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ABSTRACT

Irinotecan (CPT-11) is a drug used against a wide variety of tumors, which can cause severe toxicity,
possibly leading to the delay or suspension of the cycle, with the consequent impact on the prognosis of
survival. The main goal of this work is to predict the toxicities derived from CPT-11 using artificial in-
telligence methods.

The data for this study is conformed of 53 cycles of FOLFIRINOX, corresponding to patients with
metastatic colorectal cancer. Supported by several demographic data, blood markers and pharmacoki-
netic parameters resulting from a non-compartmental pharmacokinetic study of CPT-11 and its me-
tabolites (SN-38 and SN-38-G), we use machine learning techniques to predict high degrees of different
toxicities (leukopenia, neutropenia and diarrhea) in new patients.

We predict high degree of leukopenia with an accuracy of 76%, neutropenia with 75% and diarrhea
with 91%. Among other variables, this study shows that the areas under the curve of CPT-11, SN-38 and
SN-38-G play a relevant role in the prediction of the studied toxicities.

The presented models allow to predict the degree of toxicity for each cycle of treatment according to
the particularities of each patient.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological

Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Irinotecan (CPT-11) with 5 fluorouracil (5-FU), oxaliplatin and
folinic acid conform FOLFIRINOX, a frequently used treatment
for metastatic colorectal carcinoma and several other tumors
(pancreatic cancer, gastric cancer, non-small cell lung cancer,
etc.). According to different studies,"? the usual dose in the
FOLFIRINOX scheme of CPT-11 is 180 mg/m?. Posology adjust-
ments are usually made based on the genetic analysis of the
UGT1A1 isoform.?

The mechanism of action of CPT-11 is the inhibition of the
enzyme topoisomerase I, responsible for the replication and tran-
scription of DNA structure. This inhibition causes irreversible de-
fects in the DNA, resulting in cell death.*®

* Corresponding author.
E-mail address: eoyaga@pharmamodelling.com (E. Oyaga-Iriarte).
Peer review under responsibility of Japanese Pharmacological Society.

https://doi.org/10.1016/j.jphs.2019.03.004

CPT-11 is hydrolyzed to its active potent metabolite, SN-38,
mainly on liver tissues and gastrointestinal tract.® Next, SN-38
is detoxified into its glucuronide derivative, SN-38-G, by the
action of the UDP-glucuronyl transferase system. Finally, after
SN-38-G is concentrated in bile and released into the intestinal
lumen, most of it is excreted. However, an enterohepatic circu-
lation is produced, reconverting the remaining SN-38-G to SN-
38 and allowing it to be reabsorbed. This process is respon-
sible for the characteristic rebounds in the concentration/time
profile of the metabolites of this drug and has a great impact in
the pharmacodynamics of CPT-11. One of the main adverse ef-
fects is gastrointestinal toxicity,’ caused by a slow trans-
formation of SN-38 to SN-38-G. On occasion, these toxicity
episodes are so serious that can lead to treatment suspension.
Aside gastrointestinal toxicity, there are other adverse events
related to other toxicities that can affect the treatment, such as
leukopenia® and neutropenia.’

For all these reasons and the fact that CPT-11 has a wide inter-
individual pharmacokinetic variability, the personalization of this
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treatment is necessary to guarantee a toxicity-free optimal
pharmacotherapy.

This work aimed at predicting the grade of toxicity (specifically,
diarrhea, leukopenia and neutropenia) that a patient will suffer
once the CPT-11 dose is administered using a machine learning
approach.

2. Materials and methods
2.1. Patients

This work was supported with data from the Service of Hospital
Pharmacy, Clinica Universidad de Navarra. The inclusion criteria for
this study were the following: age >18, ECOG <2, presence of
measurable lesions, life expectancy >3 months, time since last
cycle of chemotherapy >1 month or time since major surgical
procedure >1 week, leukocytes >3/pL, platelets >75/pL, hemoglo-
bin >9 g/dL and serum creatinine <2 mg/dL or 24-hour urine
creatinine clearance >50 mL/min.

The population was formed from 20 patients with advanced
colorectal cancer, adding up to 53 cycles of chemotherapy. The
treatment followed the FOLFIRINOX scheme in accordance with
two regimens, depending on whether the disease was exclu-
sively or predominantly hepatic (first regimen) or not (second
regimen). The first regimen consisted in doses of 2500 mg/m? of
5-FU (24 h long intravenous infusions on first four days of cy-
cle), 100 mg/m? of oxaliplatin (120 min long intravenous in-
fusions on fourth day of cycle) and doses of 250 mg/m? of CPT-
11 (90 min long intravenous infusions on fourth day of cycle).
The second regimen consisted in doses of 2600 mg/m? of 5-FU
and 500 mg/m? of leucovorin (24 h long intravenous infusions
on first and fifteenth days of cycle), 100 mg/m? of oxaliplatin
(120 min long intravenous infusions on first day of cycle) and
doses of 250 mg/m? of CPT-11 (90 min long intravenous in-
fusions on first day of cycle). This scheme was administered
every 28 days until disease progression.

Table 1 summarizes the characteristics of the population
prior to each cycle of treatment. In Table 2 we can see the
number of cycles in which each toxicity was presented accord-
ing to its grade (described in Common Toxicity Criteria, CTC).

This observational study was approved by the University Clinic
of Navarra ensuring compliance with ethical standards.

Table 1
Baseline characteristics of the patients before each cycle.

Patient characteristics Descriptive results

Age (years) 59.00 (52.00—66.00)
Body surface (m?) 1.75 (1.67-1.92)
Weight (Kg) 70.00 (64.00—80.20)
Irinotecan dose (mg) 455.00 (412.00—-531.00)
CA 19.9 (Ul/mL) 52.90 (22.60—373.88)
AST (UI/L) 19.00 (11.75-29.00)
ALT (UI/L) 20.50 (12.00—45.25)
ALP (IU/L) 196.00 (164.00—323.50)
GGTP (UI/L) 40.50 (23.25-93.00)
DBil (mg/dL) 0.14 (0.10—0.18)

TBil (mg/dL) 0.55 (0.37—0.74)

Hb (g/dL) 11.60 (10.93—12.78)
Ht (%) 35.40 (33.53—39.33)
MCV (fL) 91.30 (82.75—94.68)
MCH (pg/cell) 29.85 (26.68—31.15)

The variables are represented by median (IQR). IQR: Interquartile range. CEA: Car-
cinoembryonic antigen. CA 19.9: cancer antigen 19.9. AST: Aspartate aminotrans-
ferase. ALT: Alanine aminotransferase. ALP: Alkaline phosphatase. GGTP: Gamma
glutamyl transpeptidase. DBil: Direct bilirubin. TBil: Total bilirubin. Hb: Hemoglo-
bin. Ht: Hematocrit. MCV: Mean corpuscular volume. MCH: Mean corpuscular
hemoglobin.

Table 2

Number of cycles per toxicity type and grade.
Toxicity Grade 0 Grade 1 Grade 2 Grade 3 Grade 4
Leukopenia 5 3 10 13 2
Neutropenia 4 3 3 11
Diarrhea 12 5 7 5 6

2.2. Pharmacokinetic parameters

Blood samples were collected 30 and 60 min after the beginning
of infusion and 5, 15, 30, 60, 120, 240, 360, 720, 1440 and 1800 min
after the drug administration was concluded. Plasma samples were
drawn in Venoject® heparinized tubes and centrifuged for five
minutes at 3000 rpm. Then, they were frozen at —30 °C until they
were analyzed.

The method to quantify CPT-11, SN-38 and SN-38-G was High
Performance Liquid Chromatography (HPLC), with the methodol-
ogy described in 011,

After the quantification of CPT-11 and its metabolites (SN-38
and SN-38-G), we carried out a non-compartmental pharmacoki-
netic analysis, using the software Phoenix WinNonlin 8, to obtain
the pharmacokinetic parameters for each treatment cycle. These
parameters were: maximum concentration (Cmax), maximum
time (Tmax) and area under the curve (AUC) (see Table 3 for a
descriptive summary).

2.3. Machine learning and statistical analysis

We used demographic data, liver function tests and tumor
markers in Table 1, combined with the aforementioned pharma-
cokinetic parameters, to predict the grade of each toxicity type.

The five grades of toxicity were grouped in two for prediction:
low degree of toxicity (grades 0,1 and 2) and high degree of toxicity
(grades 3 and 4).

We implemented four machine learning classification algo-
rithms to predict toxicities after each treatment cycle. The first one
was Backward Stepwise Logistic Regression (BSLR) with the inclu-
sion of interactions between variables and non-linearities'? and we
used Akaike information criterion for variable selection.”® This
model is framed within generalized linear models (GLM) and al-
lows to predict the probability of a dichotomous event. Secondly,
the C4.5 algorithm'# was implemented. This algorithm is a decision
tree that starts with a single node and then branches into possible
outcomes depending on the different variables and the relations
among them, based on the information gain criterion. This process
is repeated successively, giving it a shape which resembles a tree.
The third technique was Random Forest (RF),”> which is an
ensemble of predictive trees with a certain degree of randomness,
i.e,, the final result is a combination of the predictions of each in-
dividual tree. Lastly, we implemented the method called Support
Vector Machine (SVM).'° It consists in constructing a hyperplane in
a space of high dimension that permits to classify an event. In this
process, a grid search of different kernels (linear, polynomial and
radial) and hyperparameters was performed to fine tune the model.

Table 3
Means and deviations of the pharmacokinetic parameters of CPT-11 and its
metabolites.

CPT-11 SN-38 SN-38-G
Cmax (pg/mL) 2.50 (0.92) 0.035 (0.02) 0.11 (0.04)
Tmax (h) 1.58 (0.39) 1.67 (0.7) 2.14(0.83)
AUC (pg h/mL) 12.59 (7.16) 0.22 (0.16) 1.02 (0.79)
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Table 4

Results of the different classification models (BSLR, C4.5, RF and SVM) for each
toxicity (leukopenia, neutropenia and diarrhea) in terms of the following indicators:
accuracy, specificity, sensitivity, F1 score, positive likelihood rate (LR, ), negative
likelihood rate (LR.) and area under the ROC curve (AUC-ROC). The results of the best
classifier for each toxicity are in bold.

Toxicity Indicator BSLR C4.5 RF SVM
Leukopenia Accuracy 0.61 0.42 0.76 0.55
Specificity 0.46 0.46 0.60 0.46
Sensitivity 0.72 0.38 0.89 0.61
F1 score 0.67 0.42 0.8 0.59
LR, 133 0.70 2.22 1.13
LR 0.61 1.35 0.18 0.85
AUC-ROC 0.67 0.71 0.74 0.54
Neutropenia Accuracy 0.71 0.58 0.58 0.75
Specificity 0.64 0.59 0.71 0.79
Sensitivity 0.80 0.20 0.40 0.70
F1 score 0.70 0.29 0.44 0.70
LR, 2.22 0.49 1.38 3.33
LR 0.31 1.36 0.85 0.38
AUC-ROC 0.75 0.5 0.56 0.88
Diarrhea Accuracy 0.91 0.51 0.74 0.66
Specificity 1.00 0.00 0.36 0.18
Sensitivity 0.88 0.75 0.92 0.88
F1 score 0.93 0.68 0.83 0.78
LR, oo 0.75 1.44 1.07
LR 0.12 o 0.22 0.66
AUC-ROC 0.95 0.50 0.64 0.63

Once the optimal predictive models for each toxicity were
selected, we studied which of the variables were the most relevant
for each model according to their influence in the prediction.
Subsequently, we carried out a statistical analysis to see whether
there were statistically significant differences between the two
classes (high degree or low degree of toxicity). To this account,
Kolmogorov—Smirnov, T-student, U-Mann Whitney tests were
employed with significance level set to o = 0.05 and boxplot dia-
grams were used for visualization.

2.4. Model diagnostics

We used 5-fold cross-validation'” to validate the results of BSLR,

Table 5
Most relevant variables for leukopenia, neutropenia and diarrhea according to the
models RF, SVM and BSLR, respectively.

Leukopenia Neutropenia Diarrhea

AUGCsN-38-G6 Basal DBl AUCsN-38

Irinotecan dose AUCsn_38-.G Basal MCH
Basal TBil Weight
Basal CA 19.9 Basal AST
AUCCm‘_n Basal GGTP
Basal GGTP

Based on the results of Table 4, the optimal technique for the
prediction of leukopenia was RF. For the prediction of neutropenia,
SVM with a radial kernel, cost = 1 and y = 0.02 stood out. Finally, in
the prediction of diarrhea, the method that overcame the rest was
BSLR.

In Fig. 1, we can see the ROC curves of the best models for each
toxicity. On the one hand, in the case of RF (Fig. 1 (a)), we show the
average ROC curve of each decision tree that was generated in the
bagging process. On the other hand, in the cases of SVM and BSLR
(Fig. 1(b) and (c)), we show a different ROC curve for each validation
group in the 5-fold cross-validation process.

The implemented machine learning models allowed to estimate
the importance of variables for each toxicity. In the case of RF and
SVM, all variables were employed in the prediction, each one with a
different weight in the final outcome. On the other hand, BSLR
carried out a selection of the most relevant variables during its
construction. In Table 5 the most influential variables for the pre-
diction of each toxicity can be seen, sorted by their relevance.

All relevant data in the prediction of each toxicity followed a
non-normal distribution with the exception of basal TBil (p = 0.2).
The results derived from the T-student and U-Mann Whitney tests

Table 6

Results of the statistical analyses to check for significant differences between classes
for each of the most relevant variables in each toxicity. P-values reaching statistical
significance are in bold. T: T-student test. U: U-Mann Whitney test.

. . . . Toxicit; Variable Test -values  Significant differences
C4.5 and SVM. The validation of RF was based on bagging,'® which Y P i
is a validation procedure embedded in the algorithm. Leukopenia AUCSN-Ss-Gd u 0.108 No
To select the optimal model, we analyzed different indicators. . Innotecandose U 0.033 Yes
. [P N L. Neutropenia Basal DBil 8] 0.108 No
Specifically, accuracy, specificity, sensitivity, F1 score, positive AUCsn.38.G §] 0.002 Yes
likelihood rate (LR ), negative likelihood rate (LR_) and area under Basal TBil T 0.06 No
the ROC curve (AUC-ROC). Basal CA 19.9 §] 0.056 No
AUCcm‘q 1 U 0.011 Yes
Basal GGTP 8] 0.108 No
3. Results Diarrhea AUCsy 38 U 0370 No
Basal MCH U 0.268 No
The results of each machine learning algorithm to predict if a Weight u 0.067 No
patient is going to suffer from high or low degree of toxicity can be gasai éSGTTP 8 8-2(1’3 EO
seen in Table 4. asa : °
o | g . — ROC_1 g . — ROC_1
c = e —
z 8 £ g T | 281 o
= ‘G — ROCS k=1 — ROC_S
3 = g 34 g 3
S @ 3
S T T T S T T T N T T T
1.0 0.5 0.0 1.0 05 0.0 1.0 0.5 0.0
Specificity Specificity Specificity
(a) (b) (c)

Fig. 1. ROC curves of the best models for each toxicity. (a) Leukopenia: average ROC curve of all decision trees in the bagging process of RF. (b) Neutropenia: a ROC curve for each
validation group in the 5-fold cross-validation of SVM. (c) Diarrhea: a ROC curve for each validation group in the 5-fold cross-validation of BSLR.
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for each of the most relevant variables that described the three
toxicities can be seen in Table 6.

Fig. 2 shows the distribution of each variable in Table 5 ac-
cording to the degree of toxicity that it presented.

4. Discussion

Machine learning techniques have been applied in the liter-
ature in the area of health. For instance, in prevention, survival
and mortality prediction and cell identification of cancer,'®~2? in
early diagnosis of a variety of diseases?>?* and, in the phar-
macological field, for example, in preclinical studies,?® in drug
design®®~?® and in medication adherence.”® Specifically, in
relation to the prediction of toxicities, there are also works in
the literature that use machine learning techniques. For
example, Modongo et al.> implemented a CART prediction tree
to predict ototoxicity from pharmacokinetic parameters and
other covariates in multidrug resistant tuberculosis patients and
Yamazaki et al.>' developed an algorithm for the prediction of
drug induced proarrhythmia.

In this work we predict whether a patient with metastatic
colorectal cancer will have high degree of treatment derived
toxicity using different personal characteristics. As far as we know,
it is the first time that machine learning techniques are used to
predict CPT-11 toxicities in colorectal cancer.

In the present day, pharmacokinetic/pharmacodynamic (PK/PD)
models and pharmacogenetics are the tools used to predict toxic-
ities in oncological treatments.>>>* The methodology proposed in
this paper, which has been validated in multidisciplinary areas, is a
new trend in this field of research. Hence, the results of this work
provide a new (and complementary) method to predict toxicities
from PK parameters accurately.

In the FOLFIRINOX scheme, being a combination treatment,
other components such as 5-FU or oxaliplatin can also produce
hematological toxicity. The inclusion of PK parameters of 5-FU and
oxaliplatin could lead to improvements in the performance of the
models. This fact is patent in the prediction of late diarrhea, which
is a toxicity derived solely from CPT-11 and its metabolites, where
the accuracy rate (91%) was higher than those of the predictions of
leukopenia and neutropenia (76 and 75%, respectively). However,
the proposed models permitted to characterize the three studied
toxicities solely from the CPT-11 monitoring and the inclusion of
anthropometric, analytical and biochemical covariates (Table 1),
which are related to the pharmacokinetics of 5-FU and
oxaliplatin®~37 and compensate the lack of PK parameters of these
drugs.

In the previous section, Table 4 shows the degree of certainty
with which the different applied techniques can predict each of the
studied toxicities. In fact, the values of accuracy, using the best
technique for each toxicity, went up to 76%, 75% and 91% for
leukopenia, neutropenia and diarrhea, respectively. Specificity
values were 0.6 (leukopenia), 0.79 (neutropenia) and 1 (diarrhea).
These values are clinically relevant because they are related to false
negatives, i.e., the number of patients that are classified in the low
degree toxicity group, but in fact they will suffer high degrees of
toxicity. The case of diarrhea is particularly significant because the
specificity value was the highest possible, since the mathematical
model did not yield any false negatives. Moreover, F1 score values
were 0.8 (leukopenia), 0.7 (neutropenia) and 0.93 (diarrhea), which
indicates that the models were correctly balanced.

In the predictions of these three toxicities, the pharmacokinetic
parameters of CPT-11, SN-38 and SN-38-G appeared as funda-
mental variables, as in*® and,* where it was demonstrated that
glucuronidation was correlated with diarrhea and neutropenia,
respectively. Additionally, several authors have linked high levels of

basal bilirubin with high risk of developing grades 3 or 4 of neu-
tropenia.*%*! In our case, this fact was verified as Basal DBil and
Basal TBil were two of the relevant variables in the prediction of
neutropenia, along with other hepatic covariates, such as AST and
GGTP. Finally, in** the dose of CPT-11 was shown to be related to
severe diarrhea and, in this work, we have found that the dose of
this drug is related to high degrees of leukopenia as well.

This work also shows that the combination of multiple variables
enables to obtain more accurate results than those of an individu-
alized analysis of each variable, where only three of the variables
presented statistically significant differences.

The utility of the models presented in this work resides in the
possibility of knowing if a new patient will suffer from toxicity once
the dose is administered. Thus, the clinician is able to anticipate to
any of the studied toxicities and make decisions accordingly; both
to treat such toxicities and to adjust the dosing for subsequent
cycles, in combination with additional information derived from
pharmacogenetics*®> and pharmacokinetics.**

This work is limited by the size of the population sample and,
although the employed validation techniques have been applied in
other published works with accredited reliability when the avail-
able cohort is small,”*>~230 this fact should be considered when
applying these models in clinical practice. Hence, the adequacy of
the algorithms to the target population must be checked prior to
their application.

5. Conclusions

This study has proposed a machine learning based methodology
to predict whether a patient will suffer a high degree of leukopenia,
neutropenia and diarrhea after CPT-11 administration. These
models give the medical practitioner prior knowledge about the
grade of toxicity that a patient might suffer with high accuracy and,
thus, they make it possible to take the appropriate measures to
achieve optimal pharmacotherapy.

The pharmacokinetic parameters of CPT-11, SN-38 and SN-38-G,
specifically AUC, are relevant variables for the prediction of toxic-
ities. It has been determined that AUCcpr.11 has a great impact in the
prediction of neutropenia, AUCsn-3s in the prediction of diarrhea
and AUCsn.3s.¢ in the prediction of both leukopenia and neu-
tropenia. Therefore, controlling the pharmacokinetic parameters of
patients is a key factor in the prevention of the CPT-11 derived
toxicities.
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