the weighted 

sum of the inputs, plus a bias, used to shift and adjust the function curve: 

 
𝑦 =∑(𝑥𝑖 · 𝑤𝑖

𝑛

𝑖=1

𝑥1 + 𝑏) (16) 

However, linear functions have great limitations in neural networks. When it comes to training 

(backpropagation), the derivative will be a constant with no relationship to the inputs, so the network 

cannot go back and adjust the weights to improve the prediction. As a result, multiple layers with 

linear activation functions can be combined into a single one, as the output will be a linear function 

of the input. 

This issue can be solved by using non-linear activation functions, which can be different 

depending on the application. The most popular ones are presented in Figure 6-9. 
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Figure 6-9: Popular neural network activation functions 26 

Convolutional Neural Networks are one variation of this Artificial Neural Network model that 

were introduced by Fukushima in late 1980s. He presented a model called “Neocognitron”, with 

multilayer structure that could detect text patterns without the input position being a source of error 

[31]. Yann LeCun, and eminent name in the field, followed Fukushima and discovered 

backpropagation as an effective way of training a CNN to identify handwritten zip codes [32]. 

  

 
26 https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044 

https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044
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6.2.2.2. The training stage 

In order to detect the correct class of the input object, training of the neural network is necessarily 

done. It consists of two steps. 1) Forward propagation, in which the image goes through the NN just 

like an input image would do, but initially the weights are random, and 2) backpropagation, explained 

at the deep learning book from Goodfellow et al. [33]  where the information of the cost flows 

backwards to compute the gradient and adjust weights. Training is finished when the maximum 

number of iterations has been done, or when the cost function has been minimized to a certain 

threshold.  

This loss function 𝐽(𝜃) can be defined as: 

 

𝐽(𝜃) =
1

𝑁
∑𝑙𝑜𝑠𝑠(𝑓(𝑥(𝑖), 𝜃), 𝑦(𝑖))

𝑁

𝑖

 (17) 

Where 𝜃 is the parameter to be adjusted (for the weights: 𝑊1,𝑊2…).  𝑓(𝑥(𝑖), 𝜃) is the predicted 

output, 𝑦(𝑖) is the actual output and 𝑁 is the number of iterations, also called epochs. 

Common loss functions are the cross-entropy function as well as mean-square error, both 

mentioned by Peter Sadowski in ‘Notes about Backpropagation’ [34]. 

Based on the learning stage, Neural Networks can be divided into three different approaches: 

1) Reinforcement learning: The least related to the application of autonomous driving as it is 

based on a rewards/penalty policy. The network accuracy is improved every time a new 

success has occurred. i.e. it learns by making mistakes. 

2) Supervised learning: Based on generating a dataset with the object already detected and 

labelled, input it to the NN to train it. The main downside of supervised learning is that the 

network will not get better performance than the images it has been trained for. 

3) Transfer learning: It uses pre-trained models in which the first layers are very generic, and 

the last layers, the most specific ones to the application, are removed and retrained. This 

significantly reduces training time and resources. It is explained by Lisa Torrey and Jude 

Shavlik from the University of Wisconsin in their paper ‘Transfer Learning’ [35].  

Training is done over a dataset of images. These should contain the object that is being trained 

for in a wide range of conditions different in lighting, perspective, distance, image quality, 

background… There are many generic datasets such as PASCAL VOC [36], ImageNet [37], COCO 

[38]. These are commonly used for CNN performance testing in object classification.  

The most interesting set for the Formula Student Autonomous Racecar is FSOCO [39]. This 

dataset has been built by 45 FS teams for the purpose of training CNNs for cones from the AV 

competition. It contains around 360,000 images, and to increase this number, they are requesting at 

least 600 images to have access to the dataset. 

When training, data is sometimes divided into three different groups mentioned in the citations 

by Jason Brownlee in his article ‘What is the difference between Test and Validation datasets?’ [40]: 

1) Training set: The CNN will use images from the training set to adjust the weights. 

2) Validation set: Instead of training the weights, it verifies with other pictures that the training 

is causing an improvement of accuracy in the neural network.  

3) Testing set: The last set of images would be the one used by the user to visualize the results. 
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A key point to consider in CNN training is overfitting, shown in Figure 6-10. It means that the 

more iterations performed during training, the less accurate it becomes after going over a certain 

limit. The validation results will start to underperform when overfitting starts to show up. 

 

 

Figure 6-10: Overfitting in terms of model complexity referring to the number of iterations performed 27 

A simple technique to avoid this was presented in the ‘Journal of Machine Learning’ in 2014 by 

N. Srivastava called ‘Dropout’ [41]. A certain probability of participation is given to each perceptron, 

in the paper a Bernoulli probability distribution is used, and dropout rates between 0.5 and 1 are 

recommended. This will cause some random perceptrons to be inactive during some epochs, and 

active during others, resulting in a thinned network that is less prone to overfitting and takes less time 

to train. Figure 6-11 shows the comparison between the neural net before and after dropout. 

 

 

Figure 6-11: Node dropout in a neural network [41] 

  

 
27 https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-
820b091dc42 

https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42
https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42
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6.2.2.3. Evaluation metrics 

The evaluation of a dataset is done based on the validation dataset. It is useful to understand how the 

precision of a CNN is measured to select one that meets its purpose. There are two main ways of 

measuring precision depending on the type of neural network. They are mentioned in a Medium 

article by Jonathan Hui [42]. 

The first one is mean average precision (AP) for classification CNNs. Networks trained on 

PASCAL VOC use this metric. The formula in this case is simple, averaging the precision obtained 

for each of the classes it has been trained for.  

 

𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

 (18) 

The average precision for each class will be: 

 
𝐴𝑃𝑖 =

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠⁡𝑜𝑓⁡𝑐𝑙𝑎𝑠𝑠⁡𝑖

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠⁡𝑜𝑓⁡𝑐𝑙𝑎𝑠𝑠⁡𝑖 + 𝐹𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠⁡𝑜𝑓⁡𝑐𝑙𝑎𝑠𝑠⁡𝑖
 (19) 

The second one is mean average precision (AP) for object detection and localization CNNs. 

This will mean that the network predicts bounding boxes for the objects it is detecting. COCO 

datasets are measured using this method. There are a few steps to take to get the AP value.  

Firstly, the predicted box is compared to a ground truth bounding box from the validation set 

using Intersection over Union (IoU) visualized in Figure 6-12. The formula for this would be: 

 
𝐼𝑜𝑈 =

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔⁡𝐵𝑜𝑥⁡ ∩ 𝐺𝑟𝑜𝑢𝑛𝑑⁡𝑡𝑟𝑢𝑡ℎ⁡𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔⁡𝐵𝑜𝑥

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔⁡𝐵𝑜𝑥⁡ ∪ 𝐺𝑟𝑜𝑢𝑛𝑑⁡𝑡𝑟𝑢𝑡ℎ⁡𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔⁡𝐵𝑜𝑥
 (20) 

 

Figure 6-12: Intersection over union examples 28 

Secondly, the IoU is compared to a threshold. This border will be increased by five in each 

evaluation step, measuring from 𝐴𝑃50 to 𝐴𝑃95. After all those evaluations have been done, the 

average of them is taken to measure the final value of the 𝐴𝑃. Note that mean average precision can 

also be written as 𝑚𝐴𝑃. 

 
𝑚𝐴𝑃 =

1

10
(𝑚𝐴𝑃50 +𝑚𝐴𝑃55 +𝑚𝐴𝑃60 +⋯+𝑚𝐴𝑃95) (21) 

 
28 http://www.interstellarengine.com/ai/Intersection-Over-Union.html 

http://www.interstellarengine.com/ai/Intersection-Over-Union.html
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Moreover, as it might be seen in some research papers, object detection and localization CNNs 

are measured for small, medium and larder objects using this same method. The results will be 

represented as 𝐴𝑃𝑆, 𝐴𝑃𝑀, and 𝐴𝑃𝐿 respectively. 

As a result of an IoU evaluation metric, the results will usually be lower than for the conventional 

method, as values up to 95% precision are taken into consideration.  
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6.2.2.4. Convolutional Neural Network Architecture 

CNNs are built of numerous layers, and even though there are some that might be specific to each 

model, convolution, activation, pooling, and fully connected layers are found in in most of the 

networks. 

6.2.2.4.1. Convolution layer 
Convolution layers in simple words, apply filters to the original image to break it into smaller pieces. 

They are composed by several feature maps that perform the same operation of applying a specific 

filter (Kernel) over the image coming from the previous layer. Each feature map will look for a single 

thing in different locations, for example in lower levels it could search for a curved line, while in 

higher levels it can be looking for a cat or a face. Therefore, multiple feature maps will lead to multiple 

feature identification. 

A mathematical representation is given by LeCun in his article ‘Convolutional Networks and 

Applications in Vision’ [43]. The output 𝑌⁡
(𝑙) of layer 𝑙 will have 𝑁(𝑙) feature maps. The 𝑖𝑡ℎ feature 

map denoted by 𝑌⁡𝑖
(𝑙)

 is given by: 

 

𝑌⁡𝑖
(𝑙)
= ∑ 𝐾𝑖,𝑗

(𝑙)
∗ 𝑌⁡𝑖

(𝑙−1)

𝑁(𝑙−1)

𝑖=1

+ 𝐵𝑖
𝑙 (22) 

(∗) is the convolution operator, 𝐾𝑖,𝑗
(𝑙)

 is the Kernel with 𝑖 being the index of the previous feature 

map (or layer as in the case of Figure 6-13, where there is no bias) and 𝑗 the index of the current 

feature map.  

 

Figure 6-13: Convolution layer feature map examples 29 

  

 
29 ‘A friendly introduction to Convolutional Neural Networks and Image Recognition’, YouTube, Luis Serrano, 
https://www.youtube.com/watch?v=2-Ol7ZB0MmU 

https://www.youtube.com/watch?v=2-Ol7ZB0MmU
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6.2.2.4.2. Activation layer 
The activation layer, also called nonlinear layer, performs an elementwise operation of the activation 

function in the input image. It will determine which of the neurons of the next layer will fire. Instead 

of setting up the output of each perceptron to apply the nonlinear function, a layer is created that 

performs this step. It is mathematically represented as: 

 𝑌(𝑙) = 𝑓(𝑌(𝑙−1)) (23) 

The dimensions of the output and the input are identical.  

6.2.2.4.3. Pooling layer 
 After the features have been extracted using convolution layers, they must be used for classification. 

However, doing this directly would lead to very large processing power, as well as overfitting. It is 

illustrated in an example from Stanford Deep Learning tutorial website [44]. An image of size 96x96 

pixels with 400 features over 8x8 inputs, would lead to an output size for each convolution of  

(96−8+1)·(96−8+1)=7921, this can be computed with the formula mentioned in the CNN Stanford 

course [45]:  

 
𝑂𝑢𝑡𝑝𝑢𝑡⁡𝑠𝑖𝑧𝑒 =

𝑊 − 𝐾 + 2𝑃

𝑆
+ 1 (24) 

 

Where 𝑊 is the image size, 96, 𝐾 is the filter size, 8, S is the stride, or number of pixels the filter 

moves at each step, 1, and P is the padding, external image adjustments for the filter to fit correctly, 

0 in this case. 

The resulting vector is of 7921·400=3,168,400 features per sample image. 

Subsequently, the pooling layer, also called subsampling layer, will perform the downsampling 

of the inputs. Moreover, in case pooling is done horizontally, translational invariance will be added 

to the features.  Mathematically, the output volume size will be 𝑚1
(𝑙)𝑥⁡𝑚2

(𝑙)𝑥⁡𝑚3
(𝑙)

: 

 𝑚1
(𝑙)
= 𝑚1

(𝑙−1)
 

𝑚2
(𝑙) =

(𝑚2
(𝑙−1) − 𝐹(𝑙))

𝑆(𝑙)
+ 1 

𝑚3
(𝑙) =

(𝑚3
(𝑙−1) − 𝐹(𝑙))

𝑆(𝑙)
+ 1 

(25) 

𝐹 is the pooling filter size and 𝑆 is the stride. 

Two pooling types are used for this size reduction, average pooling will average the values of 

the convolution layer inside the filter, while max pooling will take the greatest value.  
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Figure 6-14: Max pooling and average pooling example 30 

6.2.2.4.4. Fully connected layer 
The goal of the fully connected layers in a CNN is to process and classify the results from the previous 

layers. They are formed as a multilayer perceptron with two or three layers. The output will be a 

vector whose elements are the probabilities of the input image belonging to each of the labels the 

networks has been trained for.  

6.2.2.5. Existing Convolutional Neural Network  

After studying the working principle of convolutional neural networks, a table of available categories 

for Neural Networks is presented with their main features and superiorities (Table 1).  

A basic categorization is done based on the stages, where a single stage points to CNNs that are 

faster and easier to implement, as they directly establish the bounding box for the desired object, 

while double step consists of the region of interest (ROI) extraction first and then building the 

bounding box around the object. Another differentiation can be done between camera-based 

networks and LIDAR based, however, LIDAR data is not often very significant to detect the class 

of certain objects as mentioned in the comparison ‘A Survey of Deep Learning Techniques for 

Autonomous Driving’ by researchers from Transylvania University of Brasov [46]. This paper also 

mentions the existence of networks working with the combination of both and how it might take a 

lot of processing power. 

  

 
30 https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks 

https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
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Table 1: Convolutional Neural Network examples 

Classification CNN Name Approach Main features Reference 

C
a
m

e
ra

 b
a
se

d
 

T
w

o
-S

ta
g

e 
SPPNet Last pooling layer replaced with 

spatial pyramid pooling layer to 

keep feature spatial information. 

Variable input image size [47] 

R-CNN Three step operation and 

training: region proposal, feature 

extraction, and bounding boxes.  

Popular network with 

good precision. 

[48] 

YOLO Image is divided into a grid, 

confidence score and probability 

are assigned. 

Lots of variations: Fast 

YOLO (Up to 155 fps), 

YOLOv2, YOLOv3. 

Real Time, original 

YOLO up to 45 fps. 

[49] 

Single-Shot 

Multibox 

detector 

(SSD) 

Single feedforward pass of the 

input image is done. That 

produces a fixed-size collection 

of bounding boxes with 

different scales and confidence 

scores. Another final step will 

produce the final detections 

Real time object detection 

and classification up to 46 

fps. 

[50] 

O
n

e
-S

ta
g

e
 

OverFeat Sliding Window approach, one 

of the first single stage methods. 

Classification, 

Localization & Detection 

[51] 

CornerNet Detect objects as paired key 

points. Two maps are generated, 

one for top corners and another 

one for bottom corners. Best 

matches are grouped to form the 

box for an object. 

High performance. No 

need to predesign 

bounding boxes to fit into 

the objects. 

[52] 

SqueezeNet CNN with convolution layers 

that have in majority 1x1 filters 

instead of 3x3, it decreases the 

number of input channels to 3x3 

filters and carries out 

downsampling. 

Very low memory 

requirements. Model can 

be compressed down to 

0.5MB. Useful for 

FPGAs 

[53] 
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L
ID

A
R

 
PointNet Learns a set of optimization 

functions/criteria that select 

interesting or informative points 

of the point cloud and encodes 

the reason for their selection. 

The final fully connected layers 

of the network aggregate these 

learnt optimal values into the 

global descriptor for the entire 

figure. 

Point cloud pattern 

extraction for object 

identification 

[54] 
L

ID
A

R
 a

n
d

 

C
a
m

e
ra

 

RoarNet Uses the monocular camera 

image to narrow down the 

search space, and performs 

detection within these regions 

Creates 3D bounding 

boxes. 

It is publicly available and 

pretrained. 

[55] 

Table 1 offers some generic knowledge about some popular Convolutional Neural Networks. 

However, a good way of understanding the different steps to setup a neural network from start to 

finish is by putting it into practice.  

The following section will address setting up the training environment and training the 

convolutional neural network YOLOv3 based on the official website support [49], and additional 

sources like articles from Medium  [56]. 

6.2.2.6. Setting up the runtime environment 

The runtime environment is a crucial component when training a neural network, as it will define the 

computational resources that are going to be used. The better the graphics processing unit (GPU), 

the less time the training process will take, but the more expensive it will be per hour of use. Two 

main alternatives will be examined, Amazon Web Services (AWS) and Google Collaboratory.  

On the one hand, A popular cloud runtime environment used for Deep Learning is AWS [57], 

which offers a $100 initial credit for student accounts. The downside is that the account can’t be 

upgraded to “Developer Account” unless a payment is done, and therefore the only instance available 

is “t2.micro” which corresponds to only 1GB of simple GPU memory.  

An alternative to this has been Google Collaboratory notebooks, which offers for free the 

following specifications: 

• Tesla K80 24GB GDDR5 GPU 

• x2 Intel(R) Xeon(R) CPU @ 2.30GHz 

• 13GB of RAM 

• 34 GB disk space 

The interface is very similar to a python Jupyter notebook, but it runs on the cloud and through 

Google Drive. 
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As no in-depth coding was going to be done during YOLOv3 implementation, and since it is 

completely free, Google Collab was the selected platform to train and test the CNN. On the flip side, 

there are were some downsides that it was necessary to overcome: 

• Every time the notebook is closed, all the data runtime will be lost: Data should be 

downloaded to the computer right after generating it. 

• Maximum runtime before the notebook gets disconnected is around 20 to 30 minutes: Users 

from Medium [56] have figured out a way to keep and “auto-clicker” and maintaining the 

page active.  

• Unintuitive folder organization: It took a long time to familiarize to how the folders and 

organization units worked together with Google Drive. 

• Google sets the user’s Collab’s limits: Google reserves the right to assign processing time to 

users of their choice. 

If a balance was to be done between the pros and the cons of using Google Collaboratory as a 

totally free Deep Learning training platform, it would be that it is best option for very specific tasks, 

such as training and testing, but not for full development from scratch.  

6.2.2.7. Selecting the Convolutional Neural Network 

Table 1 presented many of the available options in the field of CNNs. As it might have caught the 

reader’s attention, YOLO can run up to 155 frames per second, which makes it an attractive choice 

for autonomous racing. Another benefit of building perception upon YOLO is the available cone 

dataset, FSOCO [39], developed by FS teams such as AMZ and Munich MotorSport. Here, the data 

is labelled in a way that can be used to train YOLO CNNs and its variations with similar input 

requirements. Furthermore, the open source history of this network has increased significantly since 

its release.  

6.2.2.8. You Only Look Once (YOLO) 

YOLO was published by Joseph Redmon in 2016 [58], and it is built over his Darknet framework. 

Its main goal is to pursue object detection in a straightforward way running a single convolutional 

neural network.  

The main difference of this CNN with respect to other object detectors is its approach. Instead 

of using a sliding window going through the image, it considers the image globally, dividing it into an 

𝑆𝑥𝑆 grid. After this, each cell of the grid predicts the 𝑥, 𝑦, 𝑤, ℎ⁡and confidence score 𝐶 for each class, 

of a number 𝐵 of bounding boxes. 𝑥, 𝑦 are coordinates for the center of the bounding box, and 𝑤, ℎ 

are its width and height. The best bounding box for each object is selected and placed from a set of 

predefined anchor boxes with various sizes. The confidence score is based on the Intersection over 

Union (IoU) between the predicted box and the ground truth box.   

The network architecture has 24 convolutional layers with two fully connected layers that will 

predict the output probabilities and coordinates. The input image must be 448x448x3 pixels and the 

output will be of size 𝑆 × 𝑆 × (𝐵 ∗ 5 + 𝐶). For example, if the picture is divided in 7 cells, the 

bounding box limit is 2, and there are 20 classes, prediction output will be 7× 7 × (2 ∗ 5 + 20). The 

network architecture is shown in Figure 6-15: YOLO CNN architecture Figure 6-15. 
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The last important thing to consider about YOLO is its loss function. It can be divided into two 

parts, one for object classification and the other one for localization. An article by Lilian Weng [59] 

represents it in a more intuitive way than the YOLO publication paper. 

 

ℒ𝑙𝑜𝑐 = 𝜆𝑐𝑜𝑜𝑟𝑑∑∑1𝑖𝑗
𝑜𝑏𝑗 [(𝑥𝑖 − 𝑥𝑖)

2 + (𝑦𝑖 − 𝑦̂𝑖)
2 + (√𝑤𝑖 − √𝑤̂𝑖)

2
+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

 (26) 

 
ℒ𝑐𝑙𝑎𝑠𝑠 =∑∑(1𝑖𝑗

𝑜𝑏𝑗 + 𝜆𝑛𝑜𝑜𝑏𝑗(1− 1𝑖𝑗
𝑜𝑏𝑗))(𝐶𝑖 − 𝐶̂𝑖)

2
𝐵

𝑗=0

𝑆2

𝑖=0

+⁡∑∑1𝑖
𝑜𝑏𝑗(𝑝𝑖(𝑐) − 𝑝𝑖(𝑐))

2
𝐵

𝑗=0

𝑆2

𝑖=0

 (27) 

 ℒ = ℒ𝑐𝑙𝑎𝑠𝑠 + ℒ𝑙𝑜𝑐  (28) 

ℒ: Total loss function 

ℒ𝑙𝑜𝑐 : Object localization loss function 

ℒ𝑐𝑙𝑎𝑠𝑠: Object classification loss function 

1𝑖
𝑜𝑏𝑗

: An indicator of whether cell 𝑖 contains an object. It will be 1 if there is an object in that cell, 

indicating that it is accounting for object classification. 

1𝑖𝑗
𝑜𝑏𝑗

: Indicates if the 𝑗𝑡ℎ bounding box is responsible for that prediction. Therefore, if it is 

responsible, it will be one, and loss will be considered. If it was not responsible for the prediction, 

there would be no point considering it. 

𝐶𝑖 : Confidence score of cell 𝑖,from the multiplication of the probability of containing an object and 

the intersection over union results. 

𝐶̂𝑖 : Predicted confidence score 

𝑐: Class contained in the set of classes 𝒞. 

𝑝𝑖(𝑐): Conditional probability of cell 𝑖 containing an object of class 𝑐:  

𝜆𝑛𝑜𝑜𝑏𝑗 : Importance given to object classification loss. A value of 0.5 is used in the paper. 

𝜆𝑐𝑜𝑜𝑟𝑑 : Importance given to object localization loss. A value of 5 is used in the paper. 

 

Figure 6-15: YOLO CNN architecture 31 

Between 2016 and 2018 other variations of YOLO have been released, such as YOLO-Lite, less 

computer demanding, [60].  Fast YOLO, for embedded computers, [61] and YOLO9000, which can 

detect up to 9000 classes [62]. An impressive alternative is YOLOv3-Tiny, which can get up to 

 
31 https://lilianweng.github.io/lil-log/2018/12/27/object-detection-part-4.html#yolo-you-only-look-once 

https://lilianweng.github.io/lil-log/2018/12/27/object-detection-part-4.html#yolo-you-only-look-once
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33.1mAP running at 220 frames per second. It is recommended that the reader explores, tests, and 

verifies these alternatives more in detail to select the most attractive one depending on his hardware 

requirements.  

One of the most recent versions has been explored and implemented for demonstration 

purposes, YOLOv3 [63]. 

According to the original paper, this variant is a more accurate approach than the original 

YOLO, however it is slightly slower than YOLOv2, presented together with YOLO9000 [62]. 

However, Joseph Redmon in his website [49] suggests that YOLOv2 has a 48.1mAP at 25ms (or 40 

frames per second, 1fps = 1 Hz) , while the latter can perform up to 51.4mAP at 22ms (45 fps).  

The main innovations to the v3 CNN are pointed out by Ayoosh Kathuria from Medium [64]: 

1) It is now built over Darknet-53 feature extractor and adds another 53 convolutional layers, 

making a total of 106 convolutional layers, as opposite to the version 2 built over Darknet-

19. 

2) It takes decisions at three different scales. Applies 1x1 detection kernels on feature maps of 

three different sizes at three different places in the network, which subsequently adds three 

upsampling layers. 

3) Makes predictions at three different scales, by downsampling the input image by 32, 16 and 

by 8. The predictions are made at layers 79, 91 and 106, as it can be observed in the orange 

layers from Figure 6-16. 

4) Improved at detecting smaller objects but made worse at larger object predictions.  

5) It now uses 9 anchor box models for bounding box prediction, and it predicts more 

bounding boxes per image. 

6) ℒ𝑐𝑙𝑎𝑠𝑠 squared error has been replaced by cross-entropy loss function, which means 

predictions are made using logistic regression.  

 

𝐶𝑟𝑜𝑠𝑠⁡𝑒𝑛𝑡𝑟𝑜𝑝𝑦⁡𝑙𝑜𝑠𝑠 = ⁡−∑𝑦𝑜,𝑐log⁡(𝑝𝑜,𝑐)

𝑁

𝑐=1

 (29) 

𝑁 is the number of classes, 𝑦𝑜,𝑐 binary indicator if the class 𝑐 is the correct classification for 

observation 𝑜, and 𝑝𝑜,𝑐 is the predicted probability that observation o is of class c. 
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Figure 6-16: YOLOv3 CNN architecture [64] 

6.2.2.9. Implementation of YOLOv3 in Google Collaboratory 

Before following the guides provided by open-source programmers online, it is recommended that a 

simple introduction to CNN programming in Python with Keras is done. This gives the user a general 

overview of the neural network architecture and implementation steps. One of the most popular ones 

is the MNIST, that identifies handwritten digits and letters. A simple and explanatory tutorial is 

presented by user Manish Bhobé in Medium [65].  

However, none of the Keras layer-by-layer programming will be used for YOLOv3, which 

comes already built. There are two main stages in order to use YOLO for object detection, getting 

the dataset for the class, and training the network with that data. Guidance from the original YOLO 

website [49] was followed, as well as the recommendations from GitHub [66] by a YOLO fork 

developer Alexey Bochkovskiy.  

6.2.2.9.1. Creating a custom dataset 
With the goal of proving that YOLOv3 can be trained for a custom class, and without having the 

FSOCO cone image set data available, balloon pictures were used instead. They were taken from 

“Google Open Images Dataset V6”. Two thousand images containing balloons were downloaded 

for training, and 44 for validation. Their labels were adapted to YOLO format using code from the 

OIDv4 ToolKit [67]. The labels from the downloaded pictures had the format: 

𝑩𝒂𝒍𝒍𝒐𝒐𝒏 𝟓𝟓𝟑. 𝟔⁡𝐩𝐱 𝟒𝟖𝟒. 𝟓𝟔𝟓⁡𝐩𝐱 𝟕𝟓𝟑. 𝟐𝟖⁡𝐩𝐱 𝟔𝟖𝟎. 𝟒𝟑𝟗𝟒⁡𝐩𝐱 

𝑵𝒂𝒎𝒆⁡𝒐𝒇⁡𝒕𝒉𝒆⁡𝒄𝒍𝒂𝒔𝒔 𝒙𝒎𝒊𝒏 𝒚𝒎𝒊𝒏 𝒙𝒎𝒂𝒙 𝒚𝒎𝒂𝒙 

However, YOLO only accepts labels with the normalized coordinates, and a class identifier for 

each class it is being trained for. After using the toolkit, the result was the following: 

𝟎 𝟎. 𝟒𝟗𝟗𝟎 𝟎. 𝟑𝟓𝟏𝟏 𝟎. 𝟗𝟗𝟗𝟑 𝟎. 𝟐𝟗𝟎𝟖 

𝑪𝒍𝒂𝒔𝒔⁡𝑰𝑫 𝒙𝒎𝒊𝒏(𝒑𝒙)

𝒘𝒊𝒅𝒕𝒉⁡(𝒑𝒙)
 

𝒚𝒎𝒊𝒏(𝒑𝒙)

𝒉𝒆𝒊𝒈𝒉𝒕⁡(𝒑𝒙)
 

𝒙𝒎𝒂𝒙(𝒑𝒙)

𝒘𝒊𝒅𝒕𝒉⁡(𝒑𝒙)
 

𝒚𝒎𝒂𝒙(𝒑𝒙)

𝒉𝒆𝒊𝒈𝒉𝒕⁡(𝒑𝒙)
 

The files were then compressed into two different archives, one for training and one for testing. 
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6.2.2.9.2. Coding the train script 
Steps followed for implementing YOLOv3 are shown in Figure 6-17. The process can be divided into 

ten stages. While its source code is shown in APPENDIX III: YOLOv3 implementation, some 

configuration parameters are explained for a better understanding of the network. 

1) Clone repository: Darknet repository must be cloned from GitHub’s original repo.  

2) Define 𝑖𝑚𝑠ℎ𝑜𝑤(): Helper functions should be defined to plot the final results. 

3) Upload the training set: The custom training set that has been created previously needs to 

be uploaded to the Google Collaboratory workspace so that it can be used and unzipped. 

4) Python text file script: YOLOv3 requires as well “train.txt” and “test.txt” files that contains 

all the paths of the training and validation images. The script is provided by “The AI Guy” 

in GitHub [68] and it should be edited to match the Google Drive paths. 

5) Edit “obj.data” and “obj.names”: The file “obj.data” will contain the number of classes, and 

the path of the “.txt.” files generated in step 4) so that the images can be used by the CNN 

for training and validation. 

6) Change config file: This is one of the most important steps when setting up YOLOv3, as it 

is defining how the network will be trained. Each of the main parameters is explained in 

detail in Table 2. It is interesting to read through them to understand how training of 

YOLOv3 works. 

7) Train: Training of the network is done in this step by running a command specific to 

YOLOv3. The path of the configuration file, “obj.data” and “obj.names” is needed for the 

training to be successful. With the goal of considerably reducing training time, transfer 

learning was used by starting from some given pre-trained weights available at the Darknet 

GitHub repository [66]. It took around six hours to train on 2000 images. 

8) Upload validation data set: Like step 3), the validation set obtained from following the steps 

to create a custom dataset needs to be uploaded to the workspace to be unzipped. 

9) Validate: The precision of the CNN was measured with the validation data set, and the 

medium average precision (mAP) results were obtained.  

10) Test: Some practical tests were run using some random images to demonstrate the detections 

performed. 

 

Figure 6-17: YOLOv3 implementation process 
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Table 2: YOLOv3 hyperparameters 

Parameters Explanation 

# Training 
batch=64 
subdivisions=16 
width=416 
height=416 
channels=3 
momentum=0.9 
decay=0.0005 
angle=0 
saturation = 1.5 
exposure = 1.5 
hue=.1 

The training set will be divided into random batches of 64 

images of height 416x416x3 pixels. Having big batch sizes will make 

the CNN more generic as the weights will not be changed 

significantly for every single picture. 

The momentum measures how large changes in the weights 

during training are penalized, and the decay prevents overfitting by 

penalizing when the weight values are too large, this the CNN is 

overfitting. 

The last three parameters, saturation, exposure, and hue just 

transform the colors of the image so that object detection is less 

influenced by lighting, contrast, and color. 

learning_rate=0.001 The learning rate defines how fast the CNN learns new 

features. A large value will cause steps to be larger and therefore be 

less precise, while smaller values will make the network more 

precise, but will take longer to train. 

burn_in=1000 The burn in (or warm up) hyperparameter refers to the 

iterations it takes to the CNN to reach the specified learning rate. 

max_batches = 2000  Maximum number of iterations the CNN will be trained at. It 

should be the number of classes times 2000.  

policy=steps 
steps=1600,1800  
scales=.1,.1 

These lines will make YOLO change the learning rate during 

training. When it reaches 1600 it will be multiplied by a scale factor 

of 0.1, and when it reaches 1800 it will then again be multiplied 

times 0.1.  

To better illustrate the hyperparameters: ‘learning_rate’, ‘burn_in’ and ‘steps’, the log during the 

training of YOLOv3 was outputted for the first 1700 iterations. The most meaningful lines have been 

selected. 

1: 1882.593140, 1882.593140 avg loss, 0.000000 rate, 5.678190 seconds, 64 images, 1.000000 h

ours left 

999: 1.170234, 1.755827 avg loss, 0.000996 rate, 2.862937 seconds, 

63936 images, 0.984242 hours left 

1000: 1.867372, 1.766982 avg loss, 0.001000 rate, 2.925025 seconds, 64000 images, 0.982360 h

ours left 

1300: 2.272686, 1.589324 avg loss, 0.001000 rate, 4.064846 seconds, 83200 images, 0.810453 h

ours left 

1600: 2.351540, 1.780402 avg loss, 0.000100 rate, 2.885864 seconds, 102400 images, 0.473643 

hours left 
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It can be observed how the learning rate “rate” starts at 0 and increases to 0.001 in the first 1000 

epochs. Then it is kept at 0.001 until iteration 1600, where it is multiplied by 0.1 and results in a 

learning rate of 0.0001. 

6.2.2.9.3. Results 
Training was done with 2000 images. Darknet outputs a chart (Figure 6-18) that illustrates how the 

loss function drops at each iteration. During the first 200 iterations the value is over 1700, thus it is 

not shown, however it can be observed how the loss drops significantly after 180 iterations. Then it 

stabilizes and continues decreasing until it reaches 1.4526. Furthermore, the precision measured was 

33.67mAP for a detection time of 90 milliseconds.  

Table 3 shows how the test was performed in two images using a confidence threshold of 0.1 

for the left and 0.3 for the right column. The confidence scores for each balloon detection are shown 

under each image.  
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Figure 6-18: YOLOv3 epochs-avg loss chart 

Table 3: YOLOv3 results 

  

Balloon: 28%, Balloon: 74%, Balloon: 13% Balloon: 74% 
 

  

Balloon: 36%, Balloon: 58%, Balloon: 33%, 
Balloon: 52%, Balloon: 44%, Balloon: 14%, 
Balloon: 29%, Balloon: 58%, Balloon: 25%, 
Balloon: 50%, Balloon: 40%, Balloon: 54%, 
Balloon: 71%, 

Balloon: 36%, Balloon: 58%, Balloon: 33%, 

Balloon: 52%, Balloon: 44%, Balloon: 29%, 

Balloon: 58%, Balloon: 25%, Balloon: 50%, 

Balloon: 40%, Balloon: 54%, Balloon: 71%, 
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6.2.2.9.4. Conclusion 
As a result of studying YOLOv3, the main goal of understating the working principle of a CNN was 

achieved by analyzing its architecture and loss function. Moreover, implementing the network lead 

to a better understating of how to use it for custom object detection, which could valuable for cone 

detection in the Formula Student autonomous driving competition. The network was successfully 

configured, trained, and tested giving 33.67mAP for 90ms, that can be improved by using more 

training images, a more powerful graphics unit, or even experimenting with other YOLO variations 

and the FSOCO database. 

6.2.2.9.5. Note in combining YOLO and LIDAR information 
A question that might arise is how the bounding boxes containing the object can be placed in a 3-

Dimensional map to plan the trajectory of the autonomous vehicle. Milan Aryal, graduate student 

from Grand Valley State University gives an easy-to-understand approach in his master’s thesis 

‘Object Detection, Classification, and Tracking for Autonomous Vehicle’ [69].The LIDAR point 

cloud is projected into the camera image, and only the points that are inside the YOLO bounding 

boxes are considered. The distance is measured and taken to a 3D reference space. The positions of 

the objects are then fed to the Extended Kalman Filter for processing and path planning. Figure 

6-19 illustrates this way of combining CNN bounding box and laser scan information. 

 

Figure 6-19: Combining LIDAR data and YOLOv3 results [69] 
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6.3. SLAM (Simultaneous Localization and Mapping)  

Simultaneous Localization and Mapping is the computational problem of generating a map of the 

environment, while keeping track of the position of the vehicle withing that map. This issue is 

commonly presented in robotics, and it comes up when the vehicle needs to drive through an 

unknown environment. Moreover, it covers a very wide field of research and hence only a brief 

introduction will be provided. 

Terms & Definitions: 

Bayes’ Theorem: The Bayes’ Theorem is a statistical rule that gives the conditional probability of a 

random event 𝐴 given 𝐵. The mathematical formula behind it will be: 

 
𝑃(𝐴𝑖|𝐵) =

𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

𝑃(𝐵)
 (30) 

Where 𝑃(𝐵|𝐴𝑖) is the probability of 𝐵 given 𝐴 and 𝑃(𝐴) and 𝑃(𝐵) are the likelihood of 𝐴 and 𝐵. 

The steps followed for SLAM are shown in (Figure 6-20). First, the sensors measure the state of 

the vehicle and detect the surroundings, then the different points in the map at each timestep need 

to be matched, after finishing the mapping of the area, the robot returns to the origin and closes the 

loop. 

 

Figure 6-20: Simultaneous Localization and Mapping (SLAM) steps 

The paper published in the ‘International Journal of Engineering & Technology’ by researchers 

from the University of Technology MARA’ in Malaysia [70], summarizes the three main SLAM 

solving methods for autonomous vehicles classified into two categories, filter based, and optimization 

based. The article also has useful bibliography to dive deeper in the details of each type of SLAM.  

Filter based methods include EKF SLAM, and Fast SLAM. They are based on the Bayes’ 

Theorem, that applied to SLAM, has the goal of predicting the car position in the map, by previously 

knowing the sensor data and the input controls.  

The formulation of the problem is represented in eq. (31), where 𝑥𝑘 is the car pose estimation, 

𝑀 is the map of the environment, 𝑧𝑘 is the sensor readings, and 𝑢𝑘 are the vehicle’s inputs.: 

 𝑃(𝑥𝑘 , 𝑀) = 𝑃(𝑥𝑘 , 𝑀|𝑧0:𝑘 , 𝑢0:𝑘) (31) 

The optimization method described in the paper is Graph SLAM, that instead of predicting the 

states from the new inputs, the vehicle’s current pose in the map is identified from the sensors. 
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7. Control 

7.1. Car Model 

Terms & Definitions: 

State: Collection of variables that summarize the past of a system in order to predict its future.  

State Vector: The collection of the state variables written as a vector 𝑥 ∈ ℛ𝑛 .⁡⁡ 

State Space Model: A model that describes a system using the differential equations. 

 𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥, 𝑢) (32) 

Cornering stiffness: Cornering stiffness is the ability of a tire to resist deformation in its shape when 

the vehicle corners. It is a function of the lateral force of the tire and its slip angle. 

The first step in the control of an unmanned vehicle is defining the car model. It will be the one 

used by the controller to reduce state error. It might also serve the purpose of using it in simulation 

environments to test the driving algorithms. This model should be able to imitate the car’s behavior.  

Subsequently, the closest the model is to the real vehicle the better the results will be. However, 

high level of accuracy will require large computational power, so based on the requirements and 

resources available, different car models can be selected. The car-like model would suit the more 

precise approach, while the bicycle model usually gives mathematical simplicity still being feasible in 

most cases [71]. 

The models can also be developed in three stages, the geometric model, the kinematic model, 

and the dynamic model, depending on the car’s speed and the required precision. This division is 

introduced in ‘Modelling and Control Strategies in Path Tracking Control for Autonomous vehicles’ 

by Noor Hafizah et al. [72]. The kinematic and dynamic model are summarized based on the book 

‘Vehicle Dynamics and Control’ by Rajesh Rajamani [73].  
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7.1.1. Car-like model 

Car-like mathematical models will represent the vehicle precisely, however, they become very 

complex when introducing the lateral dynamics of all four wheels. According to the book ‘Robot 

Motion Planning and Control’, by De Luca et al.  [74], they are non-holonomic systems. This means 

that the number of controllable DoF is smaller than the number of the system’s DoF. In this, case, 

the car has 4 degrees of freedom (m=4), motion in x, motion in y, orientation (phi) and heading or 

wheel steering angle (delta), and only two (n=2) are controllable, longitudinal direction and lateral 

direction. 

 

Figure 7-1: Car-like vehicle model [71] 

• (𝑋⁡, 𝑌⁡): Local reference frame. In car-like models the origin is in the rear axle. 

• (𝑋1, 𝑌1): Global reference frame. 

• (𝑋, 𝑌): Position in global reference frame. 

• 𝜑: Angular difference between global and local reference frame. 

• 𝛿: Front wheel steering angle. 

• 𝐿: Length between front and rear axles. 

• 𝑉: Velocity vector of the vehicle. 

  

𝑌1 

𝑋1 
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7.1.2. Bicycle model 

The bicycle model is a simplification of the car-like model by assuming that the steering angles are 

going to be small. It can be implemented in real self-driving vehicles and its complexity is reduced 

under the assumptions stated at a paper published from the Toyota Technical Institute, ‘A Tutorial 

On Autonomous Vehicle Steering Controller Design, Simulation and Implementation’ [71]:  

1. The left and right wheels in both axles are lumped in a single wheel. 

2. Roll and pitch motions are ignored (no load transfer due to roll and pitch motions). 

3. Vehicle runs on a smooth road with a constant speed.  

The bicycle model is represented in Figure 7-2, showing the tire variables that will be necessary 

for the dynamic model. 

 

Figure 7-2: Bycicle model [73] 

• 𝑂: Instantaneous rolling center of the vehicle. Intersection between the perpendicular lines 

to the wheels in 𝐴 and 𝐵. 

• 𝐶: Center of gravity of the vehicle. 

• 𝐴, 𝐵: Front and rear axles. 

• (𝑋, 𝑌): Global reference frame. 

• 𝜓: Angular difference between global and local reference frame. 

• 𝛿𝑓: Front wheel steering angle. 

• 𝛿𝑟: Rear wheel steering angle. Zero if there is only front steering. 

• 𝑙𝑓 : Length between front axle and center of mass. 

• 𝑙𝑟: Length between rear axle and center of mass. 

• 𝐿: Length between front and rear axles (𝐿 = 𝑙𝑓 + 𝑙𝑟). 

• 𝑉: Velocity vector of the vehicle in the center of mass. 

• 𝜃𝑉𝑓 : Angle that the velocity vector makes with the longitudinal axis of the vehicle and 𝛿𝑓. 

The front slip angle will be 𝛼𝑓 = 𝛿𝑓 − 𝜃𝑉𝑓 . 

• 𝜃𝑉𝑟 : Angle that the velocity vector makes with the longitudinal axis of the vehicle and 𝛿𝑟. 

The rear slip angle will be 𝛼𝑟 = 𝛿𝑟 − 𝜃𝑉𝑓. 

• 𝛽⁡: Direction of the velocity at the center of gravity with respect to the car’s longitudinal axis. 
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7.1.3. Geometric vehicle model 

This one is the simplest type of car model; it only considers the position and the geometric constraints 

of the vehicle. As a result, the precision of the geometric model is low. as It does not consider the 

speed and acceleration. Implementation of this vehicle model is purely geometric based on the 

Ackerman Steering model, which computes the steering angle according to the road’s curvature 

radius. Here, the geometry of the road will determine the next approaching point. The Pure Pursuit 

controller, developed in the 80s at Carnegie Mellon University [75], is an example of application of 

the geometric model.  

 

 

Figure 7-3: Geometric-based model path planning 32 

7.1.4. Kinematic model 

The kinematic model assumes that there is no wheel slippage angle whatsoever, hence only being 

valid for low speed applications. It considers position, velocities, and acceleration, but it does not 

consider the body’s internal forces, inertia, and energy. How the kinematic equations of motion are 

obtained can be studied in Rajesh Rajamani’s book [73]. The final kinematic equations for a front-

steering vehicle are: 

 𝑋̇ = 𝑉 cos(𝜓 + 𝛽) 

𝑌̇ = 𝑉 sin(𝜓 + 𝛽) 

𝜓̇ = 𝑉cos⁡(𝛽)
tan(δf)

L
 

(33) 

7.1.5. Dynamic model 

The kinematic model would be enough for an early-stage development of an autonomous vehicle. 

However, if the speed increases, tires start to slip, and the cornering stiffness coefficient comes into 

place. This is highly influenced by the tire properties and is one of the main mathematical difficulties 

when driving on the limits of handling. 

  

 
32 ‘Path tracking controller for automated driving’, Ádám Bárdosa, Sándor Vass, Ádám Nyerges, Viktor Tihanyi 
and Zsolt Szalay, Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle 
Engineering, Budapest University of Technology and Economics 
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The dynamic model is based on Newton’s equilibrium equations. This leads to an approach that 

can be used together with the kinematic model, and includes the position, velocity, acceleration, as 

well as the internal forces, energy, and momentum. How the dynamic equations of motion are 

obtained can be studied in Rajesh Rajamani’s book [73]. The final dynamic equations for a front-

steering vehicle can be represented in the form 𝑥̇ = 𝐴𝑥 + 𝐵𝑢. If only the steering angle is considered 

as an input, u = δf, the result would be: 

 

𝑑

𝑑𝑡
{

𝑦
𝑦̇
𝜓

𝜓̇

} =

[
 
 
 
 
 
0 1 0 0

0 −
2𝐶𝛼𝑓 + 2𝐶𝛼𝑟

𝑚𝑉𝑥
0 −𝑉𝑥 −

2𝐶𝛼𝑓𝑙𝑓 + 2𝐶𝛼𝑟𝑙𝑟
𝑚𝑉𝑥

0 0 0 1

0 −
2𝑙𝑓𝐶𝛼𝑓 − 2𝑙𝑟𝐶𝛼𝑟

𝐼𝑧𝑉𝑥
0 −

2𝑙𝑓
2𝐶𝛼𝑓 + 2𝑙𝑟

2𝐶𝛼𝑟

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 

+

{
 
 

 
 

0
2𝐶𝛼𝑓
𝑚
0

2𝑙𝑓𝐶𝛼𝑓
𝐼𝑧 }

 
 

 
 

δf (34) 

It can be observed how the cornering stiffness coefficients 𝐶𝛼⁡play an important role in the 

equations, as they are part of the lateral forces in the tires. These forces are also influenced by the tire 

slip angles 𝛼𝑓 and 𝛼𝑟. Rajesh Rajamani points out that the factor 2 accounts for the fact that there 

are two wheels in each axis.  

7.1.6. Frequency domain 

In the case of a simple vehicle model, it is sometimes useful to know the vehicle’s transfer function 

in the frequency domain. The paper by Noor Hafizah et al. goes from the kinematics and dynamics 

of the model to a transfer function [72]. 

His vehicle kinematic model is simpler than the one presented above, not considering the slip 

angle  𝛽. It is presented as: 

 𝑋̇ = 𝑉 · cos(𝜓) 

𝑌̇ = 𝑉 · sin(𝜓) 

𝜓̇ = 𝑉 ·
tan(δf)

L
 

(35) 

Simple actuator dynamics are considered so that: 

 
δ̇ = −

δ

τ
+
𝐾𝑎
𝜏
δf (36) 

Where 𝐾𝑎 is the gain assumed to be 1, tau is the actuator constant, and δf is the input reference 

steering angle. 

After this, the full model can be transformed to the Laplace domain resulting in a transfer 

function: 

 

𝐺(𝑠) =
𝑌(𝑠)

δf(𝑠)
=

𝑣2
𝐿⁄

𝑠2 · (𝜏 · 𝑠 + 1)
 (37) 
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7.2. Path Planning 

Once the vehicle model is defined, it is necessary to define a path planning protocol so that it can 

navigate autonomously. 

Terms & Definitions: 

Graph: A graph is a combination of nodes linked by edges and represented as 𝒢(𝑉, 𝐸), where 𝑉 are 

the nodes of the graph, and 𝐸 are the edges, or links, between the nodes. 

Complete algorithm: An algorithm is considered complete if it reports whether there is a solution 

for any input in a finite amount of time. 

Optimal algorithm: An algorithm is considered optimal if the solution found is optimal in a finite 

amount of time. 

Probabilistically complete algorithm: An algorithm is considered probabilistically complete if given 

enough points, the probability of finding an existing solution converges to one. 

Dijkstra’s Algorithm: Dijkstra’s Algorithm is a classical pathfinding algorithm first programmed in 

1956. It has typically been used as a method to find the shortest path in a graph, considering the 

weight in the edges, and finding the route with lowest cost. If there are no weights, the algorithm 

explores all the nodes in every direction until the goal is achieved.  

A*: A* can be considered an improved version of Dijkstra’s Algorithm developed in 1968. Instead 

of analyzing all the possible paths to achieve the target, it measures the cost to the goal and follows 

the path with lower cost. This is done using heuristics, that estimate the cost functions of each route. 

If there is no cost function, the A* simply turns into the Dijkstra’s Algorithm. A* is commonly used 

in combination with other techniques when determining the optimal solution from a feasible set. 

Configuration Space: Configuration space contains all possible configurations of the mobile robot. 

It is formed by the free space and the obstacle space. 

Convex set: A set 𝜒 ∈ ℛ2 is convex if:   

 𝜃𝑥1 + (1 − 𝜃)𝑥2⁡𝜖⁡𝜒 (38) 

for all 𝑥1, 𝑥2 ∈ 𝜒, 𝜃 ∈ [0,1]. An example of a convex set is a convex polytope, which is the region 

where the optimal solution will be searched, denoted as:  

 𝑃 = {𝜒 → ℛ𝑛|𝐴𝑚𝑥𝑛𝑥 = 𝑏} (39) 

Convex function: A function 𝑓:⁡𝜒 → ℛ2 is convex if  the set 𝜒 is convex and  

 𝑓(𝜃𝑥1 + (1 − 𝜃)𝑥2) ≤ ⁡𝜃𝑓(𝑥1) + (1 − 𝜃)𝑓(𝑥2) (40) 

for all 𝑥1, 𝑥2 ∈ 𝜒, 𝜃 ∈ [0,1] 

Strictly convex function: A function 𝑓:⁡𝜒 → ℛ2 is strictly convex if  the set 𝜒 is convex and  

 𝑓(𝜃𝑥1 + (1 − 𝜃)𝑥2) < ⁡𝜃𝑓(𝑥1) + (1 − 𝜃)𝑓(𝑥2) (41) 

for all 𝑥1, 𝑥2 ∈ 𝜒, 𝜃 ∈ [0,1]. 
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Positive definite matrix: A matrix 𝑀 ∈ ℛ𝑛𝑥𝑛  is said to be positive definite if: 

 𝑥𝑇𝑀𝑥 > 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑥⁡ ∈ ℛ𝑛𝑥1 (42) 

Note that  𝑥𝑇𝑀𝑥 will be a real number. 

Positive semidefinite matrix: A matrix 𝑀 ∈ ℛ𝑛𝑥𝑛  is said to be positive definite if: 

 𝑥𝑇𝑀𝑥 ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑥⁡ ∈ ℛ𝑛𝑥1 (43) 

Note that  𝑥𝑇𝑀𝑥 will be a real number.  

Path planning for autonomous vehicles is usually hierarchically divided into three sections, 

mission planning, behavior planning and motion planning.  

The mission planning stage is associated with generating a high-level route for the vehicle. The 

route planner is provided with a previously designed file, known best as Road Network Definition 

Files (RNDF). This is used as a graph map with nodes and edges to plan the shortest path between 

two points with classical algorithms such as Dijkstra’s or A*. This planner level can be typically seen 

in GPS devices such as Google Maps. The path generated between your starting point and the target 

is the mission planner generated route. No motion commands are generated at this level.  

The behavior planning section is more specific to the vehicle. Behavior planning is about 

decision making of the car. This can be approached using Finite State Machines (FSM) that will 

choose the state depending on the triggering conditions. The actions executed here can be used to 

decide whether to overtake another vehicle, to stay in the left lane under certain circumstances, or to 

avoid road blockage. An example of a FSM is presented in Figure 7-4 from Stanford’s Entry in the 

Urban Challenge DARPA [76].  

 

Figure 7-4: Unmanned car driving behavior state machine [76] 
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7.2.1. Motion planning 

Motion planning is the third step in the path planning hierarchy. It is based on obtaining a safe and 

dynamically feasible trajectory for the self-driving vehicle to go from the initial position to the target. 

The goal might be different depending on the application. Motion generation tasks sequentially 

classified in the Kristoffer Bergman’s bachelors’ thesis ‘On Motion Planning Using Numerical 

Optimal Control’ [77] are divided into path generation, path optimization, and trajectory planning, 

or motion profile planning. 

7.2.1.1. Path generation 

 The purpose of path generation is the creation of a collision free path that connects the initial state 

with the target. This is done via a path parameter 𝑠 that represents the progression along the path. 

The constraints of the vehicle are usually ignored at this step and considered in further tasks.  

A path is represented as: (𝑥(𝑠), 𝑢(𝑠)) with , 𝑠 ∈ [0, 𝑠𝑔𝑜𝑎𝑙]. The variable 𝑥(𝑠) is the state as a 

function of 𝑠, and 𝑢(𝑠) is the input vector. The parameter s goes from 0 to the goal (𝑠𝑔𝑜𝑎𝑙) and there 

is no time dependence.  

The path planning problem can be divided into two separate problems. The feasibility problem 

and the optimization problem. They are described in Steven M. La Valle’s ‘Planning Algorithms’ 

book [78]. 

Let 𝜒⁡be a bounded connected subset of ℛ2. And let the obstacle region and goal region be 

called 𝜒𝑜𝑏𝑠 and 𝜒𝑔𝑜𝑎𝑙 and be subsets of 𝜒⁡. Let us denote the free space as 𝜒𝑓𝑟𝑒𝑒 and the initial 

position as 𝑥𝑖𝑛𝑖𝑡 ∈ 𝜒𝑓𝑟𝑒𝑒 .  

Feasibility problem: The feasibility problem pretends to find collision free path that starts at 𝑥𝑖𝑛𝑖𝑡 

and ends at the goal region 𝜒𝑔𝑜𝑎𝑙 . It is defined as finding a path 𝜎: [0, 𝑠] →⁡ 𝜒𝑓𝑟𝑒𝑒  such that 𝜎(0) =

𝑥𝑖𝑛𝑖𝑡 and 𝜎(𝑠) ∈ 𝜒𝑔𝑜𝑎𝑙 . Otherwise, it should report failure.  

Optimality problem: The optimality problem tries to find collision free optimal path that starts at 

𝑥𝑖𝑛𝑖𝑡 and ends at the goal region 𝜒𝑔𝑜𝑎𝑙 . Having the cost function 𝑐 such that 𝑐: ∑𝜒𝑓𝑟𝑒𝑒 → ℛ⁡ > 0⁡it 

is defined as finding a feasible  path 𝜎∗: [0, 𝑠] →⁡ 𝑐(𝜒𝑓𝑟𝑒𝑒) such that: 

 i) 𝜎∗(0) = 𝑥𝑖𝑛𝑖𝑡 and 𝜎∗(𝑠) ∈ 𝜒𝑔𝑜𝑎𝑙 

ii) 𝑐(𝜎∗) = ⁡ min
𝜎𝜖 ∑ 𝜒𝑓𝑟𝑒𝑒

𝑐(𝜎) (44) 

And if no path exists report failure. 
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7.2.1.2. Path optimization 

In the path optimization step, the trajectory is smoothed and transformed according to the kinematic 

and dynamic model of the vehicle. No dynamic obstacles will be considered at this step. The problem 

can be formulated as an optimal control problem (OCP) to optimize an objective function 𝐽 

minimizing the loss function 𝐿(𝑥(𝑡), 𝑢(𝑡)):⁡ 

 
minimize
𝑥(·),𝑢(·),𝑡𝑓

⁡⁡⁡⁡⁡ 𝐽 =⁡∫ 𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
𝑡𝑓

𝑡𝑖

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡𝑥(𝑡𝑖) = 𝑥𝑖𝑛𝑖𝑡 , 𝑥(𝑡𝑓) = 𝑥𝑓𝑖𝑛𝑎𝑙  

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)),⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡 ∈ [𝑡𝑖 , 𝑡𝑓]⁡ 

⁡⁡⁡⁡⁡⁡𝑥(𝑡) ∈ 𝜒𝑓𝑟𝑒𝑒(𝑡) ∩ 𝜒𝑣𝑎𝑙𝑖𝑑 , 𝑡 ∈ [𝑡𝑖 , 𝑡𝑓]⁡ 

𝑢(𝑡) ∈ ⁡𝒰,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡 ∈ [𝑡𝑖 , 𝑡𝑓] 

(45) 

• 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑓𝑖𝑛𝑎𝑙  are the initial and final states. 

• 𝑡𝑓 the time when the goal state is reached. 

• 𝜒𝑓𝑟𝑒𝑒(𝑡) is the obstacle free region. 

• 𝑋𝑣𝑎𝑙𝑖𝑑 and 𝒰 describe the physical constraints on the states and controls, typically 

described by convex sets.  

• 𝑢(𝑡) is the control signal, which in the steering car model would be the steering angle 

and the velocity. 

It is assumed that 𝑥(𝑡) ∈ 𝜒𝑓𝑟𝑒𝑒(𝑡) ∩ 𝜒𝑣𝑎𝑙𝑖𝑑 and 𝑥𝑡𝑒𝑟𝑚 ∈ 𝜒𝑓𝑟𝑒𝑒(𝑡) ∩ 𝜒𝑣𝑎𝑙𝑖𝑑 

Linearization techniques are used in this step to make the optimization problem simpler. Two 

challenges of this OCP are when the problem is non-convex, and when the system is non-linear, as 

in the case of the self-driving car.  
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7.2.1.3. Motion profile generation  

Time law is introduced in this task. It consists of computing the reference inputs for the controller 

of the autonomous car. The trajectory generator will consider the path created previously, as well as 

the kinematic and dynamic constraints of the robot, to compute a feasible motion profile. The 

steering angle can sometimes be obtained from the previous steps, thus being 𝑢(𝑡) the only unknown 

variable. Along each path segment, the velocity profile will be: 

 𝑠̇(𝑡) = |𝑣(𝑡)| (46) 

A trajectory is represented as: (𝑥(𝑠(𝑡)), 𝑢(𝑠(𝑡))), 𝑡 ∈ [𝑡𝑖 , 𝑡𝑓], with 𝑡 varying from the start 𝑡𝑖 

to the finish 𝑡𝑓 . 

The task of speed profile generation can be fulfilled using the curvature profile of the generated 

path. This can be easier in the case of an autonomous race car, which will do an exploration lap first, 

at a low constant speed, and obtaining a feasible route. The following laps will be completed with the 

computed speed profile. This idea is introduced by Nitin R. Kapania in his doctor thesis from 

Stanford [79]. A first solution for the speed profile can be obtained with: 

 

𝑣(𝑠) = ⁡√
𝜇𝑔

|𝜅(𝑠)|
 (47) 

Where 𝜇⁡is the friction coefficient, and 𝑔 = 9.81⁡𝑚/𝑠2 is the gravitational constant and 𝜅(𝑠) 

is the curvature of the path in 𝑠. 

In the case of a more generic autonomous vehicle, two approaches could be used. On the one 

hand, similarly to the Formula Student racecar, it seems reasonable to use the curvature of the path 

from the local planner to create the motion profile. On the other hand, Anton Anastassov et al. 

explain in their paper ‘Driving Speed Profiles for Autonomous Vehicles’ how a planned route can be 

created from a GPS global motion and updated every predefined time interval [80].   
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7.2.2. Motion planning algorithms   

There is a wide variety of algorithms in mobile robotics with regards to motion planning. The 

publication ‘A Review of Motion Planning for Highway Autonomous Driving’ published in the IEEE 

Transactions on Intelligent Transportation Systems [81] makes a good classification of them based 

on their approach. It can serve as a starting point to decide on the kind of algorithm desired for the 

autonomous vehicle.  

They are globally classified into six main sets. The ones that can be of greater use for the Formula 

Student racecar implementation will be explained more extensively, while the rest will be briefly 

summarized.  

Furthermore, it is essential to bear in mind that motion planning algorithms can be combined 

in order to obtain different results.  

7.2.2.1. Sampling Based algorithms  

Sampling based algorithms discretize the configuration space. The main goal is to generate a path 

from the initial state by capturing the free space using a graph search. The three most popular 

algorithms with this purpose are Probabilistic Road Map (PRM), Rapidly Exploring Random Tree 

(RRT) and its variant RRT*, as well as Lattice State Planning.  
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7.2.2.1.1. Probabilistic Road Map 
Even though this method might not be the best for an autonomous racecar, it is convenient to 

understand how it works to learn other sampling-based methods, and it is explained in LaValle’s book 

Chapter 5 [78]. 

Probabilistic Road Map is a global space discretization algorithm that is usually combined with 

other path finding algorithms. It is based on discretizing the configuration space evenly on a grid, 

which is good for small spaces, and can be convenient for a global approach of a racecar in a track. 

This algorithm cannot be defined as probabilistically complete since it will not report failure if no 

solution can be found. However, it offers two very useful advantages, as it can be used with systems 

of a lot of Degrees of Freedom, and the road map can be reused. 

The pseudocode of the algorithm is presented in Algorithm 1: Probabilistic Road Map . It was 

obtained from combining LaValle’s explanation and the PRM class notes from Penn State [82]. 

Algorithm 1: Probabilistic Road Map pseudocode 

𝐼𝑛𝑝𝑢𝑡𝑠: 𝑁⁡(Number⁡of⁡Samples), 𝑀𝑎𝑝   

𝑂𝑢𝑡𝑝𝑢𝑡𝑠: 𝑃𝑅𝑀⁡𝐺𝑟𝑎𝑝ℎ⁡𝒢 

1: 𝑉 ← ∅ 

2: 𝐸 ← ∅ 

3: 𝒘𝒉𝒊𝒍𝒆⁡|𝑉| < 𝑁⁡𝒅𝒐 

4: 𝑥𝑟𝑎𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚⁡𝑝𝑜𝑖𝑛𝑡⁡𝑖𝑛⁡𝒞 − 𝑆𝑝𝑎𝑐𝑒 

5: 𝒊𝒇⁡𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶ℎ𝑒𝑐𝑘(𝑥𝑟𝑎𝑛𝑑)⁡𝒅𝒐 

6: 𝑉 ← 𝑉 ∪ {𝑥𝑟𝑎𝑛𝑑} 

7: 𝒆𝒏𝒅⁡𝒊𝒇 

8: 𝒆𝒏𝒅⁡𝒘𝒉𝒊𝒍𝒆 

9: 𝒇𝒐𝒓⁡𝒂𝒍𝒍⁡𝑥 ∈ 𝑉⁡𝒅𝒐 

10: 𝑁𝑞 ← 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔⁡𝑡𝑜⁡𝐷𝑖𝑠𝑡()⁡𝑡ℎ𝑒⁡𝑐𝑙𝑜𝑠𝑒𝑠𝑡⁡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠⁡𝑜𝑓⁡𝑥 

11: 𝒇𝒐𝒓⁡𝒂𝒍𝒍⁡𝑥𝑛 ∈ 𝑁𝑞 ⁡𝒅𝒐 

12: 𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟(𝑥, 𝑥𝑛) 

13: 𝒆𝒏𝒅⁡𝒇𝒐𝒓 

14: 𝒆𝒏𝒅⁡𝒇𝒐𝒓 

 

1. 𝐷𝑖𝑠𝑡(𝑥1, 𝑥2): The goal of this function is to get the distance between two points in the 

configuration space. The distance will necessarily be a real number and it can be obtained in 

various ways. Two of the most popular ones are shown in Figure 7-5: 

a. Euclidean distance: 

 
𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑖, 𝑗) = √(𝑥𝑖1 − 𝑥𝑗1)

2
+ (𝑥𝑖2 − 𝑥𝑗2)

2
 (48) 

b. Manhattan distance: Based on the building distribution from New York’s district:  

 𝑑𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑖, 𝑗) = |𝑥𝑖1 − 𝑥𝑗1| + |𝑥𝑖2 − 𝑥𝑗2| (49) 
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Figure 7-5: Manhattan distance (left) and Euclidean distance (right) 

2. 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶ℎ𝑒𝑐𝑘(𝑥): Checks if the statement ⁡𝑥⁡𝜖⁡𝜒𝑓𝑟𝑒𝑒 is fulfilled. 

3. 𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟(𝑥1 , 𝑥2): The goal of this function is to define whether there is a path 

between two points, or if it is being blocked by an obstacle. A common approach is by 

constructing a straight line of evenly spaced samples and use the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶ℎ𝑒𝑐𝑘(⁡) 

function to test if each of those points are free. If they are, then: 𝐸𝑛𝑒𝑤 ← 𝐸 ∪ {𝐸(𝑥, 𝑥𝑛)} 

In lines 1 and 2 an empty graph is generated. After this, a while loop is entered that will occur 

while the number of nodes in the graph is less than the maximum number of samples. Line 4 

represents the generation of a new random point in the configuration space. This is checked with 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶ℎ𝑒𝑐𝑘(𝑥) to see if it is located in empty space, and if this is fulfilled, the point is added to 

the node list in the graph. This is how random nodes are sampled all over the space. 

In order to link the nodes and the edges, another loop is created. For each of the nodes, the 

nearest ones are identified using the function 𝐷𝑖𝑠𝑡(𝑥1, 𝑥2) , and with 𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟(𝑥1, 𝑥2) a test 

is performed to see if edges in free space can be created between them.  

Once the algorithm is finished, the discretized space as a graph is completed with the required 

number of samples N. 

This map can be used by a graph path finding algorithm such as Dijkstra’s or A*. The first 

option, given the fact that all edges have the same weight, it will go from the starting point to the 

goal by testing all the nodes around the first one. Meanwhile, A* will consider the closeness to the 

goal, and approach it in that direction.   

The whole process is presented in Figure 7-6. 

 

Figure 7-6: Probabilistic Road Map path planning 33  

 
33 https://www.mathworks.com/help/robotics/ug/probabilistic-roadmaps-prm.html 

https://www.mathworks.com/help/robotics/ug/probabilistic-roadmaps-prm.html
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7.2.2.1.2. Rapidly Exploring Random Tree (RRT) 
RRT is a more advanced sampling-based algorithm used in many autonomous vehicle applications. 

It is called Rapidly Exploring Dense Trees because the main idea is to incrementally build a tree that 

densely covers the space. It is also introduced in LaValle’s book [78]. The feasibility problem will be 

resolved by this algorithm, but not the optimality problem. Therefore, the first path found to go from 

the starting point to the goal will be the one being selected.  

RRT is a very simple way of finding a path, and it offers the possibility of adding dynamic 

constraints to the algorithm so that the path is kinematically feasible. In addition, it has been modified 

into different variants. The most useful one is RRT* introduced by Sertac Karaman and Emilio 

Frazzoli [83] because it finds a feasible, and optimal path, taking RRT to the next level.  

The simplicity and adaptability that rapidly exploring random trees and their variations, makes 

it an appropriate solution for the Formula Student Racecar models. 

The pseudocode of the algorithm is presented in Algorithm 2: Rapidly Exploring Random Tree 

pseudocode and explained. Like with the PRM code, it was obtained from combining LaValle’s 

explanation and the PRM class notes from Penn State [82]. Moreover, the functions defined in this 

algorithm are the same as the ones used in the Probabilistic Road Maps. 

Algorithm 2: Rapidly Exploring Random Tree pseudocode 

𝐼𝑛𝑝𝑢𝑡𝑠: 𝑥𝑖𝑛𝑖𝑡(𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛), 𝑁(𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑆𝑎𝑚𝑝𝑙𝑒𝑠), 𝛿(max 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)  

𝑂𝑢𝑡𝑝𝑢𝑡𝑠: 𝑅𝑅𝑇⁡𝐺𝑟𝑎𝑝ℎ⁡𝒢 

1: 𝑉 ← 𝑥𝑖𝑛𝑖𝑡 

2: 𝐸 ← ∅ 

3: 𝒘𝒉𝒊𝒍𝒆⁡|𝑉| < 𝑁⁡𝒅𝒐 

4: 𝑥𝑟𝑎𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚⁡𝑝𝑜𝑖𝑛𝑡⁡𝑖𝑛⁡𝒞 − 𝑆𝑝𝑎𝑐𝑒 

5: 𝒊𝒇⁡𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶ℎ𝑒𝑐𝑘(𝑥𝑟𝑎𝑛𝑑)⁡𝒅𝒐 

6: 𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥(𝑥𝑟𝑎𝑛𝑑 , 𝐺) 

8: 𝒊𝒇⁡𝐷𝑖𝑠𝑡(𝑥𝑟𝑎𝑛𝑑 , 𝑥𝑛𝑒𝑎𝑟) < 𝛿⁡𝒅𝒐  

9: 𝑥𝑛𝑒𝑤 ← 𝑥𝑟𝑎𝑛𝑑  

10: 𝒆𝒍𝒔𝒆⁡𝒊𝒇⁡𝐷𝑖𝑠𝑡(𝑥𝑟𝑎𝑛𝑑 , 𝑥𝑛𝑒𝑎𝑟) > 𝛿⁡𝒅𝒐 

11: 𝑧 ← 𝑃𝑜𝑖𝑛𝑡⁡𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡(𝑥𝑟𝑎𝑛𝑑 , 𝑥𝑛𝑒𝑎𝑟)⁡𝑠𝑜⁡𝑡ℎ𝑎𝑡⁡𝐷𝑖𝑠𝑡(𝑥𝑟𝑎𝑛𝑑 , 𝑥𝑛𝑒𝑎𝑟) < 𝛿  

12: 𝑥𝑛𝑒𝑤 ← 𝑧 

13: 𝒆𝒏𝒅⁡𝒊𝒇 

14: 𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤)⁡𝒅𝒐 

15: 𝒆𝒏𝒅⁡𝒊𝒇 

16: 𝒆𝒏𝒅⁡𝒘𝒉𝒊𝒍𝒆 

 

Firstly, an empty graph is generated with the starting point of the vehicle. Then, for 𝑁 iterations, 

the algorithm generates a random sample position and checks if it belongs to free space using 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶ℎ𝑒𝑐𝑘(𝑥). Then, the nearest vertex is found in the graph. The distance between the vertex 

and the random position is checked, and if it is smaller than a threshold set by the user, the random 

node is assigned to a new node of the graph. Otherwise, an intermediate point in the same path 

between the random sample and the nearest node is generated and set as the new node of the graph.  



Self-Driving Car Autonomous System Overview                        Daniel Casado Herráez 

 

75 
 

In order to link the nodes and the edges 𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟(𝑥1, 𝑥2) is used, so that a test is 

performed to see if edges in free space can be created between them. If the space is obstacle free, the 

edge is generated. 

The whole process is presented in Figure 7-7, where all the tree branches can be observed, and 

the final path is indicated with a red line. 

 

Figure 7-7: RRT path planning 34 

One of the concerns that might arise when applying this algorithm is to realize how is it possible 

to transform a segment-based path into a feasible trajectory that can be followed by the car.  

A simple way of doing this could be using the segment values as inputs, and then smoothing the 

trajectory using the vehicle’s controller. A second approach is to follow a paper by Fang Zhang et al. 

‘Drift control for cornering maneuver of autonomous vehicles’ [84], where after finding the nearest 

neighbor and generating the edge, the RRT algorithm samples a random input and then propagates 

the dynamics of the car (with the bicycle model) forward one-time step, starting at⁡𝑥𝑛𝑒𝑎𝑟  and resulting 

in 𝑥𝑛𝑒𝑤 . The sampled input accounts for input rate constraints by constraining the sampling domain 

to be around the previously applied input, which limits the input magnitude and ensures a smooth 

path. After propagating the node forward, the algorithm ensures the vehicle remains within the track 

boundary. Thirdly, a curve definition algorithm could be used to obtain a smooth continuous path 

between the initial state and the goal. 

  

 
34 https://mappingignorance.org/2015/09/04/shortcuts-for-efficiently-moving-a-quadrotor-through-the-special-
euclidean-group-se3-1/ 

https://mappingignorance.org/2015/09/04/shortcuts-for-efficiently-moving-a-quadrotor-through-the-special-euclidean-group-se3-1/
https://mappingignorance.org/2015/09/04/shortcuts-for-efficiently-moving-a-quadrotor-through-the-special-euclidean-group-se3-1/
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7.2.2.1.3. Connected Cells algorithms 
Connected cell-based algorithms is well explained in the article ‘ Safe Path Planning Using Cell 

Decomposition Approximation’ by Ahmad Abbadi and Václav Přenosil [85].  

The main goal of this method is to find free regions in the space, discretized it into a group of 

cells, and build an adjacency graph from it. Finally, extract the path in combination with another 

algorithm like A* or Dijkstra’s.  

There are two ways of doing this, using exact cell decomposition, or approximations. As for the 

first technique, cells are constructed by avoiding the obstacles and using their vertices (Figure 7-8). 

The composition of these cells will represent the autonomous vehicle’s free space. However, the 

computational power is high, especially when the obstacles are complex. Regarding approximated 

methods (Figure 7-9), computational power is reduced by generating a grid map in the whole space, 

and then those cells that contain obstacles are excluded. This method depends on the resolution of 

the grid. 

Cell-based decomposition is a popular method that can be useful for route planning and global 

path planning, however the application is not popular in autonomous cars. 

 

Figure 7-8: Exact cell decomposition map [85] 

 

Figure 7-9: Approximate cell decomposition map [85] 
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7.2.2.2. Potential Field algorithms 

Potential Field Algorithms suggest an interesting approach to motion planning by creating a potential 

energy map that will guide the car to its goal. The main idea is to construct a smooth function over 

the configuration space that will have high values close to the obstacles and low values further away. 

The maximum value will be assigned to the initial position of the vehicle and the minimum value will 

be at the goal. A paper that demonstrates how potential field algorithms can be used in the control 

loop of Autonomous Vehicles is ‘Path planning with fractional potential fields for autonomous 

vehicles’ by Julien Moreau et al. [86]. 

This method can be difficult to understand at first. An easy way of thinking about it can be: 

Some piles of books are placed in the floor, that work as the obstacles, some distance away, a large 

wooden pole, that will simulate the starting point, is set up vertically, and finally, a bed sheet is 

dropped over the pole and the piles of books, leaving some gap between the books, and having the 

highest point at the wooden pole. If a marble is dropped at the starting point, it will move through 

the lowest places in the sheet, reaching the goal, which has the minimum distance to the floor. 

The main advantage of the algorithm is that it is a simple, direct approach for avoiding obstacles 

and following a path based on local sensor data such as position and laser data.  

Ideally, the method will work, and global minima will be found. However, the path planning 

technique might converge to local minima and get stuck there. This is the main reason why artificial 

potential field algorithms should be used as a local planner and not as a global planner. 

Artificial Potential Fields algorithm is explained by the Penn State professor Bob Trenwith in 

his robotics course [82]. It is divided into four steps. A common approach is presented for each of 

them. 

Attractive potential function: An attractive potential function is constructed for attraction to the 

goal. The proposed method for 2D is by defining a function such that it is zero at the goal and 

increases as the car is further away. The function is defined as: 

 𝑓𝑎(𝑥, 𝑦) = ⁡𝜉(||(𝑥, 𝑦) − (𝑥𝑔 . 𝑦𝑔)||)
2 (50) 

Being the position of the goal (𝑥𝑔 , 𝑦𝑔), and the function scaling constant 𝜉. 

Repulsive potential function: A repulsive potential function is constructed to represent the repulsion 

of the obstacles to the car. The input will be the distance in the 2D configuration space to the obstacle 

𝜌(𝑥, 𝑦), and the output, the distance to the closest configuration space obstacle. The function is 

defined as: 

 

𝑓𝑟(𝑥, 𝑦) = {
𝜂 (

1

𝜌(𝑥, 𝑦)
−
1

𝑑0
)
2

, 𝜌(𝑥, 𝑦) ≤ 𝑑0

0, 𝜌(𝑥, 𝑦) > 𝑑0

 (51) 

Being the function scaling constant 𝜂 and 𝑑0 a threshold that controls the influence of the 

repulsive potential. It can be observed that the smaller the distance, the greater 𝑓𝑟(𝑥, 𝑦) will be. 

Addition: The final potential function is constructed simply by adding the two functions: 

 𝑓(𝑥, 𝑦) = 𝑓𝑎(𝑥, 𝑦) + 𝑓𝑟(𝑥, 𝑦) (52) 
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Use on the robot: The final use of it on the robot will be to use the potential field function gradient 

to decide the direction of motion of the robot.  

  

𝑣⁡ ∝ −∇𝑓(𝑥, 𝑦) = ⁡−(

𝑑𝑓(𝑥, 𝑦)
𝑑𝑥

𝑑𝑓(𝑥, 𝑦)
𝑑𝑦

) (53) 

 

The robot speed ||𝑣||⁡is chosen independently.  

This final step indicates a benefit of artificial potential methods because by evaluating only ∇𝑓 

the robot can plan a path only knowing its position and sensor data. 

Figure 7-10 shows the potential field map indicating the start and target position, as well as the 

obstacles.  

 

Figure 7-10: Potential fields path planning 35 

  

 
35 ‘Mobile manipulator path planning based on artificial potential field: Application on RobuTER’, Hargas, Y., 
Mokrane, A., Hentout, A., Hachour, O., & Bouzouia, B., ‘International Conference on Electrical Engineering 
(ICEE)’ 2015 
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7.2.2.3. State lattice planning 

State lattice planning is a method based on generating the movements offline, and in combination 

with another algorithm such as RRT, or A*, develop an optimal, feasible path that fulfills the vehicle’s 

constraints. It has mainly been used for off-road driving challenges such as space exploration [87].  

This method might be useful for AVs because it saves computing time by defining the offline 

movements. Instead of inputting a segment-based trajectory to the controller, a model-based 

trajectory is used for easier control. 

The space 𝜒 is defined in a regular form, the set 𝜒𝑙𝑎𝑡  is called state lattices, and 𝑥𝑡 ∈ 𝜒
𝑙𝑎𝑡 ⊂ 𝜒 

is obtained sampled in a regular form,. The nodes are linked using all possible movements of the car. 

Depending on the other selected algorithm (RRT, A*…), if there is an obstacle, it is detected, and a 

feasible and optimal path is selected.  

All the paths between nodes are computed offline, allowing for a more efficient implementation 

of path planning in a robot. Another advantage of lattice states is the possibility of working in multi-

dimensional spaces, and the fast and accurate evaluation of motion costs. Figure 7-11 describes the 

grid of states linked by all possible movements.  

 

Figure 7-11: State lattice path planning 36 

  

 
36 ‘A State Lattice Approach for Motion Planning under Control and Sensor Uncertainty’, Adrián González-
Sieira, Manuel Mucientes, and Alberto Bugarín, Centro de Investigación en Tecnologias da Información (CITIUS), 
University of Santiago de Compostela, Spain, ‘ROBOT2013: First Iberian Robotics Conference’, 2013 
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7.2.2.4. Curve definition algorithms 

The main goal of curve definition algorithms is to define a smooth and continuous trajectory that 

can be followed by the vehicle. They are mostly used in combination with the other presented 

algorithms to optimize and improve the generated path. For example, a good idea could be to use 

the optimal pathfinder RRT* that returns a segment-based trajectory, with the curve generator that 

generates a spline in the path points. This outputs an optimal, smooth, and continuous route. 

7.2.2.4.1. Dubin’s Curves 
The simplest approach to curve definition is Dubin’s curves for forward movement. The path created 

will be formed by circular arcs and straight lines, that will compose the optimal trajectory. According 

to this technique, the optimal path will always have one of the following representations: RSR, RSL, 

LSR, LSL, RLR, LRL. Where R means right turn, L means left turn, and S means Straight Driving. 

Two examples are shown in Figure 7-12. 

 This method will fulfil the maximum steering angle constraints of the autonomous car. In 

combination with Reeds-Sheep curves, it is a good way of approaching car parking, as presented in 

‘Path-Planning for Autonomous Parking with Dubins Curves’ by Christoph Siedentop et al. [88]. 

However, it might not be successful when smoothing the intersection between a line and an arch. 

Moreover, the limited movements that can be carried out with this method is a negative feature for 

driverless-car application.  

 

Figure 7-12: Dubin's curves examples. Right-Straight-Left (top) and Right-Left-Right (bottom) 37 

7.2.2.4.2. Polynomial splines 
The polynomial splines method is based on composing a polynomial by considering the points 

detected by the path generation algorithms. There are a wide variety of ways to use polynomials to 

generate trajectories: using polynomials function of the curvature, or with cubic or quantic 

polynomials. Two simple approaches are presented that might be useful for path planning by 

calculating the unknown coefficients from a polynomial⁡(𝑎0, 𝑎1, … , 𝑎𝑛). 

 

 
37 ‘Smooth 3D Dubins Curves Based Mobile Data Gathering in Sparse Underwater Sensor Networks’, Wenyu 
Cai and Meiyan Zhang, ‘Sensors 2018’, 2018 
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On the one hand, if the car starts from a static state and finishes in a static state, it is possible to 

obtain the coefficients using the initial and final states. The initial velocity 𝑥̇(𝑡 = 0) = 0. The final 

velocity 𝑥̇(𝑡 = 𝑡𝑓) = 0. The following example shows this procedure for a third order polynomial, 

function of the distance to the origin (Figure 7-13). 

 

Figure 7-13: Third order polynomial, origin at s0 and final state at sf 

 𝑠(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 

𝑠̇(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2 

𝑠𝑜 = 𝑎0 

𝑠𝑓 = 𝑎0 + 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2 + 𝑎3𝑡𝑓

3 

(54) 

From velocity equation we obtain: 

 0 = 𝑎1 

0 = 𝑎1 + 2𝑎2𝑡𝑓 + 3𝑎3𝑡𝑓
3 

(55) 

The coefficients will be: 

 𝑎0 = 𝑠𝑜  𝑎2 =
3

𝑡𝑓
2 (𝑠𝑓 − 𝑠0) 

𝑎1 = 0 𝑎3 =
−2

𝑡𝑓
2 (𝑠𝑓 − 𝑠0) 

(56) 

On the other hand, it is also possible to develop a third order polynomial 𝑃3⁡based on four 

points, A(𝑥𝑜, 𝑦0),B(𝑥1, 𝑦1),C(𝑥2, 𝑦2),D.⁡(𝑥3, 𝑦3), (Figure 7-14). The following system can be solved 

using Gauss method.  

 𝑃3(𝑥0) = 𝑎0 + 𝑎1𝑥0 + 𝑎2𝑥0
2 + 𝑎3𝑥0

3 = 𝑦0 

𝑃3(𝑥1) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥1
2 + 𝑎3𝑥1

3 = 𝑦1 

𝑃3(𝑥2) = 𝑎0 + 𝑎1𝑥2 + 𝑎2𝑥2
2 + 𝑎3𝑥2

3 = 𝑦2 

𝑃3(𝑥3) = 𝑎0 + 𝑎1𝑥3 + 𝑎2𝑥3
2 + 𝑎3𝑥3

3 = 𝑦3 

(57) 

If the polynomial is required to be function of the distance to the origin 𝑠, then it would be 

parametrized assiging 𝑠 to the distance to the origin.  

 𝑠(𝑡) = √(𝑥(𝑡) − 𝑥0)2 + (𝑦(𝑡) − 𝑦0)2 (58) 
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Figure 7-14: Third order polynomial with three points A,B,C,D 

In ‘Trajectory Generation for Autonomous Vehicles’ by Vu Trieu Minh from the University of 

Tallinn [89] a second order polynomial trajectory generation approach is presented and tested for 

faster computation. It is done specifically for the simplified kinematic bicycle model (see Bicycle model). 

It is essential to bear in mind that the higher the order of the polynomial, the smoother the 

trajectory will be, as well as the velocity and acceleration profile. Quintic polynomials have been used 

for a safe and comfortable acceleration profile for the driver [90]. On the flip side, the number of 

operations and the processing time needed will also be higher. 

7.2.2.4.3. Bezier curves 
Another well-known approach to curve generation is using Bezier curves [91]. Using them offers 

great advantages, as they are easy to manipulate. They are defined  by more than two control points 

that will be modified by the obstacle avoidance algorithm. A curve of degree 𝑛 has (𝑛 + 1) control 

points, and is defined by the following expression: 

 
𝑠(𝑡) = ⁡∑𝑃𝑖 · 𝐵𝑖,𝑛(𝑡)

𝑛

𝑖=0

; ⁡𝑖 ≥ 3 (59) 

Where 𝑃𝑖 ⁡are the control points, and 𝐵𝑖,𝑛(𝑡) the Bernstein polynomials such that:  

 
𝐵𝑖,𝑛(𝑡) = ⁡ (

𝑛

𝑖
) · (

𝑡1 − 𝑡

𝑡1 − 𝑡0
)𝑛−𝑖 · (

𝑡 − 𝑡0
𝑡1 − 𝑡0

)𝑖; 𝑖 ∈ {0,… , 𝑛} (60) 

The most interesting features of Bezier curves in terms of motion planning are: 

- They always pass through the first and last control points, 𝑃0 and 𝑃𝑓  

- They are always tangent to the line between 𝑃0 and 𝑃1, as well as to the line between 

𝑃𝑛−1⁡and 𝑃𝑛. 

- They are always convex to the control polygon, the polygon formed by the control points. 
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7.2.2.5. Variational techniques: trajectory optimization, optimal control 

Optimization is a well-known technique in many aspects of the world, ranging from economics to 

engineering. Path Planning is one of the many applications of this field, and therefore vast research 

has been done to find the most efficient techniques. The main advantage it offers is the high speed 

and efficiency when converging to an optimal solution. According to the paper ‘A review of Motion 

Planning for Highway Autonomous Driving’ [81], optimization based trajectory generation tries to 

minimize a cost function in in a sequence of states variables under a set of constraints. These 

constraints can be linear, or non-linear, which will vary the difficulty of the problem. The solver 

methods are similar to the ones used for path optimization. Based on this, three main approaches 

can be found, Linear Programming (LP), Nonlinear Programming and Quadratic Programming (QP). 

It is convenient to note that convex functions have two interesting properties. These will help 

knowing whether a global minimum can be reached just by understanding the cost function: 

1) The intersection of an arbitrary number of convex sets is a convex set. 

2) If 𝑓1…𝑓𝑛 are convex functions, then ∑𝛼𝑖𝑓𝑖 is a convex function for all 𝛼𝑖 ≥ 0; 𝑖 ∈

{1,… ,𝑁}. 

An optimization problem is convex, if the objective function is convex, and the feasible set is 

convex. And in these types of problems, local minima are global optimizers. This means that every 

time the problem is solved, the solution will be a global minimum. Therefore, it is always beneficial 

to determine a cost function in a feasible region that is convex. 

7.2.2.5.1. Linear Programming 
The easiest kind of optimization is linear programming (LP) [92]. The optimization problem in this 

case is convex, what makes it easy to solve. The objective function and the constraints are linear. Any 

Linear Program can be represented in the following way: 

 minimize
⁡

⁡⁡⁡⁡⁡ 𝐽 = ⁡𝑐1𝑥1 + 𝑐2𝑥2+. . . +𝑐𝑛𝑥𝑛⁡ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑎11𝑥1 + 𝑎12𝑥2+. . . +𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2+. . . +𝑎2𝑛𝑥𝑛 = 𝑏2… 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2+. . . +𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2+. . . +𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚 

(61) 

and 𝑥1 ≥ 0, 𝑥2 ≥ 0…𝑥𝑛 ≥ 0 

The simplified form of this would be: 

 minimize
⁡

⁡⁡⁡⁡⁡𝐽 = 𝑐𝑇𝑥⁡ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

𝐴𝑥 = 𝑏 

and⁡𝑥 ≥ 0 

(62) 

where⁡𝑐𝑇 ∈ ℛ1𝑥𝑛 , 𝐴 ∈ ℛ𝑚𝑥𝑛 , 𝑥 ∈ ℛ𝑛𝑥1 and 𝑏 ∈ ℛ𝑚𝑥1 

𝑙𝑖𝑛𝑝𝑟𝑜𝑔() can be used in MATLAB to solve linear programming problems. However, 

autonomous cars will usually have nonlinear model and constraints. Thus, there are two options, 

linearize the model dynamics, or use Nonlinear Programming (NLP), which will be presented next. 
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7.2.2.5.2. Nonlinear Programming 
Nonlinear Programming (NLP) is an alternative to linear programming when it comes to cost 

functions and constraints that are nonlinear. It is a good way of finding optimal solutions in more 

complex models [93]. The downside of NLP is that the problem is non-convex, and the solution will 

depend on the initial conditions. If the initial conditions are set so that they are close to a local 

minimum, this local minimum will be found instead of a global minimum. On the other hand, if the 

initial state is close to the global minima, global minima will be found first.  

An example in MATLAB has been implemented to show NLP procedure using 𝑓𝑚𝑖𝑛𝑐𝑜𝑛() 

function. Upper and lower boundaries are needed as inputs for the function, and just and equality 

constraint was used for simplicity.  

The problem is defined as:  

 minimize
⁡

⁡𝑓(𝑥) = 𝑠𝑖𝑛(𝑥1) + 0.1𝑥2
2 + 0.05𝑥1

2⁡⁡⁡ ⁡ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

(𝑥1 + 8)
3 − 𝑥2 = 0 

⁡𝑥1 ∈ [−10, 10], 𝑥2 ∈ [−10, 10] 

(63) 

The results obtained where graphically represented. Figure 7-15, left, shows the values of the 

objective function in a 3-dimensional grid, where the global and local minima can be observed. The 

code is found in APPENDIX IV: Nonlinear programming example. 

The 2D iso-line graph is presented to see the solution to the optimization plotted. The ‘∗’ denote 

the initial states, and the ‘𝑜’ denotes the solutions.  

If the optimizer is started at   [−8, 0], it converges to a local minima at [−7.07, 0], however, if 

the initial conditions are [−4, 0], then, the optimizer converges at global minima at [1.427, 0]  

 

Figure 7-15: Nonlinear programming example in MATLAB 
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7.2.2.5.3. Quadratic Programming 
Quadratic programming (QP) is an interesting optimization technique as it solves a convex problem 

converging into global minima. Therefore, the initial conditions will only influence the computation 

time of the solution. The objective function in a Quadratic Programming problem will be formed by 

square and/or linear and/or bilinear terms, and the constraints must be linear. Just like in the other 

two optimization methods, MATLAB has a built-in function to test and work with QP, called 

𝑞𝑢𝑎𝑑𝑝𝑟𝑜𝑔(). More advanced popular QP solvers are Gurobi [94] and CPLEX by IBM [95].  

The standard form of quadratic programming is: 

 
minimize⁡

⁡
𝐽 =

1

2
𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥⁡⁡ ⁡ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

𝐴𝑥 ≥ 𝑏 

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞 

(64) 

Where  𝑄 ∈ ℛ𝑛𝑥𝑛  is the quadratic term positive semi-definite matrix, 𝑐 ∈ ℛ𝑛𝑥1  is the linear 

coefficient vector,  𝐴 ∈ ℛ𝑚𝑥𝑛  is the inequality coefficient matrix,  𝑏 ∈ ℛ𝑛𝑥1 is the inequality right 

hand side vector and 𝑥 ∈ ℛ𝑛𝑥1  is the variable vector. 

An example in MATLAB is presented for better understanding. The problem is defined as: 

 minimize
⁡

⁡0.4𝑥1
2 − 5𝑥1 + 𝑥2

2 − 6𝑥2 + 50⁡⁡ ⁡ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑥2 − 𝑥1 ≥ 2 

𝑥2 + 0.3𝑥1 ≥ 8 

(65) 

and 𝑖𝑛𝑝𝑢𝑡⁡𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠⁡𝑥1 ∈ [0, 10], 𝑥2 ∈ [0, 10] 

The first step is to transform it to the solver representation of the problem. Each solver might 

have a different way of presenting it; MATLAB uses the standard form in eq. (64).  

 𝐴 = [
1 −1

−0.3 −1
] ; ⁡𝑏 = ⁡ [

−2
−8
] ; 𝑄 = [

0.4 0
0 1

] · 2; 𝑐 = ⁡ [
−5
−6
] (66) 

Code can be found in APPENDIX V: Quadratic programming example. The solver output is shown 

in graph, where the two inequality constraints are plotted as well, and the feasible region is located 

on top of them. The ‘∗’ denotes the minimum states, and the ‘𝑜’ denotes the solution. 
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Figure 7-16: Quadratic programming example in MATLAB 

It can be observed that the optimal solution is closest to the minimum of the objective function, 

and at the same time it is fulfilling the inequality constraints. 

To put it in the case of a self-driving car, the constraints would represent the obstacles, while 

the minimum is the target point to follow the path. 
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7.3. Motion Control 

After generating a feasible trajectory with the motion profile, the vehicle must follow it as precisely 

as possible. This is done by measuring the lateral displacement error of the car with respect to the 

input trajectory. The system will be divided into three main blocks, the controller, the car model, that 

will transform the output of the controller into motion, and the sensors, which will detect the real 

position of the vehicle.  

Terms & Definitions: 

x = f(x(t), u(t)): Shortened representation of the vehicle’s state where 𝑥(𝑡) =

[𝑥1(𝑡), 𝑥2(𝑡)… , 𝑥𝑛(𝑡)] and  𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡)… , 𝑢𝑚(𝑡)]. The full representation would be 

𝑥(𝑥(𝑡), 𝑢(𝑡)) = ([𝑥1(𝑡), 𝑥2(𝑡) … , 𝑥𝑛(𝑡)], [𝑢1(𝑡), 𝑢2(𝑡)… , 𝑢𝑚(𝑡)]).⁡⁡ 

Euler approximation: Euler’s Method is an integration method to numerically solve differential 

equations. It divides the time between the start and finish in 𝑛 steps of equal length ℎ. The function 

approximation will be in the form: 

 𝑥(ℎ + 1) = 𝑥(ℎ) + ℎ · 𝑓(𝑡ℎ−1 , 𝑥ℎ−1) (67) 

Algebraic Ricatti Equation: The Algebraic Ricatti Equation is a type of nonlinear equation that must 

be solved in infinite horizon optimization problems such as Linear Quadratic Regulators. It can be 

used in the continuous time space as well as in the discrete time space, and it is solved starting from 

the final state. 

Continuous space: 

  𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑄 = 0 (68) 

 Discrete space: 

 𝑆 = 𝐴𝑇𝑆𝐴 − (𝐴𝑇𝑆𝐵) · (𝑅 + 𝐵𝑇𝑆𝐵)−1(𝐵𝑇𝑆𝐴 + 𝑄) + 𝑄 (69) 

 𝑆 is the unknown matrix while 𝐴,⁡𝐵, 𝑅 and 𝑄 are real known matrices. 

The position control loop can generally be represented as Figure 7-17, where the input to the 

system is 𝑥𝑟𝑒𝑓(𝑥(𝑡), 𝑢(𝑡)), the output of the controller is the steering angle 𝛿, the velocity profile 𝑣, 

and the output of the vehicle model, which is taken by the sensor, is 𝑥(𝑥(𝑡), 𝑢(𝑡)). The chances are 

high that there is a disturbance factor that will affect the vehicle model.  

 

 

Figure 7-17: Autonomous system control loop 

Just like with path generation, motion controllers can be combined in a single vehicle, using one 

technique for lateral displacement and a different one to take over the brake and throttle system.  
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There is a wide range of control methods. The most used ones for unmanned driving can be 

optimization based, like Linear and Nonlinear Model Predictive Control (MPC) and Linear Quadratic 

Regulators (LQR). Classical methods are still used like PID Control for its feasibility and robustness.  

Regarding the requirements that must be satisfied for a self-driving racecar, they are mainly a 

fast response and small overshoot. Meanwhile, in a commercial vehicle the response must be 

smoother and should have low steady state error to follow a road lane precisely. 

7.3.1. Optimization based control 

Optimization control methods have the same principle as optimization-based path planning (see 

Variational techniques: trajectory optimization, optimal control). The difference will be that instead of finding 

the optimal and feasible path, the solver will output the optimal control command for the vehicle so 

that it can approach the desired state. The information in this section will be closely related to the 

book by Borrelli, F. referenced in Pedro F. Lima’s Masters’ Thesis from KTH [96]. Notes from the 

University of Michigan have also been used for the mathematical formulations. 

Control techniques for solving optimization problems include Model Predictive Control and 

Linear Quadratic Regulator. The way they solve the problem might be different, but their cost 

function has a similar form.  

In the continuous time space, the objective function 𝐽(𝑥, 𝑢) is formulated as. 

 

𝐽(𝑥(𝑡), 𝑢(𝑡)) = ∫(𝑥𝑇(𝑡) · 𝑄(𝑡) · 𝑥

𝑇

0

(𝑡) + 𝑢𝑇(𝑡) · 𝑅(𝑡))𝑑𝑡 (70) 

• 𝑥(𝑡) ∈ ℛ𝑛𝑥1: State vector. 

• 𝑢(𝑡) ∈ ℛ𝑚𝑥1: Input vector. 

• 𝑄(𝑡) ∈ ℛ𝑛𝑥𝑛 : State weight matrix. Symmetric, positive semidefinite and bigger or equal to 

zero.  

• 𝑅(𝑡) ∈ ℛ𝑚𝑥𝑚 : Input weights matrix. Symmetric, positive definite and bigger strictly bigger 

than zero. 

For a better interpretation of the cost function, a two state, two input, objective function will be 

formulated as an example.  

State vector: 𝑥(𝑡) = [
𝑥1(𝑡)

𝑥2(𝑡)
]. Input vector: 𝑢(𝑡) = [

𝑢1(𝑡)

𝑢2(𝑡)
]. State weights:⁡𝑄(𝑡) =

[
𝑞11(𝑡) 0

0 𝑞22(𝑡)
]. Vector weights:⁡𝑅(𝑡) = [

𝑟11(𝑡) 0

0 𝑟22(𝑡)
]⁡ 

 
𝐽(𝑥(𝑡), 𝑢(𝑡)) = ∫(𝑞11 · 𝑥1(𝑡)

2 + 𝑞22 · 𝑥2(𝑡)
2 + 𝑟11 · 𝑢1(𝑡)

2 + 𝑟22 · 𝑢(𝑡)
2

𝑇

0 ⁡

)𝑑𝑡 (71) 

Note that if the values of 𝑄(𝑡) are considerably bigger than the values of 𝑅(𝑡), the states will 

drive the cost function, so the state term must go to zero as fast as possible. This will make the 

controller fast and aggressive. 

Meanwhile, if the values of 𝑅(𝑡) are considerably bigger than the values of 𝑄(𝑡), the control 

inputs will drive the cost function. This will give less importance to the states, and it will be the inputs 

that really matter. The controller will be slow and conservative. 
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Moreover, it is important to mention that in literature, the cost function may appear either in 

the matrix form or in the extended form from the example.  

It is the labor of the engineer to select an appropriate cost and state matrix in each case. 

7.3.1.1. Model Predictive Control (MPC) 

Model Predictive Control is the term that defines a group of different control strategies, that obtain 

the optimal control signal for a process based on the model of a system. It has been used in many 

different fields, including chemical processes and oil refineries.  

The main idea under MPC is shown in Figure 7-18. The engineer provides the controller with 

the mathematical model of a system, the constraints, and a cost function. The controller will minimize 

the objective function and generate a control signal for the next 𝑁 steps (called prediction horizon). 

From these 𝑁 output signals, the first one will be selected, and the process will be repeated at each 

timestep 𝑡.  

 

Figure 7-18: MPC graphic explanation 

The paper ‘The Application of Model Predictive Control (MPC) to Fast Systems such as 

Autonomous Ground Vehicles (AGV)’  by Solomon Sunday Oyelere [97] decouples the MPC 

controller in three different components Figure 7-19, the Autonomous Guided Vehicle (AGV) model, 

the cost function and constraints, and the optimizer. The first two parts will be the ones that 

categorize the problem into nonlinear, or linear. 

 

Figure 7-19: Components of an MPC controller 
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The procedure to apply it to a car-like model is presented. The simplified model will be (see Car 

Model): 

 𝑥̇(𝑡) = 𝑣(𝑡) · cos(𝜓(𝑡)) 

𝑦̇(𝑡) = 𝑣(𝑡) · sin(𝜓(𝑡)) 

𝜓(𝑡)̇ = 𝑣(𝑡) ·
tan(𝛿(𝑡))

𝐿
 

(72) 

The model is discretized using Euler Approximation in the following way: 

 𝑥(𝑘 + 1) = 𝑥(𝑘) + ∆𝑡 · 𝑣(𝑘) · cos(𝜓(𝑘)) 

𝑦(𝑘 + 1) = 𝑦(𝑘) + ∆𝑡 · 𝑣(𝑘) · sin(𝜓(𝑘)) 

𝜓(𝑘 + 1) = 𝜓(𝑘) + ∆𝑡 · 𝑣(𝑘) ·
tan(𝛿(𝑘))

𝐿
 

(73) 

The optimal output values 𝑢∗, 𝑦∗ with the discretized model will be: 

 𝑢∗(𝑘) = 𝑢̃∗(𝑘) − 𝑢𝑟𝑒𝑓(𝑘) 

𝑥∗(𝑘) = 𝑥̃∗(𝑘) − 𝑥𝑟𝑒𝑓(𝑘) 
(74) 

Ideally, 𝑥∗(𝑘) = 0 and 𝑢∗(𝑘) = 0. 

Figure 7-17 represented the general implementation of trajectory following controllers. 

Nevertheless, there is also the possibility of generating the output using the input vector  𝑢𝑟𝑒𝑓(𝑡) =

𝑓(𝑣𝑟𝑒𝑓(𝑡), 𝛿𝑟𝑒𝑓(𝑡)) and the double loop from Figure 7-20.  

 

Figure 7-20: Decomposed control loop [97] 

The discrete objective function for MPC can be represented as: 

 
𝐽(𝑥, 𝑢) =∑(𝑥𝑇(𝑘 + 𝑗|𝑘) · 𝑄(𝑘) · 𝑥

𝑁

𝑗=1

(𝑘 + 𝑗|𝑘) + 𝑢𝑇(𝑘 + 𝑗|𝑘) · 𝑅(𝑗) · 𝑢(𝑘 + 𝑗|𝑘)) (75) 

• 𝑥(𝑘 + 𝑗|𝑘): Planned vehicle’s state 𝑘 + 𝑗 computed at timestep 𝑘. 

• 𝑢(𝑘 + 𝑗|𝑘)): Planned control signal 𝑘 + 𝑗 computed at timestep 𝑘. 

The solution to the optimization problem will be: 

 𝑢∗ = [𝑢∗(𝑘|𝑘), 𝑢∗(𝑘 + 1|𝑘), … , 𝑢∗(𝑘 + 𝑛|𝑘)⁡] (76) 
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Only the first control action 𝑢∗(𝑘|𝑘) will be considered and inputted into the vehicle plant. The 

state vector 𝑥∗(𝑘) can be obtained by introducing 𝑢∗into the vehicle model.  

Depending on the model, constraints and application, Model Predictive Control can be divided 

into Nonlinear MPC and Linear MPC. 

7.3.1.1.1. Nonlinear MPC 
In the case of nonlinear MPC, nonlinear system models with nonlinear constraints are considered. In 

addition, the cost function will be non-quadratic, therefore the problem is complex, and it will require 

high computational power, but the solution will be accurate.  

The nonlinear MPC optimization problem is formulated as: 

 minimize
𝑥(𝑘),𝑢(𝑘)

⁡⁡⁡⁡⁡ 𝐽(𝑥, 𝑢) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡𝑥(𝑡𝑖𝑛𝑖𝑡) = 𝑥𝑖𝑛𝑖𝑡 ⁡⁡ 

𝑥̇(𝑥, 𝑢, 𝑘) = 0 

(77) 

7.3.1.1.2. Linear MPC 
The alternative for Nonlinear Model Predictive control in linear systems with linear constraints is 

called Linear MPC. The optimization problem will be a quadratic program, thereby a convex problem.  

However, since car dynamics are nonlinear, an intermediate step of linearization needs to be 

performed before the vehicle model reaches de controller.  

Linearization can be performed about a point, or about a trajectory. It is the second type that 

will be of greater relevance for a self-driving car. A way of Jacobian linearization is presented, based 

on notes from the University of Michigan ‘Self-Driving Cars: Perception and Control’ . 

The problem presented is to linearize a system 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) about a trajectory 

(𝑥𝑒(𝑡), 𝑢𝑒(𝑡)). 

Consider 𝛿𝑥(𝑡) = 𝑥(𝑡) − 𝑥𝑒(𝑡) and 𝛿𝑢(𝑡) = 𝑢(𝑡) − 𝑢(𝑡). 

 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) = 𝑓(𝛿𝑥(𝑡) + 𝑥𝑒(𝑡), 𝛿𝑢(𝑡) + 𝑢(𝑡)) (78) 

If the Taylor expansion is applied ignoring the higher order terms:  

 
𝑥̇(𝑡) ≈ 𝑓(𝑥𝑒(𝑡), 𝑢𝑒(𝑡)) + 𝛿𝑥(𝑡) ·

𝜕𝑓

𝜕𝑥
|⁡𝑥𝑒(𝑡),𝑢𝑒(𝑡) + 𝛿𝑢(𝑡) ·

𝜕𝑓

𝜕𝑢
|⁡𝑥𝑒(𝑡),𝑢𝑒(𝑡) 

(79) 

• 𝛿𝑥(𝑡) ·
𝜕𝑓

𝜕𝑥
|⁡𝑥𝑒(𝑡),𝑢𝑒(𝑡) = 𝐴(𝑡) ∈ ℛ

𝑛𝑥𝑛  : The Jacobian matrix of 𝑥̇(𝑡) at (𝑥𝑒(𝑡), 𝑢𝑒(𝑡)) with 

respect to the state variables 𝑥(𝑡). 

• 𝛿𝑢(𝑡) ·
𝜕𝑓

𝜕𝑢
|⁡𝑥𝑒(𝑡),𝑢𝑒(𝑡) = 𝐵(𝑡) ∈ ℛ

𝑛𝑥𝑚 : The Jacobian matrix of 𝑥̇(𝑡) at (𝑥𝑒(𝑡), 𝑢𝑒(𝑡)) with 

respect to the input variables 𝑢(𝑡). 

The input to the MPC controller will be the error:  

 𝑥̇(𝑡) − 𝑥̇𝑒(𝑡) = 𝛿𝑥̇(𝑡) = 𝐴(𝑡) · 𝛿𝑥(𝑡) + 𝐵(𝑡) · ⁡𝛿𝑢(𝑡) (80) 

The discrete model, linearized about the trajectory (𝑥𝑒(𝑡), 𝑢𝑒(𝑡)) will be represented as:  

 𝑥(𝑘 + 1) = 𝐴 · 𝑥(𝑘) + 𝐵 · 𝑢(𝑘) (81) 
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The linear MPC optimization problem in the discrete space is formulated as: 

 minimize
𝑥(𝑘),𝑢(𝑘)

⁡⁡⁡⁡⁡ 𝐽(𝑥, 𝑢) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡𝑥(𝑘0) = 𝑥𝑖𝑛𝑖𝑡 ⁡⁡ 

𝑥(𝑘 + 1) = 𝐴 · 𝑥(𝑘) + 𝐵 · 𝑢(𝑘) 

(82) 

The main variation between NLMPC and LMPC is the model used in optimization. In the first 

case, the non-linearized model is used, while in the second one the model is linearized about the input 

trajectory. 

7.3.1.2. Linear Quadratic Regulator (LQR) 

LQR control is a similar approach to MPC. It is simpler, so it takes less time to compute, and it does 

not need an initial condition. On the negative side, it generally cannot deal with constraints. However, 

research has been done in this area and solutions such as ‘Constrained LQR’ [98] have been proposed. 

Notes on LQR are based on a lecture of Christopher Lum, PhD graduate from the University 

of Washington, of Linear Quadratic Regulators [99], and University of Michigan class notes. 

The objective function used in LQR depends on the final state and inputs at 𝑁 step. It can be 

represented as follows: 

 
𝐽(𝑥, 𝑢) = ∑(𝑥𝑇(𝑘) · 𝑄(𝑘) · 𝑥

𝑁−1

𝑗=1

(𝑘) + 𝑢𝑇(𝑘) · 𝑅(𝑡) · 𝑢(𝑘)) 

+(𝑥𝑇(𝑁) · 𝑄(𝑁) · 𝑥⁡(𝑁) + 𝑢𝑇(𝑁) · 𝑅(𝑁) · 𝑢(𝑁)) 

(83) 

The optimization problem will be formulated as: 

 minimize
𝑢

⁡⁡⁡⁡⁡ 𝐽(𝑥, 𝑢) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡𝑥(𝑘 + 1) = 𝐴(𝑘) · 𝑥(𝑘) + 𝐵(𝑘) · 𝑢(𝑘) 

(84) 

The solution to the problem will be: 

 𝑢∗(𝑘) = −𝐾 · 𝑥(𝑘) (85) 

with 𝐾 = 𝑅−1 · 𝐵𝑇 · 𝑆. 

Where 𝑆 is the solution to the Ricatti Algebraic Equation, that must be solved backwards 

(starting at step 𝑁) eq. (68). 

The steps can be summarized into the following way: 

1) Linearize the vehicle model to obtain 𝐴(𝑘) ∈ ℛ𝑛𝑥𝑛  and 𝐵(𝑘) ∈ ℛ𝑚𝑥𝑛  matrices. 

2) Choose appropriate 𝑄(𝑡) and 𝑅(𝑡) matrices. 

3) Solve the Ricatti Algebraic Equation for 𝑆. 

4) Compute optimal gain 𝐾. 

5) There will be multiple solutions in steps 3) and 4) therefore the 𝐾 solution that yields a stable 

system will be selected. 
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The controlled system can be observed in Figure 7-21. Ideally, the gain matrix 𝐾 should only be 

solved once as it does not depend on the initial state. The ‘Constrained Iterative LQR for On-Road 

Autonomous Driving Motion Planning’ paper [98] shows a way of doing this iteratively so that it can 

be adjusted on varying conditions. 

 

Figure 7-21: LQR control loop 
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7.3.2. Proportional Integral Derivative Controller (PID) 

PID control is a classical control method commonly used in variations such as PI or PD. This control 

strategy control has numerous advantages. The most important one is the simplicity of 

implementation. Moreover, it will work for almost any system, as it is not model based, and the error 

is the only variable that matters. The vehicle model is considered a black box, so the dynamics can 

be either linear or nonlinear.  

On the negative side, the tuned gains might not be ideal for every single condition. Nevertheless, 

studies have been carried out for tuning to occur iteratively depending on the vehicle’s conditions 

[100]. In addition, PID control does not work well for highly non-linear systems, and it might not be 

a good option for conditions with important external disturbances. 

These benefits and disadvantages make PID controllers a good option to be implemented in 

combination with other controllers such as MPC. 

In the time domain, a PID controller is represented in the time domain the following way: 

 

𝐾𝑃 · 𝑒(𝑡) + 𝐾𝐼 · ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

+𝐾𝑑 ·
𝑑𝑒(𝑡)

𝑑𝑡
 (86) 

Taking it to the Laplace domain, the controller looks like: 

 
𝐾𝑃 · 𝑠 + 𝐾𝐼 ·

1

𝑠
+ 𝐾𝑑 · 𝑠 (87) 

Proportional (𝐾𝑃): The proportional component minimizes the error of the system multiplying 

the error by the parameter 𝐾𝑃 .  It will increase the response speed and reduce the steady state error. 

However, it will increase instability. Moreover, in high amplitude oscillations, it will amplify the 

oscillations as well. 

Integral (𝐾𝐼): Acts with the integral of the error. The main function is to decrease steady state 

error by penalizing the sum of error. The response will converge to the reference trajectory.  

Derivative (𝐾𝑑): The Derivative term reduces the overshoot by recognizing the speed at which 

it approaches the reference (the slope of the response). It will not affect the steady state error, but it 

will decrease the speed of the system. It is important to consider that the Derivative term will affect 

high frequency noise amplifying it, solved by using a lowpass cutoff filter. The PID controller, in the 

frequency domain, with this filter will look like: 

 
𝐾𝑃 +𝐾𝐼 ·

1

𝑠
+ 𝐾𝑑 ·

𝑁

1 + 𝑁 ·
1
𝑠

 (88) 

These terms individually might give certain advantages but will be of little use for an automated 

driving system. Controllers are commonly developed by combining them. P, PD, PI and PID are 

presented. D controller is also explained for a better understanding.  

The car model transfer function (see Frequency domain) will be considered. The open loop root 

locus diagram is represented as Figure 7-22. 
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Figure 7-22: Open loop car transfer function root locus 

The root locus with damping rate 𝜉 different from 1 is in the positive part from the real axis 

component, where the system is unstable. The main goal of the controller will be to partially have 

these branches with negative real component. 

7.3.2.1. P Controller 

Using a P Controller will not be a feasible solution, as it will only vary the position of the dominant 

poles along the branches. The system will be unstable for whichever value that is introduced for 𝐾𝑃 . 

7.3.2.2. D Controller 

A D controller will introduce a zero to the system in the origin. This will make the system controllable 

and the branches will now be in the negative side of the real axis (Figure 7-23). The parameter 𝐾𝐷 

should be tuned according to the requirements. It is important to consider the filter mentioned 

previously, as it will get rid of high frequency noise and disturbances.  

However, D controllers are rarely used separately. They measure the change in error, but not 

the error itself, therefore a derivative control will not bring the system to a setpoint. This fact can be 

emphasized in the case when the error is constant. Then, the output of the derivative controller will 

be zero. 

 

Figure 7-23: D controlled open loop car transfer function root locus PD Controller 
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The PD Controller solves the limitation from the D controller, by introducing a Proportional 

component for overshoot correction. A Proportional Derivative controller is optimal for fast and 

unstable systems, as it will improve the transient state. However, it will not accurately correct the 

steady state error.  

 
𝐶(𝑠) = 𝐾𝑃 + 𝐾𝑑 ·

𝑁

1 + 𝑁 ·
1
𝑠

 (89) 

The time response of a PD controller is presented in Figure 7-24. In the case of a self-driving 

racecar, the parameters must be tuned properly so that the overshoot is as small as possible while 

keeping a fast response. After this, the PD is a good option to be used in the vehicle.  

 

Figure 7-24: PD controlled closed loop car transfer function step response 

7.3.2.3. PI Controller 

Proportional Integral Controllers improve the steady state response while keeping minimum 

variations in the transitory state. With the transfer function of the vehicle used in this example, PI 

control would not be a feasible solution. It would introduce another zero at the origin making the 

system even more unstable (Figure 7-25).   

 
𝐶(𝑠) = 𝐾𝑃 +𝐾𝐼 ·

1

𝑠
 (90) 
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Figure 7-25: PI controlled open loop car transfer function root locus 

7.3.2.4. PID Controller 

Proportional Integral Derivative Controllers combine the steady state error reduction from a PI 

controller but makes possible the control with the D term. The result is very similar to Figure 7-25. 

Even though the control will be good, it makes the system more complex, so the response-complexity 

tradeoff should be studied. This is the main reason why it is not as used as the other controllers.   

 
𝐶(𝑠) = 𝐾𝑃 +𝐾𝐼 ·

1

𝑠
+ 𝐾𝑑 ·

𝑁

1 + 𝑁 ·
1
𝑠

 (91) 
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8. Formula Student Vehicles Overview 

The aim of this section is to provide some real examples of autonomous vehicles that illustrate how 

the different sensing, perception and control techniques studied in this project fit together.  

Terms & Definitions: 

RANSAC: The Random Sample and Consensus algorithm is used to discard outliers to prevent them 

from having an impact on a generic model. It works by estimating the data set parameters randomly 

and counting the number of points within a distance range, the inliers. The estimation that has the 

most data samples will be the one that is considered. Model estimation process is shown in Figure 8-1. 

 

Figure 8-1: RANSAC algorithm steps (from top left to bottom right) 38 

Support Vector Machine (SVM): A Support Vector Machine is a supervised learning model that 

divides a set of samples. It creates a plane between the two classes that has maximum distance 

between them. In Figure 8-2 the two groups, and the two dimensional planes that were guessed. Only 

the red one would be valid.  

 

Figure 8-2: SVM simple example. First try is H1, second try is H2, last and best try H2 39 

 
38 https://bitesofcode.wordpress.com/tag/opencv/ 
39 https://en.wikipedia.org/wiki/Support_vector_machine 

https://bitesofcode.wordpress.com/tag/opencv/
https://en.wikipedia.org/wiki/Support_vector_machine
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8.1. AMZ 

The AMZ Team, from ETH Zurich, has been an important figure in terms of autonomous vehicles 

in the Formula Student Germany competition. They have published their autonomous system 

approach in the paper ‘AMZ Driverless: The Full Autonomous Racing System’ [101]. Their 

autonomous system structure can be observed in Figure 8-3.  

 

Figure 8-3: AMZ autonomous system diagram [101] 

8.1.1. Sensing 

The vehicle has a LIDAR placed on the front wing for cone detection. Its restricting factor is the 

vertical resolution as it is necessary to capture the whole region of interest with cones in it. The point 

cloud is cleaned for noise and ground using Himmelsbach’s algorithm [6].  

The image-based detection consists of three CMOS cameras. Two of them are used for close 

cone detection using stereo imaging, while the third monocular camera detects cones that are further 

away. This camera also has its own slave computer. 

The other sensors incorporated in the car are resolvers for each the motors and a non-contact 

optical ground speed sensor. Resolvers are odometry sensors similar to electronic transformers that 

measure angular speed. It also has an encoder to measure the changes in the steering wheel. The 

sensors are integrated using an Extended Kalman Filter. 

8.1.2. Perception 

Perception of the AMZ team racecar has a central SLAM algorithm that collects all the data. Two 

pipelines are designed for object detection.  

The first one is LIDAR-based, where cone estimations are done using clustering and regression 

in the point clouds. Then, a custom CNN detects the cone color based on the laser points intensity. 

Finally, the cone data is taken to the SLAM algorithm. 

The second path is image-based. Here, the convolutional neural network YOLOv2 is used for 

its reliability. Cone detection is performed in one of the stereo images and bounding boxes are 

propagated to the second image. Features are matched for cone detection using SIFT and similar 

descriptors. 
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8.1.3. Control 

The AMZ team car will only perform motion planning during its first lap when it computes the entire 

map of the track. After this, the loop is closed and the vehicle switches from SLAM to Localization 

mode. 

During this first lap a variation of RRT* algorithm is used. First of all, the space between the 

cones is discretized in triangles because it is the only available space where the car can move. Then, 

multiple paths are generated, and the least feasible ones are discarded. Lastly, a cost function detects 

the optimal branch for the car. Once the first lap is completed, the track will be known to the car and 

a nonlinear MPC controller takes the control.  

 

8.2. Beijing Institute of Technology  

Beijing Institute of Technology Formula SAE team also published their AV approach, with less detail 

than AMZ studied above [102]. The autonomous system diagram is represented in Figure 8-4. 

8.2.1. Sensing 

Regarding sensing of the unmanned car, it has the two stereo cameras, the LIDAR, and the GPS-

INS, as well as some odometry sensors in the wheels and brakes.  

The ground noise is also being removed using a RANSAC based method, a region of interest is 

being extracted from the point cloud, and the LIDAR and GPS data is being fused. 

8.2.2. Perception 

Cone detection is done based on two principles. The first one is using the point clouds and using the 

Euclidean distance in clusters to detect the cones. The second one, instead of implementing a CNN, 

uses the stereo cameras and a support vector machine classifier with HOG descriptors (similar to 

SIFT descriptors) to detect the cones in the image. The colors are distinguished by avoiding the use 

of the V components in the HSV color space for less effect of the illumination.   

8.2.3. Control 

Little is known about the control part of this vehicle. However, it does mention a similar approach 

to the AMZ vehicle of computing the path in the first lap and following it with the controller the 

next laps.  
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Figure 8-4: Beijing Institute of Technology autonomous system diagram [102] 
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8.3. TUW Racing 

The Technical University of Vienna published in 2017 their approach for the Formula Student 

Autonomous Vehicle [103].   

It is important to note that all the approaches so far have been built over a ROS (Robot 

Operating System) framework. This allows the data to be managed in a simple way by using a node 

publisher/subscriber policy. The TUW ROS diagram is shown in Figure 8-5. 

8.3.1. Sensing 

Sensors in the car include a LIDAR, a stereo camera, GPS, IMU and Odometry, used in combination 

with an Extended Kalman Filter for a SLAM algorithm. 

8.3.2. Perception 

Their perception method is based on an EKF-SLAM algorithm, and they have two techniques for 

cone detection. The first one is by extracting object centers using LIDAR, projecting them into the 

stereo images, and creating image patches around. Then, color thresholding is used to detect whether 

the object inside is a cone. The second way of identifying cones is by color thresholding both stereo 

images and triangulating the distance to the cones. 

8.3.3. Control 

Path planning is done simply by computing the center between the two cones and projecting a normal 

vector. Instead of using this just in the first lap, they use this for each of them, and combine this path 

planning with an MPC controller. 

 

Figure 8-5: TUW autonomous system ROS diagram [103] 
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8.4. University of Western Australia Formula SAE 

University of Western Australia presented in 2014 a different approach presented in their paper [104].  

8.4.1. Sensing, Perception and Control 

The sensing system was based on GPS and IMU fused together, and then a Kalman Filter integrates 

the LIDAR to detect the track cones.  

The laser sensor will detect the cones, and consider them as posts, and they will be placed in the 

GPS map. Waypoints are set in the map and a cubic spline is fitted through these waypoints that will 

be the trajectory followed by the vehicle. The map is updated every time a position is measured, and 

the motion is controlled using a PID controller. 
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9. Conclusion 

All the different components of vehicle autonomy have been covered in the project. Grouped in 

three main blocks, sensing, perception, and control, the main technologies have been presented to 

give a global understanding of autonomous cars. Practical examples in some of the principal sections 

have been implemented using tools such as MATLAB, Google Collaboratory and Python that will 

hopefully serve as a reference for future research.  

A suggested approach to start with the implementation of an autonomous system to the Formula 

Student racecar is to study and integrate solutions similar to those already available, and then analyze 

different variations that will change the performance of the car.  
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10. APPENDIXES 

10.1. APPENDIX I: ORB feature extraction  

cone = cv2.imread('cone.png'); 

orb = cv2.ORB_create(nfeatures=100) 

kp1, des1 = orb.detectAndCompute(cone, None); 

img=cv2.drawKeypoints(cone,kp1,cone,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_

KEYPOINTS) 

cv2.imshow("ORB result", img); 

cv2.waitKey(0); 

cv2.destroyAllWindows() 

 

10.2. APPENDIX II: BruteForce matching 

cone = cv2.imread('cone.png'); 

multiple_cones = cv2.imread('multiple_cones.png'); 

orb = cv2.ORB_create(nfeatures=500) 

kp1, des1 = orb.detectAndCompute(cone, None); 

kp2, des2 = orb.detectAndCompute(multiple_cones, None); 

bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) 

matches = bf.match(des1,des2) 

result = cv2.drawMatches(cone,kp1,multiple_cones,kp2,matches, None) 

cv2.imshow("Matching result", result); 

cv2.waitKey(0); 

cv2.destroyAllWindows() 
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10.3. APPENDIX III: YOLOv3 implementation  

First, it is necessary to clone the GitHub repository, enable the prerrequisites GPU, OpenCV and 

cuDNN, the Nvidia CUDA Deep Neural Network library, and build the darknet file. 

 

!git clone https://github.com/AlexeyAB/darknet 

%cd darknet 

!sed -i 's/OPENCV=0/OPENCV=1/' Makefile 

!sed -i 's/GPU=0/GPU=1/' Makefile 

!sed -i 's/CUDNN=0/CUDNN=1/' Makefile 

!make 

 

An imshow() helper function is done as well for plotting the results. 

 

def imShow(path): 

  import cv2 

  import matplotlib.pyplot as plt 

  %matplotlib inline  

  # This will plot the results directly under the cell 

  image = cv2.imread(path)  

  # Opens the image from specified path 

  height, width = image.shape[:2]  

  # Extracts the first two sizes of the image: height & width 

  resized_image = cv2.resize(image,(3*width, 3*height), interpolation = cv2.INTER_CUBIC)  

  # Increases the size of the image for visualization 

  fig = plt.gcf()  

  fig.set_size_inches(18, 10) 

  plt.axis("off") 

  plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))  

  # Shows and converts the colorspace 

  plt.show() 

 

Afterwards, the dataset “obj” file must be copied to the Colab “/content/” workspace to unzip it. 

For this, it is kept in a Google Drive folder. The commands are as follows: 

 

!cp /content/drive/My\ Drive/CNN2/obj.zip ../ 

!unzip ../obj.zip -d /content/darknet/data/ 

 

https://github.com/AlexeyAB/darknet
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The code for it has been changed in our to suit my needs. It is provided below, and comments have 

been added for a better understanding of the code. 

 

“generate_train.py” 

import os  

# First, an empty image list is created 

image_files = []  

# Next, the working directory is going to be changed, in this case, being in /content/, it wi

ll go to '/darknet/data/obj' to find the files 

os.chdir(os.path.join("darknet","data", "obj")) 

# Each of the image names in the folder will be appended to the imag_files[] array 

for filename in os.listdir(os.getcwd()): 

    if filename.endswith(".jpg"): 

        image_files.append("darknet/data/obj/" + filename) 

# Goes back to '/data/' 

os.chdir("..") 

# Writes the path for each image in a file called 'train.txt' 

with open("train.txt", "w") as outfile: 

    for image in image_files: 

        outfile.write(image) 

        outfile.write("\n") 

    outfile.close() 

os.chdir("..") 

 

“generate_train.py” must be run while being in the /content/ directory if the above code is run 

without modifications. 

 

!python generate_train.py 

 

There are three files to be edited before training is started.  

The first two must be created, using the names “obj.names” and “obj.data”. These, after being edited 

on the computer, can be dragged and dropped at the collaboratory  ‘/content/darknet/data/’ 

directory. 

“obj.data” will contain the number of classes, 1 for balloons only, and the path of the files that are 

going to be used, the validation set path may be written, however as this hasn’t been done in the 

project it will be ignored. 
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“obj.data” 

classes = 1 

train = /content/darknet/data/train.txt 

valid = /content/darknet/data/test.txt 

names = /content/darknet/data/obj.names 

 

“obj.names” will only contain the name of the class that the CNN is going to be trained for, Ballon 

in this case. 

 

“obj.names” 

Balloon 

 

The third file will be the one that modifies the parameters of YOLO, “yolov3_custom2.cfg”.  

 

[net] 

# Testing 

#batch=1 

#subdivisions=1 

# Training 

batch=64 

subdivisions=16 

width=416 

height=416 

channels=3 

momentum=0.9 

decay=0.0005 

angle=0 

saturation = 1.5 

exposure = 1.5 

hue=.1 

 

learning_rate=0.001 

burn_in=1000 

max_batches = 2000 #number of classes times 2000  

policy=steps 

steps=1600,1800 #80% of max batches, and 90% of max batches 

scales=.1,.1 
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There are some other parameters that need to be changes as well, more specific to de CNN itself. 

[yolo] 

mask = 6,7,8 

anchors = … 

classes=1 

num=9 

jitter=.3 

ignore_thresh = .7 

truth_thresh = 1 

random=1 

 

In each of the [yolo] layers, the number of classes 

must be changed. As only balloons are going to be 

detected, it is set to 1. 

It can be observed how the thresholds are set for 

the network. The object will be detected if the IoU 

value is greater than 0.7. 

[convolutional] 

size=1 

stride=1 

pad=1 

filters=18 

activation=linear 

 

In each of the [convolutional] layers that are 

located before a [yolo] layer, it can be seen that the 

activation function is linear, referring to a ReLU 

function. As mentioned in the Darknet GitHub 

repository [66], it is necessary to change the 

number of filters to: 

3 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑐𝑙𝑎𝑠𝑠𝑒𝑠⁡ + 5) 

If there is just one class, the number of filters will 

be 18. 

 

 

This third configuration file must be dragged to “content/darknet/cfg”. 

Once the three files have been loaded into the workspace, and in order to take shorter for the network 

to train, it is convenient to use transfer learning by starting from some already pretrained weights. 

The final command to start training and output a log file is: 

 

!/content/darknet/darknet detector train /content/darknet/data/obj.data /content/darknet/cfg/y

olov3_custom2.cfg /content/darknet/darknet53.conv.74 > /content/darknet/train.log -

dont_show 
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10.4. APPENDIX IV: Nonlinear programming example 

%% Problem formulation 

% min sin(x1) + 0.1*x2^2 + 0.05*x1^2 

% subject to  

% -5<=x1<=1 

% -3<=x2<=3 

fun = @(x) sin(x(1)) + 0.1*x(2)^2 + 0.05*x(1)^2; 

X0 = [-8, 0]; 

lb = [-10, -10]; 

ub = [10, 10]; 

A = []; 

b = []; 

Aeq = []; 

beq =[]; 

nc = @nonlcon; 

 x_min = fmincon(fun,X0,A,b,Aeq,beq,lb,ub) 

 x1_lim = 10; 

x2_lim = 10; 

x1_range = [-x1_lim:0.05:x1_lim]; 

x2_range = [-x2_lim:0.05:x2_lim]; 

 % Plot 3D 

[x1,x2] = meshgrid(x1_range, x2_range); 

x3 = sin(x1) + 0.1.*x2.^2 + 0.05.*x1.^2; 

C = x1.*x2; 

figure(1) 

surf(x1,x2,x3,C) 

% Plot 2D  

figure(2) 

contour(x1,x2,x3,30) 

% Plot point & constraints 

hold on 

plot(x_min(1),x_min(2), 'o') 

plot(X0(1),X0(2), '*') 

xlim([-x1_lim,x1_lim]) 

ylim([-x2_lim,x2_lim]) 

xlabel('x_1') 

ylabel('x_2') 

function [C, Ceq] = nonlcon(x) 

    Ceq = (x(1)+8)^3 - x(2); 

    C = []; 

end 
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10.5. APPENDIX V: Quadratic programming example 

%% Problem formulation 

% min 0.4*x1^2 - 5*x1 + x2^2 - 6*x2 + 50 

% subject to  

% x2 - x1 >= 2 

% 0.3*x1 + x1 >= 8 

% x1,x2 [0,10] 

 fun = @(x) 0.4*x(1)^2 - 5*x(1) + x(2)^2 - 6*x(2) + 50; 

lb = [0, 0]; 

ub = [10, 10]; 

H = [0.4, 0; 0, 1]*2; 

A = [1, -1; -0.3, -1]; 

b = [-2, -8]; 

f = [-5, -6]; 

Aeq = []; 

beq = []; 

x_min = quadprog(H,f,A,b,Aeq,beq,lb,ub) 

x_min_real = quadprog(H,f) 

x1_lim = 20; 

x2_lim = 20; 

x1_range = [0:0.5:x1_lim]; 

x2_range = [0:0.5:x2_lim]; 

 % Plot 3D 

[x1,x2] = meshgrid(x1_range, x2_range); 

x3 = 0.4.*x1.^2 - 5.*x1 + x2.^2 - 6.*x2 + 50; 

C = x1.*x2; 

figure(1) 

surf(x1,x2,x3,C) 

% Plot 2D  

figure(2) 

contour(x1,x2,x3,60) 

% Plot point & constraints 

hold on 

plot(x_min(1),x_min(2), 'o') 

plot(x_min_real(1),x_min_real(2), '*') 

plot(x1_range,x1_range+2);  

plot(x1_range,8-0.3*x1_range);  

xlim([0,x1_lim]) 

ylim([0,x2_lim]) 

xlabel('x_1') 

ylabel('x_2') 
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