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Electricity price forecasting in wholesale markets is an essential asset for deciding bidding strategies and
operational schedules. The decision making process is limited if no understanding is given on how and why
such electricity price points have been forecast. The present article proposes a novel framework that promotes
human-machine collaboration in forecasting day-ahead electricity price in wholesale markets. The framework
is based on a new model architecture that uses a plethora of statistical and machine learning models, a wide
range of exogenous features, a combination of several time series decomposition methods and a collection of
time series characteristics based on signal processing and time series analysis methods. The model architecture
is supported by open-source automated machine learning platforms that provide a baseline reference used
for comparison purposes. The objective of the framework is not only to provide forecasts, but to promote a
human-in-the-loop approach by providing a data story based on a collection of model-agnostic methods aimed
at interpreting the mechanisms and behavior of the new model architecture and its predictions. The framework
has been applied to the Spanish wholesale market. The forecasting results show good accuracy on mean
absolute error (1.859, 95% HDI [0.575, 3.924] EUR (MWh)~!) and mean absolute scaled error (0.378, 95% HDI
[0.091, 0.934]). Moreover, the framework demonstrates its human-centric capabilities by providing graphical
and numeric explanations that augments understanding on the model and its electricity price point forecasts.

1. Introduction

Electricity price forecasting in wholesale markets has become an
essential asset for the energy sector. Since the early 1990s, vertically-
integrated monopoly structures that have traditionally regulated elec-
trical generation, transport and distribution have been replaced by

deregulated, liberalized markets. Electricity is now commonly traded
in competitive auctions (called pools and power exchanges), where
generating companies submit energy offers and their corresponding
price, and consumption companies bid for them. A single-round auction
is performed for every hour of the next day to determine the market
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Acronyms

ACF Auto-correlation function

ALM Advanced linear model

ARIMA Autoregressive integrated moving average
model

AutoML Automated machine learning

AT Aiolfi and Timmermann method

BART Bayesian additive regression trees

BalLM Bayesian linear model

BG The Bates and Granger method

BoLM Gradient boosting linear model

CEEMDAN Complete ensemble empirical mode decom-
position with adaptive noise

CLS Constrained least squares

DWT Discrete wavelet transformation

EIG, Standard eigenvector method

EIG, Bias-corrected eigenvector method

EMD Empirical mode decomposition

FFNN Feed-forward neural network

GBDT Gradient boosting decision tree

GP Gaussian process

HDI Highest density interval

HDV Highest density value

ICE Individual conditional expectation

M Interquartile mean

KNN k-nearest neighbors algorithm

LAD Least absolute deviation

LC Linear combination

LM Linear model

LOESS Locally estimated scatterplot smoothing

MAE Mean absolute error

MASE Mean absolute scaled error

MARS Multivariate adaptive regression splines

MED Median

MODWT Maximal overlap discrete wavelet transfor-
mation

NG Newbold and Granger method

OLS Ordinary least squares

PACF Partial auto-correlation function

PD Partial dependence

PLM Penalized linear model

PLS Partial least squares

RF Random forests and extremely randomized
trees

RFE Recursive feature elimination

RIBM Rule- and instance-based model

RLM Regularized linear model

SA Simple average

SRC Standardized regression coefficients

STL Seasonal and trend decomposition using
LOESS

SVM Support vector machine

VMD Variational mode decomposition

clearing price that results when energy supply bids match predicted
demand [1]. This market liberalization has promoted significant ef-
ficiency improvements, stimulated technical innovation and led to
investments in generation [2].
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Nonetheless, competitive markets have also brought in price un-
certainty. As electricity cannot be economically stored, complex price
dynamics have arisen from the different market participants’ strategies,
including expected energy supply. The latter is especially relevant in
recent years due to the increasing expansion rates of renewable energy
sources, whose market offers clearly depend on changing weather
conditions. For example, Baldick [3], Ketterer [4] and Martinez-Anido
et al. [5] concluded that price volatility was aggravated by increasing
wind penetration for the markets in Texas, Germany and New Eng-
land, respectively. Looking at the trends on renewable energy source
expansion, prices are expected to be more volatile than at present [6,7].

Price uncertainty leads to financial distress for market participants.
Producers and consumers rely on price forecasts to prepare their corre-
sponding bidding strategies to maximize profits. As the energy amount
bid is usually substantial, the financial penalties for forecast errors
can be very high. For example, Zareipour et al. [8] report that a 1%
improvement in the forecast error would result in cost reductions of
0.1% to 0.35% for industrial consumers in Ontario’s electricity market,
which results to circa 1.5USD M year~! for a medium-size utility [9].

The forecasting errors also impact the economic efficiency of energy
production and consumption schedule. Operational risks have been
verified in industrial load scheduling [10], battery energy storage
systems [11], thermal-based plants [12], and combined-cycle, coal-
fired, cascade hydro and pumped-storage power plants [13]. Moreover,
renewable energy sources particularly suffer from price uncertainty as
errors have a direct impact on the economic efficiency of the resulting
allocation [14]. These losses have been verified in several hydro-based
generation sources [15,16].

The minimization of these financial distress and operational risks
have made day-ahead electricity price forecasting increasingly impor-
tant in today’s energy sector. As consequence, it is currently one of the
major topics of research in energy economics and finance [17].

1.1. Electricity price forecasting

Day-ahead electricity price forecasting focuses on predicting the
next 24 clearing prices in wholesale markets.! Review and survey
publications usually classify the forecasting techniques into five model
groups: fundamental, multi-agent, reduced-form, statistical or econo-
metric, and machine learning or computational intelligence [18]. As
statistical and machine learning models have been shown to yield the
best results [19], they are the focus of this section, and in turn, of the
base methods that will be applied in this article.

Statistical time series models commonly include similar-day (or
naive) methods, which show good performance for stable market peri-
ods; exponential smoothing methods are robust against outliers; regres-
sion methods are good at handling linear relationships; auto-regressive-
type methods are accurate for short range response; and general-
ized autoregressive conditional heteroskedastic methods are aimed at
modeling price volatility [20].

Machine learning models are better at dealing with complexity
and non-linearity. These characteristics arise mostly from the multiple
regressors’ influence on the electricity price — e.g., expected energy
load or generation capacity. These methods typically include artificial
neural networks, which have shown high performance, and support-
vector machines, which are efficient when dealing with regressors [21].
A more detailed review of the different models applicable to electricity
price, including their benefits and weaknesses, can be found in [22-25].

Such a variety of models is evidence that no universal forecasting
individual method works best for all markets and situations [26,27].
Nonetheless, the present authors find that efficiently using each model
where it excels, and then combine them in an effective way is a

1 Due to changes on daylight saving time, the number of forecast hours is
23, 24 or 25.
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promising field of research. Thus, the first major contribution in the
present article is not about developing a new forecasting model but
rather proposing an appropriate architecture to combine existing ones.
To that end, four methodologies seem to be promising directions for
working beyond the state of the art: (i) addition of exogenous features,
(ii) time series decomposition, (iii) time series feature extraction, and
(iv) combining forecasts.

(i) Adding exogenous features (or regressors) is the process of
acquiring and using contextual information to enhance forecasting
accuracy. Electricity price is sometimes forecast based only on its own
historical patterns. Nonetheless, the clearing prices strongly depend
on external factors [28]. Several publications have demonstrated an
increase in forecasting performance by using exogenous factors, such
as system load [29], ambient temperature [30], wind generation [31]
and market integration [32]. Still, there is progress to be made in the
addition of more exogenous factors that might affect electricity price,
such as CO, emission allowances, the fuel price of natural gas and oil,
currency exchange rates and electrical generation capacity.

(ii) Time series decomposition aims at deconstructing the series into
several components, each representing one of the underlying patterns.
Electricity price is a complex non-linear and non-stationary time series
that suffers from abrupt spikes and multiple frequencies. A divide-and-
conquer strategy can improve price forecast accuracy by predicting
the (more distinctive and identifiable) individual components, and
then combining their forecasts. This has been demonstrated with three
decomposition methods: discrete wavelet transformation (DWT, [33]),
empirical mode decomposition (EMD, [34,35]) and variational mode
decomposition (VMD, [36]). Seasonal and trend decomposition using
LOESS (STL) has not yet been applied to forecasting electricity price,
although it has shown good performance in predicting other com-
modities [37,38]. In addition, the possibility of combining these four
decomposition methods remains to be explored. The objective would be
to highlight the advantages of each approach, so that the characteristics
of the electricity price series could be completely individualized.

(iii) Time series feature extraction reduces each series section into
structural characteristics by means of methods in the domain of signal
processing and time series analysis. The methods range from basic
statistical equations, such as mean or maximum value, to more sophis-
ticated measures, such as entropy or non-linearity. This methodology
has been successfully applied for time series classification [39], clus-
tering [40] and anomaly detection [41]. In the area of electricity price
forecasting, the effects of time series feature extraction are currently
unknown.

(iv) Combining forecasts into a single forecast aims to reduce the
risk associated with selecting an individual forecasting model [42]. The
reason lies in the lack of an individual model that captures all patterns
in the data, concurrently. Thus, combining forecasts created from dif-
ferent models usually improves accuracy due to more comprehensive
pattern recognition [43]. The key step in constructing an ensemble of
forecasts is choosing a linear or non-linear combination function and
appropriate weights for each base forecast. In this sense, combining
forecasts approaches are usually classified into linear and non-linear
forms.

The linear combination of forecasts in electricity price forecasting is
a mature methodology that has been shown to reduce forecast uncer-
tainty [19]. In spite of the frequently used linear ensembles, few studies
have addressed non-linear combination approaches. However, it has
been demonstrated in other fields that more satisfactory results can be
obtained with non-linear approaches than with linear ones [44]. Given
the increase of computational power and advances in machine learning
algorithms, this article addresses the potential of using machine learn-
ing models for non-linear combination of forecasts. In addition, both
linear and non-linear approaches will be combined using the stacked
generalization methodology with the primary objective of increasing
overall model performance [45,46].
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Stacked generalization has been theoretically proven to represent
an asymptotically optimal system for learning [47]. Moreover, under
most conditions, the theory also guarantees a better combined forecast
performance than can be achieved by any single forecast alone. This
has been practically demonstrated in multiple fields [48]. In spite of
this, surprisingly, aside from [49,50], we are not aware of any use of
stacking approaches in electricity price forecasting. Moreover, diversity
- that is, the difference among the individual machine learning models
- is a fundamental key in stacking generalization [51]. However, [49,
50] limit the base learners to relevance vector machines and decision
trees. Therefore, in addition to stacking, this article also contributes by
applying a rich library of machine learning algorithms for electricity
price forecasting.

Stacking generalization needs the appropriate model architecture
and tuning of the models’ hyper-parameters. To assure the proposed
model architecture and chosen hyper-parameters achieve good results,
open-source automated machine learning platforms (AutoML) will be
applied here. To the best of our knowledge, this is the first time the
performance of AutoML systems is shown in the field of electricity
price forecasting. This constitutes the second major contribution of the
present article.

1.2. Automated machine learning platforms

In recent years, an active field of research has developed around
the progressive automation of machine learning. AutoML platforms
initially emerged so that novice users could create useful models,
while experts could use them to speed up their tasks. Nonetheless, as
machine learning pipelines are growing in complexity and computa-
tional cost, AutoML is becoming a complementary tool that leverages
humans’ combined domain and technical knowledge [52]. AutoML
is quickly gaining ground in a wide range of industrial applications.
Some examples can be seen in the fields of medical image classifica-
tion [53], online travel mode detection [54] and customer delivery
satisfaction [55].

Throughout the years, several off-the-shelf open source packages
have been developed to provide automated machine learning [56-59].
Among the most well-known, the ones that will be applied in the
present article are two (i and ii). The description that follows focus on
model architecture and hyper-parameter tuning.

(i) H20 AutoML [60] performs a random search to tune the hyper-
parameters of four machine learning model families: feed-forward neu-
ral networks, gradient boosting decision trees, penalized linear models
and random forests. In a second stage, it builds a stacked ensemble on
all previously trained models and another one on the best model of
each family. H20 AutoML is programmed in Java.

(ii) TPOT [61] constructs machine learning pipelines of arbitrary
length using Python scikit-learn algorithms and the XGBoost model
[62]. It performs features pre-processing, construction and selection,
followed by hyper-parameter optimization. TPOT supports ensembling,
sparse matrices and multiprocessing.

These AutoML platforms will help comparing the performance of the
proposed stacked ensemble architecture with benchmark values. Using
these baseline references, the stacked ensemble complexity will be
increased until an asymptotic error is achieved. Nonetheless, providing
better accuracy by increasing model complexity also decreases model
interpretability in that humans do not understand their predictions as
easily.

1.3. Collaborative intelligence

Interpretable models can aid explaining why point forecasts have
been predicted to that specific numeric value. Understandable fore-
casts can then be trusted more, which could guide users in making
better decisions. In the context of day-ahead electricity price fore-
casting, improving the decision making process is crucial for market
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participants since it means minimizing financial distress and oper-
ational risks. The current approach is limited to understanding the
limitations of point forecasts by plotting prediction intervals and the
densities around them [63]. Only traditional, usually simple, models
are easier to explain, but at the expense of limiting performance ac-
curacy [64]. The ultimate goal, then, is to be able to increase model
complexity in order to enhance forecasting accuracy while keeping the
forecasts understandable. For this reason, the present article proposes
a human-centered collaborative intelligence framework for electricity
price forecasting as its third and last major contribution.

Explainable machine learning (or explainable artificial intelligence)
has generated a new flurry of research that aims to interpret the
behavior of models and their outcomes [65]. It has emerged as a
method for facilitating effective and efficient human-machine collab-
oration in order to enhance cognitive performance and, ultimately,
improve decision-making [66]. The benefits of such human intelli-
gence augmentation have appeared through diverse domains such as
medicine, policy-making and science [67]. The fact that explainable
machine learning is currently highly embedded in the financial services
industry [68] and mandatory in the insurance sector [69] is evidence
of these benefits.

The state-of-the-art literature commonly classifies explainable ma-
chine learning techniques into (i) model-specific methods and (ii)
model-agnostic methods [64,70,71]:

(i) Model-specific methods are based on using intrinsically inter-
pretable models. They include traditional, simple models such as linear
and logistic regression models, generalized linear and additive models,
decision trees and rule-based models. Novel types of models designed
to be directly interpretable include explainable neural networks [72],
generalized additive models plus interactions [73], explainable boost-
ing machines [74], monotonically constrained gradient boosting ma-
chines [62], scalable Bayesian rule lists [75], and super-sparse linear
integer models [76].

(ii) Model-agnostic methods use post hoc interpretation techniques
to understand the predictions of a previously trained, non-directly
interpretable model. They form a collection of visual artifacts that
describe model behavior by providing specific insights into the mecha-
nisms of the model and detailed information about why such answers
were generated [77]. Their scope of interpretation can be classified as
global when they help understanding the entire relationship modeled
by the trained response function, and as local when they promote
understanding of a single instance.

Up to now, intrinsically interpretable models can only learn some
patterns of electricity price time series. To increase forecasting ac-
curacy, a more complex, non-directly interpretable model has been
proposed in the present article. Thus, hereinafter explainable machine
learning will focus on post-hoc model-agnostic methods.

2. Contributions

The present article proposes a novel framework that promotes
human-machine collaboration in forecasting day-ahead electricity price
in wholesale markets. The framework is a human-centric solution that
aims at augmenting market participants’ decision-making capabilities
by providing not only point forecasts, but above all explanations of the
behavior of a new model architecture and its forecasts. In particular,
the article makes three major contributions (i to iii) beyond the current
state-of-the art in the electricity price forecasting sector:

(i) A model architecture that includes (i.i) a plethora of statistical
models in order to learn different linear patterns; (i.ii) exogenous
features that could possibly affect clearing prices; (i.iii) a combination
of several time series decomposition methods; (i.iv) a collection of time
series characteristics based on signal processing and time series analysis
methods; (i.v) a stack ensemble of a diverse set of machine learning
models for recognizing non-linear, complex patterns. The ensemble is
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fed by an efficient selection of a comprehensible feature engineering
carried out in (i.i) to (i.iv).

(ii) The use of open-source AutoML platforms that provide a base-
line reference for the proposed model architecture.

(iii) A collection of state-of-the-art model-agnostic methods aimed at
interpreting the behavior of the forecasting models and their outcomes.

The proposed framework is applied to the case study of the Span-
ish wholesale market. Nonetheless, the framework has not been de-
veloped specifically for the Spanish market. Based on a transversal
methodology, the framework can be applied to other wholesale markets
of electricity price. The implementation of the proposed framework
is empathized by putting it into production on an in-house propri-
etary server. In addition to promoting human-machine collaboration,
the server includes the tools necessary for efficient data and model
governance.

This article is structured in five sections. Section 3 describes the
methodology, implementation and deployment of the proposed frame-
work. Section 4 discusses the results achieved. To finish, Section 5
outlines the conclusions and highlights the key points.

3. Materials and methods

The proposed framework is divided onto four sequential phases (see
Fig. 1). First, the Data Acquisition phase automatically captures all data
needed to forecast day-ahead electricity price. Secondly, these raw data
is duly processed and cleaned by the Data Processing phase. Thirdly,
the Model Forecasting phase creates and selects new features. These
variables feed a machine learning architecture. The result is a day-
ahead forecast of electricity price points and their prediction intervals.
Finally, the Model Explainability phase includes model-agnostic inter-
pretability tools to provide human understanding. A user can know why
such outcomes were obtained, when the model succeeded, and why it
erred. The following sections describe in detail each phase.

3.1. Data acquisition

The first framework phase captures and stores all data needed to
forecast day-ahead electricity price. The World Wide Web can be used
as a source of data that could affect electricity prices. These data will
be called features based on exogenous factors as they relate to exter-
nal factors independent from the electricity price. Since the proposed
methodology uses the Spanish wholesale market as the case study, the
following features (i to xviii) are refer to this market. Nonetheless, they
could easily be obtained in case other market is considered.

(i) Electricity price in the Spanish wholesale market (Operador
del Mercado Ibérico de Energia — Polo Espafiol, OMIE; omie.es). Data
summary (average [min, max]): 50.02 [2.06, 101.99] EUR (MWh)~!;
period: 1 h.

(ii) Electricity price in the French wholesale market (European
Power Exchange SE, EPEX; epexspot.com). Data summary: 43.55
[-31.82, 874.01] EUR (MWh)~!; period: 1 h.

(iii—xiii) Electric power generated in the Iberian Peninsula (Red
Eléctrica Espariola, REE; demanda.ree.es; period: 10 min). The generated
power is broken down into the following power sources: wind (5551
[212, 17499] MW), nuclear (6307 [3721, 7127] MW), coal (3951
[166, 8715] MW), combined cycle (3464 [278, 17 159] MW), hydraulic
(3060 [—-3522, 11 348] MW), international interchanges (1062 [-5033,
5850] MW), Balearic Islands interchange (-144 [-318, 284] MW),
photovoltaic solar (883 [—-65, 3821] MW), solar thermal (574 [0, 2219]
MW), renewable thermal (414 [241, 629] MW) and cogeneration (3542
[1958, 4247] MW).

(xiv) Electric power demand forecast in the Iberian Peninsula (Red
Eléctrica Espafiola, REE; demanda.ree.es). Data summary: 28771
[18075, 41215] MW; period: 10 min. Intrinsically, it includes fu-
ture atmospheric conditions that could affect electricity prices — e.g,
ambient temperature.
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Fig. 1. Schematic representation of the proposed framework for collaborative intelligence in forecasting day-ahead electricity price.

(xv) Natural gas price in the Iberian market (Mercado Ibérico del Gas,
MIBGAS; mibgas.es). Data summary: 19.15 [12.32, 41.69]
EUR (MWh)~!; period: 1 h.

(xvi) CO, European emission allowances (Sistema Europeo de Ne-
gociacién de CO,, SENDECO2; sendeco2.com). Data summary: 11.13
[3.96, 27.42] EUR (t CO,eq)~!; period: 1 day.

(xvii) Brent oil price (Markets Insider; url). Data summary: 58.47
[28.79, 86.29] USD barrel~!; period: 1 day.

(xviii) EUR/USD currency rate (Markets Insider; url). Data sum-
mary: 1.138 [1.039, 1.251] EURUSD!; period: 1 day.

Note that interchanged markets have been considered here. Spain is
electrically interconnected with France, Morocco and Portugal. Spain
shares with Portugal the same electricity price most of the time. For
example, in 2018 the shared ratio was 95%. In contrast, only 25%
of French and Spanish prices were the same [78]. This means that,
in principle, the energy interchanged between these two countries
could affect Spanish prices. In addition, the energy transferred with
France (5248 GWh) is seventeen times greater than that of Morocco
(298 GWh,REE2019). From this point of view, the electrical energy
exchanged with Morocco is negligible compared to the French inter-
connection. These are the reasons why only the French market has been
taken into account for the interchanged markets.

These raw data are joined into a whole data set together with the
forecast errors committed in the past by the framework. This data set
starts on the 1% of January 2016, and is daily updated. It comprises the
input of the Data Processing phase.

3.2. Data processing

The second framework phase duly prepares the raw data for mod-
eling. The data is firstly formatted to the correct data type — e.g.,
numerical, date or time. The data suffers from several time intervals
since it comes from many sources. In particular, the different time
intervals are the following: one data point each 10 min, 1 hour and 1 day.
This multiple-interval data is blended into a single reference, the one-
hour interval of the electricity price. For this, 10 min-period data is
hourly averaged; and 1 day-period data is hourly interpolated carrying
forward the last observation. Then, sanity checks are carried out to
look for missing and non-valid values. If detected, they are imputed
using Schumaker’s algorithm, a univariate interpolation method based
on shape-preserving splines [79].

Lastly, the electricity price time series is decomposed into several
components, each representing an underlying pattern category. For
this, the STL method [80] is used as the first algorithm to decompose
the electricity price time series. The reason lies on the fact that the
STL method has exhibited better results over classical [81] and more
advanced decomposition methods [82]. The STL method isolates and
extracts the following six components from the electricity price time
series Y (EUR (MWh)~!). (i) The trend component T (EUR (MWh)~!)
indicates a long-term change in data. (ii-v) The seasonal components

S, (EUR (MWh)~1) describe specific patterns that reoccur after fixed s
(h) time periods. In order to obtain frequency information about the
price time series, the fast Fourier transform is applied. In the case of
the Spanish electricity price time series, four fundamental periods are
observed. Ordered from highest to lowest power spectral density, the s
time periods are the following: 12h, 24h, 168h (1 week) and 84h (1/2
week). (vi) The last term is the remainder (or residual) component
R (EUR (MWh)~!). It represents the original time series when it has
been detrended and deseasonalized. Thus, it does not exhibit any clear
behavior or pattern. Eq. (1) gives the additive decomposition of the
electricity price time series.

Y=T+4S8,+ Sy, +Sg +S16s+ R (€D)]

The STL method requires tuning the seasonal window width of
each seasonal component S;. They control how rapidly each seasonal
component S; can change. The tuning procedure consists on a grid
search over odd window widths greater or equal to 7h [80]. The
best seasonal window widths obtained with this procedure are the
following: 21h, 19h, 17h and 9h for the seasonal components S,, Sy,
Sg4 and S5, respectively.

3.3. Model forecasting

The third framework phase predicts day-ahead electricity price
points. For this, a divide-and-conquer strategy is followed. Each elec-
tricity price time series component is predicted independently (Eq. (1)).
Then, their forecasts are added up into a single time series. This
gives the electricity price forecast. Finally, the prediction intervals are
calculated. The following sections describe in detail the methods used
to forecast each component.

The accuracy of forecasts will be measured by the mean absolute
scaled error (MASE, Eq. (2) [83]). It is based on the mean absolute error
(MAE), which measures the average of the absolute difference between
observations (x) and forecasts (&) over the forecast horizon (4). MAE
is divided by the benchmark (naive) mean absolute error (MAE,;,.),
which compares the observations (x) with naive forecasts (%,,,;,.). For
non-seasonal time series (i.e., trend T and remainder R) the naive
forecasts are equal to the last observed value (Eq. (3)). For seasonal
time series (i.e., seasonal components .S,) the naive forecasts are equal
to the observed value from the prior seasonal period s (Eq. (4)). The
naive forecasts of the general time series Y follow a similar-day strategy
(Eq. (5)). It proceeds as follows: the forecast for hour i of a Monday is
set equal to the price for the same hour a week ago; the forecast for
hour i on the remaining days is set equal to the price for the same
hour the day before. Note that three other similar-day techniques were
considered: (i) X;_7 days; (i) X;_; day; and (iii) in addition to Monday, it
considers Saturday and Sunday when lagging one week. Nonetheless,
their predictive performance were worse so are not reported in this
study.

h N
MASE = —MAE hZ,-=1 i = %l @)
MAE Zi=1 |x/' - )?i,nal'ue|

naive
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The MASE is interpreted as follows. Values greater than 1 indicate
that benchmark (naive) forecasts perform better than the ones under
consideration. And it tends to 0 when forecasts approximate to obser-
vations. The MASE has favorable properties compared to other accuracy
measures [81]. For these reasons, several authors have suggested MASE
as a standard measure for time series forecasting [84].

3.3.1. Trend forecasting

The trend forecasting process consists of three sequential tasks: (i)
feature engineering, (ii) feature selection and (iii) modeling. Fig. 2
depicts the sequential process as a pipeline (or workflow) of these
three tasks. The process leads to the forecast of the day-ahead trend
component of the electricity price (7). The three tasks are subsequently
described.

(i) The trend forecasting process starts with feature engineering. It
aims to create features (or predictors) that could provide predictable in-
formation in the modeling process. These features can be classified into
four groups: (i.i) time factors, (i.ii) exogenous data, (i.iii) time series
characteristics and (i.iv) statistical forecasts. The Appendix contains the
features added into the pipeline. They are described in more detailed
in the following.

(i.0) A number of 21 time factors are firstly considered (Table 5).
A binary categorization {0, 1} is chosen to differentiate between week-
day/weekend, AM/PM and working day/holiday. An integer number
representation is utilized for consecutive time factors, such as for “hour
of day” (ranging from O to 23) or “day of week” (from O, Monday,
to 6, Sunday). Integer time factors are transformed into Cartesian
coordinates to capture the continuation between the last and first unit
— e.g., the hours 23 and 0, or Sunday and Monday. Eq. (6) transforms
the integer number i into the Cartesian coordinates x and y, where / is
the length of the time factor — e.g., 24 for “hour of day”, or 7 for “day
of week”:

{x = sin 27 - i/1)

. (6)
y =cos 2z - i/1)

(i.ii) A number of 34 exogenous features are added into the pipeline
(Table 6). These are based on the external data acquired in the Data
Acquisition phase. Should the data exhibit seasonal patterns, an addi-
tive decomposition is carried out by the STL method. The underlying
signal patterns can then be isolated into trend, seasonal components
and remainder. The objective is to find better correlations between ex-
ogenous predictors and electricity price. This would eventually enhance
forecast performance by providing better information into the modeling
step. For example, the trend of the national electrical demand may
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provide more information to forecast the electricity price trend than
the power demand itself, which contains seasonal patterns and non-
specific behaviors. The exogenous data decomposition gives 11 trends.
These are added together with 6 original (not-decomposed) signals. In
addition, these variables are divided by the electricity price trend to
create 17 ratios. The day previous to the forecasting day is the time
window selected to compute these 34 exogenous features.

(i.iii) A number of 66 features are considered by extracting struc-
tural characteristics from the electricity price trend (Table 7). We use
methods in the domain of signal processing and time series analysis.
The methods range from basic statistical equations, such as mean or
maximum value, to more sophisticated measures, such as entropy or
non-linearity. The day previous to the forecasting day is the time
window selected for computing these features. The objective is then
helping the forecasting process by using the time-series characteristics
of the day previous to the forecasting day.

(i.iv) Finally, 27 day-ahead forecasts of the electricity price trend
are added into the pipeline. These forecasts are obtained by following
five consecutive steps, from (i.iv.i) to (i.iv.v).

(i.iv.i) A list of 34 statistical models are initially selected (Table 8).
A wide range of model types are included so that different information
can be learned from the trend. The selected models cover smoothing
methods, Theta models, auto-regressive-type methods and artificial
neural networks.

(i.iv.ii) Models achieving a monthly average MASE higher than 1
- ie., the benchmark performance — are dropped. The initial list is
reduced to 22 models (n2 1, 3-8, 15-22, 26-30, 33 and 34, Table 8).
Their hyper-parameters are tuned by a grid search over a time-series
cross-validation procedure: a day-length rolling window is forecast over
a month period. The training data extents to six months previous to the
rolling-window forecasting day. The best hyper-parameters minimize
the average MASE obtained on the month period used for validation.

(i.iv.iii) Each one of the 22 tuned models is trained with six different
time windows of the electricity price trend: the first training window
covers the previous 31 days of the forecasting day (one month), the
second training window uses the 62 previous days (two months), and
so forth until six months are used for training. This procedure gives six
forecasts for each one of the 22 statistical models tuned in step (i.iv.ii).

(i.iv.iv) The previous six forecasts are linearly combined. The com-
bined forecast is the interquartile mean (IM) — i.e., the 25% truncated
mean. This combined forecast is preferred over the one resulted from
step (i.iv.ii). The reason is that combining forecasts obtained from dif-
ferent training time windows reduces the risk associated with selecting
an individual time window. Fig. 3 shows an example of such statement.
The MASE quartile spread is plotted against the number of previous
months used for training, where IM stands for interquartile mean. The
learning statistical model chosen for the example is a double-seasonal
(12h, 24 h) Holt-Winters method (n2 2, Table 8). The figure shows the
results in July 2016 (left) and August 2016 (right). In July, the training
time window that achieved the lowest average MASE — min(u) — was
3 months, and the highest — max(y) — was 4 months. In August the
results were different: the best training time window was 4 months, and
the worst was 2 months. Thus, the best training time window changes
over time. Nonetheless, the interquartile mean achieved a low average
MASE on both months. Although it did not always obtain the lowest
MASE, on the long run it was the most robust approach. In addition,
combining forecasts avoids finding the best training time window for
each model type selected in step (i.iv.ii).

Note that, besides the interquartile mean, other linear combination
methods were tested. Nonetheless, their predictive performance were
worse or statistically equal on average. As example, Fig. 4 shows
the MASE quartile spread resulted from August to December 2016.
The tested methods were the following: simple average (SA), me-
dian (MED), the Bates and Granger method (BG, [85]), the Newbold
and Granger method (NG, [86]), the Aiolfi and Timmermann method
(AT, [87]), ordinary least squares (OLS, [88]), constrained least squares
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Fig. 3. MASE quartile spread obtained with six different time windows (number of
months of training data) and the interquartile mean (IM).

2.0 MASE Aug. - Dec. 2016

1.5 /e
e 3

0.5 . . . (] l» @

0.0 Jr l l Jr a

M MED BG AT SA CLS EIG: NG EIG

Fig. 4. MASE quartile spread obtained by several linear combination methods of
forecasts. Learning statistical model: double-seasonal (12h, 24 h) Holt-Winters method.

(CLS, [88]), least absolute deviation (LAD, [88]), the standard eigen-
vector method (EIG,, [89]) and the bias-corrected eigenvector method
(EIG,, [89]). Based on the results, no statistical mean differences were
found among the methods IM, MED, BG, AT, SA and CLS. Higher
MASE values were found for the Newbold and Granger method (NG)
and the eigenvector-based methods (EIG,;, EIG,). The reason was the
unstable behavior of the estimated weights (or slopes ) used in the
linear combination - i.e., weighted summation — of the input forecasts:
minor fluctuations in the input forecasts induced major shifts of their
corresponding weights. This caused poor out-of-sample performance.
For this reason, extreme MASE results were obtained for the regression-
based methods OLS and LAD. These two are not represented in the
figure.

(i.iv.v) Finally, the 22 forecasts obtained in step (i.iv.iv) are linearly
combined (LC). In step (i.iv.iv), forecasts from the same model type
were combined. Here, forecasts from different model types are com-
bined. Due to their stability behavior, five linear combination methods
are used: simple average, interquartile mean, median, the Bates and
Granger method and the Aiolfi and Timmermann method. This gives
a total of 27 (22 + 5) day-ahead forecasts of the electricity price trend
that are added into the pipeline.

(ii) The next step in the trend forecasting pipeline is feature selec-
tion. The aforementioned feature engineering task has provided a vast
number of predictors. The hope was that some of the predictors capture
a predictive relationship with the outcome. But some may not be
relevant if they do not contain predictive information. For a number of
machine learning models, notably support vector machines, predictive
performance is degraded as the number of uninformative predictors
increases. Although other models are more insensitive to irrelevant
predictors, including the minimum number of features can help to
reduce complexity. Considering that the number of features is 148,
obtaining the best subset will imply evaluating 2'*® — 1 combinations
of features. For evident computational reasons, a stepwise selection
method is applied.

The feature subset selection is carried out by means of recursive
feature elimination (RFE, [90]). RFE is a sequential backward selection
method that recursively considers smaller sets of features following
three steps. (i) It begins by building a model on the entire set of predic-
tors, and then computes a score of the relevance that each predictor has
on the outcome. (ii) The least relevant predictor is then removed from
the current set of features. (iii) The model is re-built, and relevance
scores are computed again. Steps (ii) and (iii) are recursively repeated

Applied Energy 306 (2022) 118049

Table 1
Best features subset selected by the RFE-SVM for day-ahead forecasting the electricity
price trend.

N2 Description

1-2 Average and median values of the previous day

3-4 First and third values of the previous day

5-7 Last, second last and third last values of the previous day
8 Double-seasonal (12h, 24h) Holt-Winters method

9 Advanced linear model. Lags from 24h to 96h

10 Advanced linear model. Lags selected from 24h to 169h
11 MARIMA (p = 30,d = 2, q = 30)

until the number of features is depleted. The best feature subset is the
one that gives the lowest MASE.

Prior to applying RFE, zero variance features are removed. Perfect
multicollinearity —i.e., exact linear relationship — is also checked among
features. It is identified by the rank of the matrix formed by the
features. If detected, the perfect correlated feature is dropped. This
procedure is repeated until no multicollinearity is detected.

The model used in the RFE method is a support vector machine
(SVM) with a linear kernel. Feature relevance is computed by squaring
the fitted SVM weights [90]. The feature with the lowest squared
weight is dropped. Each time the model is re-built, the best model
hyper-parameters are chosen based on a grid search computed on a
time series cross-validation procedure. The hyper-parameters are C —
ie., the cost of constraints violation —, and the ¢ parameter of the
insensitive-loss function. This ensures that the model is properly tuned
for each subset of features.

The best subset includes 11 features (Table 1). No features based on
exogenous data (Table 6) or time series characteristics (Table 7) have
been selected.

(iii) The trend forecasting process finishes with the modeling step.
The previous steps have tried to capture the patterns that the trend
exhibits with itself. Here the aim is to improve the forecasting accuracy
by capturing the relation between the trend and exogenous features.
(iii.i) To accomplish this aim, first two implementations of a linear-
kernel support vector machine are used (SVM; [91] and SVM, [92]).
Different implementations of a SVM algorithm can lead to different
results, so combining their results could reduce uncertainty. The hyper-
parameter C is tuned to 1000 and 200, and € to 5-10~> and 7- 1073, for
the SVM implementations are linearly combined by constrained least
squares (CLS). The weights of this linear fit (w;, i € {SVM;,SVM,})
are subject to 0 < w; < 1 and ) w; = 1. CLS has been preferred over
ordinary least squares due to the unstable weights of the latter. The
tuned weights are wgyy, = 0.68 and wgyy, = 0.32.

3.3.2. Seasonal components forecasting

The forecasting process of the seasonal components S5, 5,4, Sg4 and
S 63 follows a procedure similar to the one used for the trend. It consists
of two tasks carried out independently for each seasonal component:
(i) feature engineering and (ii) feature selection. Fig. 5 depicts the
sequential process as a pipeline of these two tasks. The process leads
to the forecast of the day-ahead seasonal components of the electricity
price (S5, $hy, Sgq and Syeg).

(i) The forecasting process starts with feature engineering. (i.i) Time
factors (Table 5) add 21 features to the forecasting process. (i.ii) The
exogenous data decomposed by the STL method gives several seasonal
components (Table 6). For each seasonal component, the features are
selected with regard to their corresponding seasonal period. For exam-
ple, the external factors’ time series decomposed with a period 12 h
are selected to forecast the seasonal component S,,. This varies the
total number of features used to forecast each seasonal component. The
periods 12 and 24 decompose exogenous factors into 15 new features,
and the periods 84 and 168 into 11 and 12 new features, respectively.
These features are divided by the seasonal components of the electricity
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Fig. 5. Pipeline proposed to forecast the day-ahead seasonal components of the
electricity price time series.

price to give 15, 15, 11 and 12 ratios. These are included as new
features. (i.iii) In addition, extracting time series characteristics from
the seasonal component gives 66 more features (Table 7). (i.iv) Finally,
a total of 28 day-ahead forecasts of the seasonal components (S's) are
added as new features to the pipeline. The procedure to obtain the
28 forecasts is as follows. The total of 34 statistical models listed on
Table 8 are pruned when tested against an out-of-sample MASE equal
to or less than 1. Then, the selected model types are trained over six
different-length training time windows. The interquartile mean (IM) is
calculated from their six predictions. All model forecasts are linearly
combined (LC) with the methods IM, MED, BG, AT and SA. Added
to time factors, exogenous features and time series characteristics, the
total number of features amounts to 145 for the seasonal components
S|, and Sy, 137 for Sy, and 139 for -

(ii) The best feature subset is chosen by means of the recursive fea-
ture elimination method. The learning algorithm is a gradient boosting
decision tree model (XGBoost, [62]). Feature relevance is computed by
means of a performance-based method [93]. It measures the increase
in the prediction error of the model after the feature’s values are
permuted. This breaks the relationship between the feature and the
true outcome. The feature that is dropped in each iteration is the one
that, when shuffling its values, increases the model error the least.
The reason is that the model ignored that feature the most for the
prediction.

Each time the model is re-built the best hyper-parameters are chosen
based on a Bayesian optimization of the time-series cross-validated
MASE. These hyper-parameters are the learning rate (range of search:
[0.001, 0.1]), the maximum depth of a tree [2, 16], the subsample ratio
of the training instances [0.5, 0.9] and the subsample ratio of columns
when constructing each tree [0.5, 0.9]. The number of learning trees is
stopped when the average out-of-sample MASE begins to rise.

The aforementioned procedure gives a single feature as the best
subset for each seasonal component S; (s € ({12,24,84,168}). The
feature is the interquartile mean of the six forecasts predicted by a
specific statistical model type trained on six different-length time win-
dows. These models are listed in Table 2: an autoregressive integrated
moving average model (ARIMA) for seasonal components .S}, and Sg,
(n2 3), and an advanced linear model (ALM) for seasonal components
S,4 and Sig3 (2 16). Note that no linear or non-linear combination
has been found to perform better than the models listed in Table 2,
including machine learning models. Thereof, the modeling step that
was performed in the trend forecasting process has been excluded from
Fig. 5.

3.3.3. Remainder forecasting

The forecasting process of the remainder component R follows a
procedure similar to the one used in forecasting the trend and sea-
sonal components. Nevertheless, due to the complexity of the term,
several augmentations have been implemented. The forecasting process
consists of three sequential tasks: (i) feature engineering, (ii) feature
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Table 2
List of tuned statistical models chosen for forecasting the seasonal components .S, of
the electricity price time series (s € {12,24,84,168}).

S, Statistical model

Siy ARIMA (p=0,d =0,9 =25) (P=25,D=2,0=24)(12)
Sy ALM with lags from 24 to 99

Sqa ARIMA (p=5,d=0,g=5) (P=0,D=2,0=0)(84)
Sies ALM with a stepwise selection of lags from 24 to 341
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Fig. 6. Pipeline proposed to forecast the day-ahead remainder component of the
electricity price time series.

selection and (iii) modeling. Fig. 6 depicts the sequential process as a
pipeline of these three tasks. The process leads to the forecast of the
day-ahead remainder component of the electricity price (R).

(i) The forecasting process starts with feature engineering. (i.i)
Time factors (Table 5) add 21 features to the pipeline. (i.ii) The STL
decomposition of the exogenous data gives 17 remainder components
that are used as features (Table 6). These features are divided by the
remainder of the electricity price to give another 17 new features. (i.iii)
In addition, extracting time series characteristics from the remainder
component gives 66 more features (Table 7).

(i.iv) A total of 26 day-ahead forecasts of the remainder component
(R) are added as new features to the pipeline. For that, outliers are
firstly detected and replaced by suitable values. Electricity prices suffer
from short-lived, generally unanticipated abrupt changes known as
spikes or jumps [1]. If not filtered, they could hinder the forecasting
performance [94-96]. Here, spikes are considered to be additive out-
liers. They appear as a surprisingly large or small value occurring for
a single observation. Subsequent observations are unaffected by these
outliers. Their localization and correction is carried out following the
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Fig. 7. Visual example of the outlier filtering carried out in the remainder component
of the electricity price time series.

method proposed by Chen et al. [97]. As an example, Fig. 7 shows the
outlier filtering carried out for the first days of October 2018. Dots are
identified as additive outliers in the original time series, represented
by a dashed line. Outliers are replaced by suitable values, leading to a
smoother time series represented by a continuous line.

The total of 34 statistical models listed on Table 8 are pruned
to 18 when tested against an out-of-sample MASE equal to or less
than 1. Then, the selected model types are trained over six different-
length training time windows. The interquartile mean (IM) is calculated
from their six predictions. This leads to 18 day-ahead forecasts of the
remainder component (R).

In parallel, the outlier filtered remainder component R is further
decomposed into a collection of elemental time series with more mean-
ingful instantaneous frequencies. A statistical model is then used to
predict each elemental signal individually. Finally, the corresponding
prediction results of each elemental signal are aggregated as the final
forecasting results. Predicting more meaningful time series has the aim
of providing more useful information to the modeling step (iii).

Three methods are applied in parallel to decompose the filtered
remainder component R: complete ensemble empirical mode decompo-
sition with adaptive noise (CEEMDAN, [98]), maximal overlap discrete
wavelet transformation (MODWT, [99]) and variational mode decom-
position (VMD, [100]). The number of decomposed elemental time
series and their underlying forecasting model are chosen by minimizing
the time-series cross-validated MASE. The CEEMDAN method decom-
poses the filtered R into two intrinsic mode functions (I M F;,i € {1,2})
and a residue (R.) that captures the lowest frequency. These signals
are forecast by a linear model with a stepwise selection of 341 lags
used as predictors (ALM, [101]). The MODWT method decomposes the
filtered R into the first, second and third level wavelet coefficients
(W,,i € {1,2,3}) and the third level scaling coefficients (V3). The
elemental signals are forecast by an auto-regressive model AR(p =
53) [102]. The Haar wavelet transform filter is adopted here. The VMD
method decomposes the filtered R into three variational mode functions
(VMF,i € {1,2,3}) and a residue (R}/). These signals are forecast by
a linear model with a stepwise selection of 341 lags used as predictors
(ALM, [101]).

Fig. 8 depicts an example of the results obtained from the three
aforementioned decomposition methods. The decomposed signal is the
filtered remainder component R shown on Fig. 7. The top plot shows
the three signals resulted from the CEEMDAN decomposition; the two
middle plots show the MODWT elemental signals; and the bottom
plot shows the time series obtained from the VMD method. The low
number of elemental time series decomposed by each method implies
that the methods could not extract much meaningful information. The
intrinsic mode functions (I M F, and I M F,), the wavelet coefficients
(W,, W, and W;), and the residue R, manifest a high frequency,
random noise. This implies that a first STL decomposition followed by
this second decomposition has achieved a complete separation of all the
underlying patterns of the original electricity price time series. All these
patterns have been forecast and their aggregation have been added to
the workflow.

The last step of the feature engineering process is to linearly com-
bine (LC) all day-ahead forecasts of the filtered remainder term. The
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Fig. 8. Visual example of the signals decomposed from the outlier filtered remainder
component of the electricity price time series.

number of combined forecasts are 18 coming from the direct prediction,
and 3 resulted from the decomposition techniques. These forecasts are
linearly combined using five methods: AT, BG, IM, MED and SA. This
involves adding a total of 26 features to the pipeline. Added to 21 time
factors, 30 exogenous data features and 64 time series characteristics,
the total number of features amounts to 138.

(ii) The second step of the forecasting process is feature selection.
The best feature subset is chosen by carrying out the same proce-
dure followed in the seasonal components section: a recursive feature
elimination methodology (RFE) using a gradient boosting decision tree
model (XGBoost, [62]) tuned by Bayesian optimization. This procedure
gives the best features listed in Table 3. It is interesting to note that
three exogenous factors have been selected: the remainder term of
the electrical power estimated for the Iberian Peninsula, the natural
gas price of the previous day, and the EUR/USD currency rate of the
previous day. In addition, several time series characteristics obtained
from the previous day can help to predict the evolution of R for the next
day. No forecasts from the three decomposition methods are included
on the best feature subset per se. Nevertheless, they are included on the
linear combination of forecasts by means of the simple average, median
and interquartile mean.

(iii) The modeling step uses a stacked ensemble model architecture.
The forecasts of R obtained in the feature engineering step have tried
to capture the patterns that the remainder component exhibits with
itself. Here the aim is to improve robustness and generalizability over
a single predictor by combining the forecasts in several lineal and non-
lineal fashions. At the same time, the forecasts are also combined with
exogenous data to capture the relation that the electricity price has with
them.

The stacked ensemble model architecture consists on three levels or
layers. Ii contains 19 learners in total: 15 on the first level, 3 on the
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Table 3
Best features subset selected by a recursive feature elimination method to forecast the
remainder term (R) of the electricity price time series.

N2 Description

Time factors — Table 5

1 Hour of day

Exogenous factors — Table 6

2 Remainder term of the electric power forecast
3 Natural gas price (-1 day)

4 EUR/USD currency rate (-1 day)

Time series characteristics (—1 day) — Table 7

5-7 22, max and median values

8 Spectral Shannon entropy

9 PACF features: diff2-pacf5

10 Holt’s linear trend method: #

11 STL linearity

12 Non linearity

13 Symbolic transformations: MotifTwo

14 Correlation: trev

15-17 ACF features: e-acf10, (diffl, diff2)-acf10
Forecasts of models — Table 8

18 ARIMA (p=1,d=0,9=1) (P=4,D=0,0=1)(12)
19 Naive model

20 TBATS model

21 Linear model with stepwise selection of lags

22 Linear model with combined lags

23 State-space ARIMA

24 Regularized linear model with lagged regressors
25-27 Linear combination of forecasts: SA, MED, IM

second and 1 on the third and last level. The prediction of Level 3 is
the final day-ahead forecast of the remainder term (R) of the electricity
price time series. Added to the forecasts of the trend (7) and seasonal
terms (S5, S,4, Sgy and S;4g) it will make the final day-ahead forecast
of the electricity price (¥, Eq. (1)).

Level 1 comprises fifteen learners: Bayesian additive regression
trees (BART, [103]), Bayesian linear model (BaLM, [104]), gradi-
ent boosting linear model (BoLM, [105]), feed-forward neural net-
work (FFNN, [60]), gradient boosting decision trees (GBDT, [62]),
Gaussian process model (GP, [91]), k-nearest neighbors algorithm
(KNN, [106]), linear model with an exhaustive search of the best
predictors (LM, [107]), a bagged of multivariate adaptive regression
splines (MARS, [108]), penalized linear model (PLM, [109]), partial
least square algorithm (PLS, [110]), random decision forests and ex-
tremely randomized trees (RF, [111]), rule- and instance-based model
(RIBM, [112]), regularized linear model (RLM, [62]) and support
vector machines (SVM, [92]). These learners have been chosen based
on a trade-off between individual accuracy and diversity. The reason
of diversity is boosting the gain by combination. Here the overall en-
semble diversity is measured in two steps. First, the Pearson correlation
coefficient (rpy.on) is calculated between each pair of out-of-bag errors.
Then, all the pairwise metrics are averaged into a single metric (Fpgson)-
The closer the value of Fp,,,, is to zero, the larger is the diversity.

Level 2 includes three learners: a feed-forward neural network
(FFNN, [60]), a linear model with an exhaustive search for the best
predictors (LM, [107]) and a bagged ensemble of multivariate adaptive
regression splines (MARS, [108]).

Level 3 consists of a constrained least square fit (CLS) on the
predictions of Level 2. Applying a simple weighted average is enough
on Level 3. The reason lies on the high correlation of the out-of-bag
cross-validation errors of the learners of Level 2. This is the reason
why no more than three levels are implemented on the stacked model
ensemble architecture. In other words, it seems that not much more
information can be squeezed from the input feature set (Table 3).

The learners of Level 2 have been chosen among the fifteen machine
learning models mentioned on Level 1. The selected learners of Level
2 are not the ones that give the best out-of-fold MASE. Combining two
good-performance learners (LM and MARS) with a poor-performance
learner (FFNN) obtains the best accuracy when combined with a CLS
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Fig. 9. Distribution of the intercept and weights of the constrained least square fit in
Level 3.

fit. The learners have been chosen by evaluating the MASE of the entire
permutation space given by selecting 1, 2 and 3 learners from the
fifteen machine learning models mentioned on Level 1. Note that the
weights of the CLS fit are not chosen based on this procedure.

The stacked model ensemble training procedure follows six consec-
utive steps. First, Level 1 learners are tuned individually by Bayesian
optimization or Cartesian grid search. The tuned hyper-parameters are
listed on Table 4. Secondly, the learners are trained on ten time-series
folds - ie., data splits —. The number of ten folds have been chosen
due to computational cost reasons and empirical evidence of superior
performance [46]. The folds are selected so that each fold can only
be predicted by training on previous folds. In addition, a data chunk
belonging to a specific day is not split among different folds. These
ten folds are the same across all estimators. Thirdly, Level 2 learners
are tuned individually on the out-of-fold predictions of Level 1 learners
(Table 4). Fourthly, these tuned learners are trained on the same fold
indexes as Level 1. The result is a data set composed of out-of-fold
predictions of Level 2 learners.

Fifthly, the weights of Level 3 are calculated by bootstrap aggre-
gation (also known as bagging [113]). The out-of-fold predictions of
Level 2 are uniformly sampled with replacement. Data is bootstrapped
preserving daily values. CLS is then computed on each one of the new
bootstrap data sets. The simple average is then calculated on the fitted
weights. The aim of bagging is reducing variance, and by extension,
preventing over-fitting. The resulting weights are 0.02 for the intercept,
0.19 for the FFNN, 0.35 for the LM and 0.46 for the MARS. Fig. 9
shows the histograms of the distribution of the bootstrap intercept and
weights. The mean value is represented by a black dashed vertical line.
The estimated value associated with the highest density (HDV) —i.e. the
one that would appear more often for unseen data — is represented by
a blue continuous vertical line. Both mean and HDV appear very next
to each other. This implies that the mean value is a good choice for
unseen data (if it follows the same distribution as the computed data).

The sixth and last step of the stacked ensemble training procedure
consists on fitting all learners to the whole levels’ data set. These
models are conveniently saved and stored on disk. They will be used
to forecast R during production (Section 3.5).

Finally, the remainder component forecasting pipeline finishes by
applying automated machine learning platforms (AutoML). They are
used as a baseline reference of the forecasting accuracy of the stacked
ensemble architecture. The applied AutoML platforms are H20 Au-
toML [60] and TPOT [61]. Both platforms have been trained on the
same ten folds as the stacked ensemble architecture. This improves the
comparison of results. They have been run on a time budget of one
hour per fold, resulting in twenty hours of total computational time.
In this work, the AutoML results help to assure the performance of the
proposed stacked ensemble architecture.
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Table 4
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List of tuned hyper-parameters’ values of the stacked ensemble models for Level 1 (left and center) and Level 2 (right).

Parameter Value Parameter

Value Parameter Value

BART — Bayesian additive regression trees

KNN — k-nearest neighbors algorithm

FFNN - Feed-forward neural network

alpha 0.967 Distance 0.5 Activation RectifierWithDroput
beta 3.387 k 111 epochs 80

k 4.4 Kernel Gaussian Epsilon 10710

nu 1.198 LM — Linear model input_dropout_ratio 0
num_trees 23 n_features 16 Hidden 200, 200
BaLM — Bayesian linear model MARS — Mult. adaptive reg. splines hidden_dropout _ratios 0.1, 0.1
- - degree 1 L, 1073
BoLM — Boosting linear model nprune 11 rho 0.99
alpha 0.058 PLM — Penalized linear models LM — Linear model

nrounds 69 alpha 0.998 n_features 12
Lambda 0.007 Lambda 0.016 MARS — Mult. adaptive regression splines
FFNN — Feed-forward neural network PLS — Partial least squares degree

activation RectifierWithDropout Method kernelpls nprune 13
epochs 1000 ncomp 18

epsilon 10-¢ RF — Random forests

input_dropout_ratio 0 min.node.size 3

hidden 50 mtry 28

hidden_dropout_ratios 0.5 num.trees 550

L, 0 Splitrule Extratrees

rho 0.99 RIBM — Rule- and instance-based model

GBDT — Gradient boosting decision trees Committees 70

colsample_bytree 0.73 Neighbors 0

eta 0.005 SVM — Support vector machine

max_depth 7 Cost 0.027

nrounds 1453 Epsilon 0.622

subsample 0.46 Kernel Linear

GP — Gaussian process

kernel Vanilladot

3.4. Model explainability

The Model Explainability phase is the fourth (and last) framework
stage. It is placed between the Model Forecasting phase and the frame-
work user. As such, it allows the user to interpret the behavior of the
developed model and its outcome. The ultimate goal is to facilitate ef-
fective and efficient human-machine collaboration in order to enhance
the user’s cognitive performance and, ultimately, improve decision-
making. This is done by providing a data story based on a collection
of post-hoc model-agnostic methods and visual artifacts. They describe
model behavior by providing specific insights into the mechanisms
of the model and detailed information about why such answers are
generated.

The Model Explainability phase consists on five consecutive mod-
ules (i to v). They have been ordered in such a way that the framework
user can be easily accompanied through model understanding. (i)
The Data Understanding module analyzes the input data so that their
main characteristics can be summarized. The goal is to maximize the
user’s insight into the data set by uncovering underlying patterns and
structure. (ii) The Model Performance module implements techniques
that facilitate assessing model quality and goodness of fit. (iii) The
Model Audit module assesses on residuals’ diagnostics. (iv) The Feature
Sensitivity module aims at studying how the uncertainty in the model
outcome can be apportioned to different sources of uncertainty in the
input data. (iv) The Features Effects module indicate the direction and
magnitude of change in the electricity price due to changes in the input
feature values. (v) Finally, the Model Simplification module draws a
summary of the model by explaining a intrinsically interpretable model
that approximate the predictions. These five modules are supported by
a variety of quantitative and graphical techniques that enhance model
explainability.

The color palettes used on the visual representations have been
carefully selected. The qualitative color scale, designed for coding
categorical information, is the one proposed by Okabe and Ito [114].
The sequential color palette, designed for coding ordered information,
is Viridis [115]. The diverging color scale, designed for coding ordered
information around a central neutral value, is Scico [116]. The three
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color palettes are designed to be perceived by color vision deficiency
readers. Both Viridis and Scico’s colors span as wide as possible so that
differences are easy to see. They are also perceptually uniform, meaning
that values close to each other have similar appearance. These two
properties hold true for the colors regular form and when converted
to black and white.

The font typeface selected for the visual representations is IBM
Plex® Sans [117]. It is a highly legible typeface due to its open-angled
terminals, uniformed stems, clear crossbars with consistent thickness
and open counter forms. It was designed to work with user interface
environments.

The uncertainty throughout the Model explainability phase is sum-
marized by calculating the span of values that are most probable
and cover 95% of the distribution. More probable values have higher
probability density. This way, the span is called the 95% highest density
interval (HDIL, [118]). Here, it is computed by the non-parametric boot-
strap method. The computation randomly draws 20,000 independent
samples from the original data set.

3.4.1. Data understanding

The aim of the Data Understanding module is to open-mindedly
explore and analyze the input data for summarizing their main char-
acteristics. The main goal is to maximize the user’s insight into the
data set by uncovering underlying patterns and structure. This is carried
out by quantitative techniques and key visual representations organized
into a coherent structure.

The visual representations are divided into five categories (i to v).
(i) The first category allows the user to visualize the individual compo-
nents obtained by STL decomposition (trend, seasonal and remainder
components). The time series that can be represented include the
electricity price and the exogenous factors of Table 6. (ii) The percentile
values of the STL decomposition components are plotted against time.
The objective is to discover time patterns. (iii) The individual STL
components are plotted against each other to analyze their possible
correlation. Data points are colored by the number of neighboring
points so that the overall distribution can be analyzed. This density
scatter plot is supported by the Pearson correlation coefficient. (iv)
The STL individual components are ranked by their correlation with
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the electricity price. This allows hypothesizing about their possible
degree of influence on the electricity price. (v) The fifth (and last)
category consists on displaying the wavelet power spectrum of the
individual components of the electricity price. The wavelet power spec-
trum is computed by applying the Morlet wavelet [119]. The vertical
axis shows the fundamental periods observed when the fast Fourier
transform is applied. The horizontal axis shows dates. The average
(over time) wavelet power in the frequency domain is also displayed.
Both plots aim at analyzing the time—frequency distribution - i.e., the
periodic phenomena in the presence of potential frequency changes
across time.

3.4.2. Model performance

The aim of the Model Performance module is to assess on model
quality and goodness of fit. The examination is carried out by diagnostic
scores and visual verification. The visual representations are divided
into four categories (i to iv). (i) The first category allows the user
to graphically compare the temporal evolution of the electricity price
time series, its STL decomposition components and their forecasts. (ii)
The second category quantifies the forecasting error of the electricity
price time series and its STL decomposition components. The error is
measured by the mean absolute scaled error (MASE) and the mean
absolute error (MAE, Eq. (2)). (iii) The third category shows the MASE
performance of the stack ensemble models, individually and grouped
by level. (iv) The fourth category represents models’ diversity using a
correlogram of their residuals. The residuals are equal to the difference
between the observations (R) and the corresponding predicted values
(R). The correlogram is a graphical display of the correlation matrix. It
holds the Pearson correlation coefficients for all possible combinations
of models’ residuals. The correlation coefficients are ordered according
to the degree of association. It is obtained by a complete-linkage
hierarchical cluster method.

3.4.3. Model audit

The aim of the Model Audit module is to assess the validity of
the model by residuals’ diagnostics. Residuals are diagnosed with five
complementary analysis (i to v) that use visual inspection and a number
of formal statistical hypothesis tests.

(i) Linearity assesses on whether the relationship between the elec-
tricity price observations (Y) and the corresponding forecasts @) is
linear. Linearity is graphically inspected with a scatter plot (Y vs. ¥).
And it is numerically quantified by the coefficient of determination
(rlz,ersm) and the fitted parameters (f,, #,) of a simple linear regression
fit (¥ =gy + 4, - V).

(ii) Normality assesses if the residuals are normally distributed. Nor-
mality is graphically inspected with a histogram, a quantile-quantile
plot and a box plot. For comparison reasons, the ideal normal dis-
tribution is superposed on the plots. Several normality tests support
the visual diagnosis. The Student’s t-test determines if the mean of
the residuals is significantly different from zero. The D’Agostino test
and the Anscombe-Glynn test aim to establish whether the residuals’
distribution skewness and kurtosis are zero and three, respectively.
The Shapiro-Wilk test and the Anderson-Darling test assess on general
normality. These two tests have been selected among others because
they provide the best power [120].

(iii) Homoscedasticity assesses on the homogeneity of variance of
the residuals. It is visually inspected by plotting the residuals versus
the predicted values. The studentized Breusch-Pagan test, the Goldfeld—
Quandt test and the Harrison—-McCabe test numerically support the
homoscedasticity analysis [121].

(iv) Independence assesses on whether residuals are not linearly
related with residuals at prior time steps. The strength of the relation-
ship is measured by the Pearson correlation coefficient. It is graphically
inspected by the auto-correlation function (ACF). In order to remove
the effect of indirect correlations, the partial auto-correlation function
is also displayed (PACF). Both plots show confidence intervals at a 5%
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significance level. The Box—Pierce test examines the null hypothesis of
independence.

(v) Outliers in residuals are detected and displayed over the time
evolution. They are considered to be additive outliers. They appear as
a surprisingly large or small value occurring for a single observation.
Their detection is carried out following the method proposed by Chen
et al. [97].

3.4.4. Feature sensitivity

The aim of the Feature Sensitivity module is to study how the
uncertainty in the electricity price forecast ¥ can be apportioned to
different sources of uncertainty in the input variables. By definition,
the remainder component R does not exhibit any clear behavior or
pattern. This means that, generally, the uncertainty in ¥ will be mostly
produced by the uncertainty in the forecast remainder component R.
The objective is then to identify how the forecast remainder component
R depends on the uncertainty in the model input features. In case the
uncertainty in ¥ is produced by the trend or seasonal components,
the same methods hereinafter described could be applied following
the same fashion. The Feature sensitivity analysis is carried out on
Level 1 (Table 3), Level 2 and Level 3 features of the stack ensemble
architecture presented on Fig. 6.

The analysis is divided into two groups: (i) local sensitivity analysis,
(ii) and global sensitivity analysis. Local sensitivity analysis evaluates
how the model output is influenced by the model inputs when predict-
ing for one specific observation. In contrast, global sensitivity analysis
assesses the influence over the entire variation range of the model
inputs.

(i) Local sensitivity analysis is conveyed by Shapley values [122].
A Shapley value is the contribution of a feature value to the difference
between the actual prediction and the mean prediction. To calculate
this contribution, the classical method requires retraining the model
on all feature subsets S C F, where F is the set of all features [123]. It
assigns an importance value to each feature that represents the effect on
the model prediction of including that feature. To compute this effect,
a model fgy;, is trained with that feature present, and another model
fg is trained with the feature withheld. Then, predictions from the
two models are compared on the current input fg,; (xsu(y = fs(x s))
where xg represents the values of the input features in the set S. Since
the effect of withholding a feature depends on other features in the
model, the preceding differences are computed for all possible subsets
S C F\{i}. The Shapley values are then computed and used as feature
attributions. They are a weighted average of all possible differences:

_ [S1! (IF]=1S]=D!
CF\{i}

[fsupi) (xsuy) = fs(xs)]

The value of the ith feature contributed ¢; to the prediction of this
particular observation compared to the average prediction for the data
set. This classical procedure is considered theoretically optimal in the
sense that it is the only set of additive values that satisfies important
properties [124]. Nonetheless, it requires retrain the model on 2!F!
possible subsets of the feature value. To avoid this high computational
cost, Strumbelj et al. [125] proposed an approximation of Eq. (7). It
uses Monte Carlo sampling and approximates the effect of removing a
feature from the model by integrating over samples from the training
data set. The number of Monte Carlo samples for estimating the Shapley
value ¢, is selected here using a convergence analysis.

)

The convergence analysis is performed by computing the results
of the estimated Shapley values using different k number (k € N) of
Monte Carlo simulations (ny;c). Convergence is first analyzed visually
by examining the stability of the Shapley values with increasing nyc.
Further, a quantitative convergence analysis is performed by evaluating
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Fig. 10. Visual convergence analysis carried out for the local sensitivity analysis based
on Shapley values (upper plot), and the global sensitivity analysis based on the Morris’s
elementary effects screening method (lower plot).

a total estimated Shapley value ¢ as the sum of the estimated absolute
Shapley value |¢,| of all input features (ny):

Wil
br =D 141l
i=1

The variability of ¢, is expressed as the relative percentage of
change of ¢, from mycy_; to nycy (Eq. (9)). The convergence is
considered achieved with nyc if the variability stays lower than a
threshold value of 10%.

‘i’T("MC,k—]) - qu(nMC,k)

(8)

Variability = = - 100 9
dr(nvcx-1)

Fig. 10 shows an example of the convergence analysis. The x-axis
represents the number of Monte Carlo samples nycy, and the y-axis
the variability (Eq. (9)) for three different observations. The minimum
number of Monte Carlo samples that achieves a variability lower than
the threshold 10% is ny;c = 400. In order to keep the computational cost
as low as possible, 400 is the number of Monte Carlo samples selected
for estimating Shapley values.

(ii) Global sensitivity analysis is conveyed by three complementary
methods: (ii.i) Morris’s elementary effects screening method [126];
values [125]. Global sensitivity analysis based on high linear assump-
tions cannot been implemented for this regression problem - e.g. Stan-
dardized Regression Coefficients [127]. The coefficient of determi-
nation R?> computed by the multivariate linear regression between
input features (Table 3) and output (R) is 0.60, 95% HDI [0.58,
0.61]. This value is smaller than the minimum threshold of 0.7 that
is recommended to obtain effective results [127].

(ii.i) Morris’s elementary effects screening method is based on a
one-at-a-time perturbation of the model inputs under investigation.
The model input space is firstly discretized by transforming the input
factors into dimensionless variables in the interval (0,1). Then, each
input interval is divided into a number of p levels. This grid is sampled
at a random starting point, and the next samples differ only in one
coordinate from the preceding one. For each sample a perturbation 4
of the factor value is considered as a multiple of 1/(»-1). The sequence of
k+1 points is called a trajectory. One point in this trajectory represents
one prediction of the model. The magnitude of variation in the model
output Y due to the predefined variation of one input X is called
elementary effect (EE):
Y(X +e¢-4)-Y(X)

A
where ¢; is a vector of zeros, except for the ith component that equals
+1. It represents an incremental change in input i. While one trajectory

EE, = (10)
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allows the evaluation of one elementary effect for each input i, a set of r
trajectories enables statistical evaluation of the finite distribution of the
elementary effects. The elementary effects are evaluated by the mean
of their absolute value (¢*) and their standard deviation (o):

1 % ;
wi=— Y IEE] an
j=1

r

TN

j=1

p
<EE,,U> ) EE,,U>> (12)
j=1

The number of r trajectories is selected by a convergence analysis.
The analysis is carried out following a similar fashion than with the
Shapley values method. In this case, the variability is computed using
the variables y* and o;. Due to the stability of the variability, the
threshold value is selected to 5%. The bottom plot of Fig. 10 shows
the convergence analysis as the evolution of the variability against the
number of r trajectories. The selected number of r trajectories is 200
with p = 8 grid levels. This leads to a total of 5600 model predictions.

The parameter y is a measure of influence of the ith input on
the output. The larger 4 is, the more the ith input contributes to the
dispersion of the output. The parameter o¢; is a measure of non-linear
and/or interaction effects of the ith input. If o; is small, elementary
effects have low variations on the support of the input. Thus, the effect
of a perturbation is the same all along the support, suggesting a linear
relationship between the studied input and the output. On the other
hand, the larger o, is, the less likely the linearity hypothesis is. Hence,
a variable with a large o; will be considered having non-linear effects,
or being implied in an interaction with at least one other variable. Non-
linearity and feature interaction are linked together by the standard
deviation (¢). In order to support the Morris screening method by
assessing specifically on feature interaction, the Friedman’s H -statistic
method is applied [128].

Friedman’s H-statistic method measures two-way feature interac-
tion effects via the decomposition of the prediction function. If a feature
i has no interaction with any other feature, the prediction function
can be expressed as the sum of the partial dependence function [129]
that depends only on i and the partial dependence function that only
depends on features other than i. If the variance of the full function is
completely explained by the sum of the partial dependence functions,
there is no interaction between feature i and the other features. Any
variance that is not explained can be attributed to the interaction and
is used as a measure of interaction strength. The interaction is measured
by Friedman’s H-statistic (square root of the H-squared test statistic)
and takes on values between 0 (no interaction) to 1 (100% of standard
deviation of the full function due to interaction).

Morris screening method allows ranking the input features in order
of importance. Nonetheless, it does not measure how much of the
model’s output varies for a feature considering what it means for
prediction accuracy. To complement the Morris screening method on
this matter, a performance-based feature sensitivity analysis is carried
out.

(ii.ii) Performance-based feature sensitivity is calculated by the
increase in the model’s prediction error after permuting its values [93].
A feature is sensitive if shuffling its values increases the model error
because the model relied on the feature for the prediction. A feature is
not sensitive if shuffling its values leaves the model error unchanged
because the model ignored the feature for the prediction. This proce-
dure breaks the relationship between the feature and the true outcome,
and also the interaction effects with other features.

Permutation of feature values adds randomness to the measurement.
When the permutation is repeated, the results might vary greatly. Re-
peating the permutation and averaging the importance measures over
repetitions stabilizes the measure. The maximum number of repetitions
is n-(n—1), which is computationally expensive when the data set has a
high number of n observations. Therefore, the number of repetitions is



S. Beltrdn et al.

selected by a convergence analysis. The analysis is carried out following
a similar fashion than with the previous convergence analyses. In this
case, the variability is computed using the performance metric MASE.
Based on the results, the selected number of repetitions is 15.

Shapley values is extended here with a global scope. Shapley values are
computed for each feature i of every observation. Then, the average
is computed on the absolute values for every feature. The higher the
mean, the greater the impact of that feature i on the model’s outcome.

3.4.5. Feature effects

The aim of the Feature Effects module is to study the direction
and magnitude of change in the predicted outcome due to changes in
feature values. Since almost all uncertainty in the predicted outcome ¥
is given by the uncertainty in the remainder component R, the objective
is then to identify how the remainder component R behaves under
changes of input features. The Feature effects are analyzed for Level
1 (Table 3), Level 2 and Level 3 of the stack ensemble architecture
presented on Fig. 6.

Feature effects are analyzed on a local and global scope. Local
feature effects allow understanding how the model response R changes
if a selected input feature is changed from a specific observation, while
keeping all other features fixed. They are graphically inspected by
individual conditional expectations plots (ICE, [130]). ICE plots show
a conditional expectation of the dependent variable (R) for a particular
explanatory feature. The values for a specific feature and instance are
computed by following two steps. First, while all other features are kept
the same, the feature’s instance value is replaced with values from a
grid taken from the feature entire range of values. Secondly, the model
makes predictions for these newly created instances. The result is a set
of predicted new R points corresponding to the set of feature grid point
values.

Global feature effects show the way a feature impacts the model
response R on the entire range of instances. In order to summary
the ICE profiles obtained for every observation, they are graphically
displayed by percentiles. For a specific feature, an ICE profile is firstly
computed for each observation of the data set. Then, the percentiles
1%, 5%, 25%, 75%, 95% and 99% are calculated from the set of ICE
profiles. Plotting the percentiles of the ICE curves uncover possible
heterogeneous effects that can be hidden on the entire range of in-
stances. The average of the ICE profiles is called partial dependence
curve (PD, [129]). It shows how the average prediction R changes when
a specific feature is changed.

The global relationship between features and predicted outcome is
supported by Shapley values. They help uncover the curvature relation-
ship between the predicted response (R) and the individual feature.
Plots can show a rug — i.e. indicators for data points — on the x-axis. It
represents the feature distribution so that regions with almost no data
cannot be over-interpreted.

3.4.6. Model simplification

The Model Simplification module is the last model analysis carried
out by the proposed framework. It aims at drawing summary con-
clusions about the model. This is done by providing an intrinsically
interpretable model that approximates the predictions.

The selected intrinsically interpretable model is a decision tree
[131]. Decision trees are directed graphs in which each interior node
corresponds to an input feature. The terminal nodes (or leaf nodes)
represent a value of the target variable given the values of the input
variables represented by the path from the root to the leaf. To predict
the outcome in each leaf node, the average outcome of the training data
in this node is used. The paths can be visualized with simple if-then
rules. In short, decision trees are data-derived flowcharts that follow a
boolean-like logic. As such, they are displayed graphically in a natural
way that is easy to interpret.
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Variable importance and interactions displayed in the surrogate
model are assumed to be indicative of the internal mechanisms of the
complex model. Variables that are higher or used more frequently are
more relevant. Variables that are above and below one another can
have interactions. The decision tree surrogate model has a global focus
of interpretation. Nonetheless, local behavior can also be visualized by
highlighting the paths of specific instances through the internal nodes.

The decision tree surrogate model is trained on the original inputs
and predictions of the stack ensemble model. A depth of four nodes
is chosen as a trade-off between accuracy and interpretability. The
decision tree is tuned by time-series cross-validation. The coefficient of
determination (rl%earson) between forecasts is calculated to ensure that
the decision tree surrogate model approximates the stack ensemble
model reasonably well.

3.5. Deployment into production

The framework has been deployed on a proprietary system with an
Intel® Xeon™ Processor E5607 (4 cores, 2.26 GHz, 8 MiB of cache size).
The system includes 8 GiB of DDR3 RAM and two 250 GiB SATA hard
drives. Ubuntu 18.04.3 LTS runs as the operating system.

The system incorporates tools for efficient data and model gov-
ernance. All data is automatically backed up on a frequent basis to
prevent loss. Data integrity is checked to assure accuracy among back-
ups. Code versioning is controlled through a private Git repository
(v2.24.0). Data is secured by a high-quality software that protects
against malware. Unauthorized data access is prevented by a firewall
that blocks all ports. No personal data is allowed to be stored in the
system. Finally, modeling and system errors are registered and archived
along with their effects. This governance is formally documented and
approved by the system administrators.

The framework is mostly implemented in R programming language
v3.6.3 [132]. The framework data is stored on a relational database
managed by PostgreSQL v12.1. The back-end system architecture is
developed in Java v8. Trained machine learning models are efficiently
stored to disk for increasing computing performance. R-programming
models are saved via serialization into non-compressed files of rds
format. No trained statistical time series models are stored in the
system.

4. Results and discussions

This section discusses the results obtained by the proposed frame-
work. It follows the sequence of results that the Model explainability
phase can show based on its six modules (see Fig. 1). First, the main
characteristics of the input data are summarized in the Data under-
standing module. Then, model quality and goodness of fit is assessed
by the Model performance module. Thirdly, model validation is audited
through residuals’ diagnostics (Model audit module). The influence and
effects of model inputs on the electricity price forecasts are studied on
the fourth (Features sensitivity) and fifth modules (Features effects).
Finally, the Model simplification module builds a surrogate model that
helps provide general model characteristics.

4.0.1. Data understanding

Fig. 11 shows five charts, labeled from i to v. Plot i depicts the
decomposition of the electricity price time series into six components
of distinctive pattern. Here, one month of data is represented. The
irregular electricity price time series (top plot, Y) is decomposed into a
smooth trend that indicates the long-term change (7") and four seasonal
components that describe specific patterns that reoccur periodically
at 12h (S},), 24h (Sy), 84h (1/2 week, Sg,) and 168h (1 week, S¢g)-
The remainder component (bottom plot, R) does not exhibit any clear
behavior. It is interesting to note that the magnitude of the remainder
term is approximately twice larger than that of the seasonal com-
ponents. In addition, several abrupt changes can be observed in the
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remainder component. These observations indicate a high volatility of
the electricity price.

Plot ii shows the daily (left) and weakly (right) patterns described
by the detrended electricity price (Y — T). The relative amount of
data is presented by a gradient color, from 10% (dark blue) to 90%
(light blue). The electricity price shows a clear daily pattern, with
one expected minimum at four in the morning, and two maximums at
around nine in the morning and afternoon. Spanish weekdays (Monday
to Friday) do not exhibit visual difference among them, whereas a price
drop is seen for weekends (Saturday and Sunday).

Plot iii depicts the correlation that the electric power demand
predicted for the Iberian Peninsula has on the electricity price. The
correlation is visualized by scatter plots for the detrended time series
(Y — T) on the left, and the remainder component time series (R) on
the right. The detrended terms are moderately correlated (rpeeon =
0.72, 95% HDI [0.71, 0.73]). The remainder terms are low correlated
(Ppearson = 0.23, 95% HDI [0.21, 0.25]). This can be caused by the
influence that the seasonal components of the electric power demand
have on the electricity price counterparts. The supply and demand
relationship is emphasized by a positive correlation value, meaning that
higher expected power demands tend to imply higher electricity prices.

Plot iv shows the correlation strength between the exogenous data
(Table 6) and the electricity price. The correlation is calculated by
the absolute value of the Pearson correlation coefficient (|rpeyson|)-
Four categories are colored depending on the correlation strength: high
(yellow), moderate (green), weak (blue) and no correlation (purple). If
the exogenous data time series exhibit seasonal patterns, their trends
(left) and seasonal components (right) are removed. Hydraulic power,
cogeneration, combined cycle and coal power are the highest correlated
with the electricity price, both on the detrended (Y —T") and the remain-
der components (R). It is interesting to note here that the hydraulic
power generation in the Iberian Peninsula is usually the last to enter the
wholesale market actions, fixing the final electricity price [78]. Coal-
fired power stations usually follow hydraulic plants in the face of gas
shortages in cogeneration and combined cycle plants [78]. In addition
to fixing the price, due to the flexibility of operation of these power
plants, it is logical that they sell their energy at high expected electricity
prices, giving thus a high correlation. No correlation is observed for the
EUR/USD currency rates, Brent oil prices and CO, European emission
allowance prices.

Finally, Plot v displays the annual wavelet power spectrum of the
detrended term (Y — T, top plot) and the remainder term (R, bottom
plot) of the electricity price. The detrended series presents high wavelet
power at distinctive time periods (12 h, 24 h, 168 h and, to a lesser extent,
84 h). This is not the case for the Spanish summer holiday period: a low
wavelet power is observed starting from July to September. This means
that the price of electricity behaves differently during the summer
vacation season.

4.0.2. Model performance

Fig. 12 shows four charts, labeled from i to iv. Plot i represents
a month comparison between actual electricity prices and forecasts.
Actual and predicted values are shown in black and blue color, re-
spectively. The top plot shows the whole electricity price series (Y).
The bottom plot shows the detrended and deseasonalized electricity
price series (R). Visually, forecasts overlap actual prices in trend and
seasonality. The highest error variances are given by the uncertainty
of the remainder component forecast. These results are quantitatively
detailed in the following plot.

Plot ii shows the mean absolute value (MAE, right plot) and the
mean absolute scaled error (MASE, left plot). These metrics are calcu-
lated for the year 2017. The average is marked with a cross. The 95%
highest density interval of the metrics distribution (95% HDI) is plotted
with a horizontal line. The average MAE is 1.859 EUR (MWh)~!, 95%
HDI [0.575 EUR (MWh)~!, 3.924 EUR (MWh)~!]. The largest proportion
of this value is given by the remainder component forecast (R), whose
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average MAE is 1.867 EUR (MWh)~!. The MAE of the trend (7) and the
seasonalities (.5) is relatively small. The average MAE increases with
the period of the seasonality. Nevertheless, the largest MAE is usually
under 0.2 EUR (MWh)~! for S|,, S,4 and S, seasonalities. The MAE of
the seasonality .54 is usually under 0.5 EUR (MWh)~!.

When a naive model is used as benchmark, the proposed model
architecture achieves an average MASE of 0.378, 95% HDI [0.091,
0.934]. The 95% HDI does not cover the unity benchmark reference.
This means that the proposed model obtains statistically significantly
better forecasts than the benchmark model. It is not the case for the
remainder component forecast (R). However, it achieves a relevant
average reduction of 24% (MASE = 0.765). Due to the importance of
an accurate forecast of the remainder component, plot iii presents its
forecasting performance details.

Plot iii.i shows the individual models’ performance for the pipeline
proposed in Fig. 6. The models are ranked in descending order based
on the average MASE obtained for the year 2017. Time series statistical
models’ performances (Level 0) are colored in purple, blue for Level 1,
green for Level 2 and yellow for Level 3. The plot top shows the MASE
performance of the model of Level 3. This model gives the final values
of the remainder component forecast. The model achieves an average
MASE of 0.765, as already presented in Plot ii. As levels decrease, the
performance tend to decrease by obtaining a higher average MASE. The
most accurate model of Level 0 is the simple average of the 18 forecasts
obtained in the feature engineering step. Those forecasts were obtained
by time series statistical models. The most accurate models of Level
1 and Level 2 are a boosting linear model and a bagged ensemble of
multivariate additive regression splines, respectively.
model architecture. On average, the models of Level 1 give 11.3%
better results than Level 0 models; 2.3% of Level 2 with respect to Level
1; and 1.3% for Level 3 with respect to Level 1. The resulting figure of
14.9% improvement has been achieved by stacking models. Moreover,
the stack ensemble architecture has obtained a better combined forecast
than any individual model alone.

The average MASE of each model (Plot iii.i) and level (Plot iii.ii) is
joined together by a dotted gray line. This line converges to a vertical
asymptote of around 0.765 MASE. This means that the stacked gen-
eralization technique has obtained an asymptotically optimal learning.
That is to say, for the given input features, no significantly better results
could have been obtained by introducing more levels in the ensemble
stacked architecture. This is also true if more models had been placed
in each level.

The AutoML frameworks’ results help assure that no significantly
better accuracy could have been obtained for the given input fea-
tures. H20 AutoML and TPOT get a MAE of 1.886 EUR (MWh)~! and
1.912EUR (MWh)~!, respectively. That is to say, a MASE of 0.773 and
0.784, respectively. These results are 1.0% and 2.4% higher than the
achieved MAE of 1.867 EUR (MWh)~! and MASE of 0.765.

On other hand, several models of Level 1 (blue line) achieve on
average better results than two models of Level 2 (a linear model and
a feed-forward neural network). These two models, together with a
bagged ensemble of multivariate adaptive regression splines have been
selected as the ones that increase Level 3 performance the most. Thus,
it is interesting to note that not placing the best individual models
on Level 2 has improved overall performance more than if individual
better models were selected. This is due to models’s diversity. Diversity
is presented in the following plot.

Plot iv shows correlograms of the residuals for Level 1 and Level
2 models. Here, low correlation coefficients mean higher diversity —
i.e., gain increase by combination —. The correlations of Level 1 span
from 0.77 (yellow) to 1.00 (green). A high average value of 0.93 (95%
HDI [0.92, 0.94]) stems from good models’ accuracy. Correlations are
ordered according to the degree of association. The lower part of the
correlogram (MARS, SVM, LM, PLS, GP, BaLM, BoLM and PLM) is
characterized for the linearity of the models’ forecast. Their correlation
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Fig. 11. Visual representations of the Data Understanding module. (i) STL decomposition. (ii) Daily (left) and weakly (right) patterns. (iii) Correlation with electricity price,
detrended (left) and detrended and deseasonalized (right). (iv) Correlation strength rank for exogenous factors. (v) Wavelet power spectrum for the detrended (top), and detrended

and deseasonalized (bottom) electricity price time series.

is around 1.0. This means that the residuals are very similar. It implies
that one model would have contributed nearly the same than using
the eight of them. Nevertheless, the use of all these “linear models”
decreased a bit the overall performance. Regression tree-based models
are also grouped together (GBDT, RF and BART). They are high cor-
related among them, and less with the “linear models”. Three types
of model residuals differ more from the rest: a feed-forward neural
network (FFNN), a rule- and instance-based model (RIBM) and a k-
nearest neighbor model (KNN). Although their individual performance
is not among the best, their forecasts help increasing overall model
performance. As for Level 2, the average correlation is increased to
0.95, 95% HDI [0.89, 1.00]. A higher average correlation comes from
the fact that, as the level increases, models tend to give closer (and
more accurate) forecasts. Again, although the individual performance
of a FFNN is not among the best, it helps increasing overall performance
by giving diversity.

4.0.3. Model audit

Fig. 13 shows five charts, labeled from i to v. The forecasts of
the year 2017 are used here. Plot i presents a high linearity between
observed (Y) and predicted () electricity price. The linearity is assured
in three different ways: (i) a high coefficient of determination (’Pearson =
0.956, 95% HDI [0.954, 0.9571); (ii) a near zero value of the intercept
of a simple linear regression fit (§, = —0.91, 95% HDI [-1.17, —0.66]);
(iii) and a slope almost equal to unity (f; = 1.017, 95% HDI [1.012,
1.022]). It can also be observed that electricity prices smaller than
25EUR (MWh)~! are scarce and more difficult to predict.

Plot ii shows that the residuals are normally distributed. Plot ii.i
presents the visual comparison between the residuals’ density his-
togram (in black color) and the normal distribution N (u = —0.045, 62 =
6.04) (in blue color). The highest density interval of the average u
(95% HDI [-0.099, 0.009]) contains the ideal (normal) zero value. It
means that the average of the residuals is not significantly different
from zero. It is important to consider here that the authors have not
increased the model forecasts by 0.045 EUR (MWh)~! to achieve a zero
mean. The reason is that the model audit is carried out on test data
set, not on training/validation data set. With respect to the shape of
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the actual distribution, it resembles a normal distribution. Nevertheless,
it has heavier tails. In this sense, it could be considered as a logistic
distribution with location parameter 4 = —0.052 and scale parameter
s = 1.339.

The heavier tails are better visualized on the quantile-quantile
Plot ii.ii. The tails imply a high kurtosis (Kurt = 4.8, 95% HDI [4.4,
5.3]). In this sense, the Anscombe-Glynn test finds evidence of a
kurtosis different from the ideal (normal) value of three. In addition,
the Shapiro-Wilk test and the Anderson-Darling test reject the normal
distribution of residuals. However, the skewness is not significantly
different from the ideal (normal) value of zero. This is confirmed by the
D’Agostino test and a skewness highest density interval that includes
zero (95% HDI [-0.15, 0.12]).

Plot iii displays the residuals’ variance homogeneity. The residuals
do not show a clear variance change across the predicted electricity
prices. Moreover, the residuals form an approximate horizontal band
around the zero line. This indicates homogeneity of the error variance.
However, the studentized Breusch-Pagan test, the Goldfeld-Quandt test
and the Harrison-McCabe test do not support the homoscedasticity
claim.

Plot iv indicates a residual linear relation of errors with respect
to errors at prior time steps. The top plot shows the auto-correlation
function (ACF). Linear dependence decreases with lags up to lag 24. The
bottom plot shows the partial auto-correlation function (PACF). When
the effect of indirect correlations are removed, no high dependence is
observed for any particular lag.

Finally, Plot v presents an example of outlier detection of residuals.
The month of January 2017 is split into two plots. Outliers are pre-
sented by blue single dots. The plot is used as a first step for analyzing
the cause of an outlier. As an example, the third outlier observed
in January will be subsequently analyzed in the Feature sensitivity
section.

4.0.4. Feature sensitivity

Fig. 14 shows an example of a local sensitivity plot. It analyzes
the residual outlier observed at 22 h of the 12th of January 2017 (see
Plot v, Fig. 13). It depicts the contributions of each feature to the
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Fig. 12. Visual representations of the Model Performance module. (i) Forecasts of the electricity price time series. (ii) MASE and MAE metrics of the forecasts of the electricity
price time series (iii) Models’ and levels’ performance in forecasting the remainder component R. (iv) Level 1 and Level 2 model diversity represented by the correlogram of the

residuals.
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Fig. 13. Visual representations of the Model Audit module. (i) Linearity inspection between observed and predicted electricity price. (ii) Normality examination of the distribution
of residuals by histogram (i) and quantile—quantile plot (ii). (iii) Homoscedasticity audit of residuals. (iv) Independence inspection of residuals. (v) Outlier detection of residuals.

difference between the prediction of the remainder component of the
electricity price (1.17 EUR (MWh)~!) and the mean prediction for that
day (0.11 EUR (MWh)~1). The actual value is —5.47 EUR (MWh)~!. Con-
tributions are ranked in descending order beginning from the largest,
placed at the top. Positive contributions increase forecast values, and
are colored in blue. Negative contributions are colored in yellow. The
right plot shows the contributions for Level 1 features. The left plot
shows the contributions for Level 2 features, i.e. the machine learning
models used on the stacking ensemble architecture (see Fig. 6). The
values of each feature at that specific instance is written in gray color.
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For example, the simple average (SA) forecast by the statistical time-
series models is 1.84 EUR (MWh)~!. Whereas for Level 2, the Gaussian
Process model (GP) predicts 0.94 EUR (MWh)~!.

Based on the presented results, the outlier has originated from the
model giving to much importance to linear characteristics. The most
influential feature of Level 1 is the linearity of the trend component of
the STL decomposition (n2 33, Table 7). It is based on the coefficient of
a linear regression applied to the trend component. The linearity seems
to affect also Level 2 features. The most influential features of Level
2 give linear outcomes: the Gaussian Process model and the Bayesian
Linear model. Both models gave the same forecast, 0.94 EUR (MWh)~!.
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Fig. 14. Example of a local sensitivity analysis carried out on an instance with a
residual outlier.

To sum up, a local sensitivity analysis has helped to evaluate how the
model output is influenced by the model inputs when predicting for one
specific observation. In contrast, the global sensitivity analysis shown
on the following plots will assess the feature influence over the entire
set of observations.

Fig. 15 shows three charts, labeled from i to iii. Plot i presents the
global sensitivity results obtained by the Morris’s elementary effects
screening method. The X-axis represents the absolute value of the
elementary effects (u*, Eq. (11)). The Y-axis represents their standard
deviation (o, Eq. (12)). Based on u*, the three input features that
contribute the most to the dispersion of the model output are forecasts
obtained by statistical time-series models: a state-space ARIMA model
(feature n2 30, Table 8), a TBATS model (n2 8) and an ARIMA model
(n2 3). In addition, based on o, these three input features have the
largest non-linear effects or the largest interactions with at least one
other feature. In order to support the Morris screening method by
assessing specifically on feature interaction, the results of Friedman’s
H -statistic method are presented in Plot ii.

The effects of two-way feature interactions are small. The maximum
observed H-squared test statistic is limited to 0.12. This value is
obtained by two features: the sum of squares of the first ten auto-
correlation coefficients of the differenced time series (feature n2 30,
Table 8) and a naive model forecast based on carrying forward the last
observation.

Plot iii shows the features’ global sensitivity obtained by three dif-
ferent methods: the Morris’s elementary effects screening method, the
performance-based method, and the method based on Shapley values.
The variables are ordered by their average degree of sensitivity (marked
by blue dots), with the top variable having the greatest influence on the
final model output. The three methods give a similar order, although
the Morris’s screening method tends to obtain a different order as the
sensitivity decreases.
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Forecasts of statistical time series models (Table 8) appear as the
most sensitive features: a state-space ARIMA model (feature n2 30),
a naive model, a TBATS model (n® 8) and an ARIMA model (n 3).
Linear combinations of the forecasts of the statistical models have less
sensitivity: interquartile mean (IM), simple average (SA) and median
(MED). However, they give slightly better forecasts (see Plot ii.i of
Fig. 12).

The features based on time series characteristics (Table 7) are in
second position in terms of sensitivity. The three most sensitive input
features are the following: (i) the linearity of the trend component of
the STL decomposition (n2 33). It is based on the coefficient of a linear
regression applied to the trend component. (ii) The second value of
the previous day for the remainder component of the electricity price
(n2 8). And (iii) the statistic of Teraesvirta’s neural network test for
neglected non-linearity (n2 42).

The features based on exogenous factors (Table 6) are in third po-
sition in terms of sensitivity. The remainder component of the electric
power forecast for the Iberian Peninsula (n2 12) standouts from any
other exogenous factor. This evidences a strong relationship between
supply and demand. It is followed by the EUR/USD currency rate (n
57) and the natural gas price in the Iberian market (n2 54). These
two factors are related with coal-fired power stations and combined
cycle plants. Both types of power plants usually enter the market in
the last position following the hydraulic ones. They bid with high
prices and very few hours of use (especially the combined cycle plants)
because they need to recover their fixed costs. As all Spanish market
sellers receive the same price regardless of the price they have bid, an
influence on the electricity price is expected.

Based on the presented results, features based on time factors (Ta-
ble 5) are not relevant to forecast the remainder component of the
electricity price time series. Only the hour of the day was selected
as input feature (n2 1), and it appears among the least influential
ones. Note that the seasonality terms of the electricity price have been
forecast previously, so theoretically speaking the remainder component
should not have time patterns.

The aforementioned global sensitivity methods are also applied to
the features of Level 2. The results are shown on Fig. 16. Again, the
performance-based method (left plot) and the method based on Shapley
values (right plot) give a similar order for the variables. Nevertheless,
the 95% HDIs obtained by Shapley values are usually longer. The most
influential features are the forecasts obtained by the Gaussian Process
model and the Bayesian Lineal model. Nonetheless, these two models
do not give the best average results (see Plot iii.i of Fig. 12). The bottom
plot shows the Friedman’s H-statistic. Again, the effects of two-way
feature interactions are small among these features.

4.0.5. Feature effects

Fig. 17 shows three charts, labeled from i to iii. Plot i shows local
feature effects as individual conditional expectation profiles (ICE). The
dependent variable is the forecast of the remainder component of the
electricity price. The observation selected for the local analysis has a
predicted value of 0.42 EUR (MWh)~!. The left plot displays local effects
for features of Level 1 of the stack ensemble architecture (Fig. 6).
Three features are here selected: the second value of the remainder
component observed for the previous day (green), the naive model
forecast (blue) and the linearity of the trend component of the STL
decomposition (yellow). For the selected instance, their values are
—-3.83 EUR (MWh)~!, 3.92 EUR (MWh)~! and 14.0, respectively. The re-
mainder term forecast increases linearly as the second value observed
on the previous day increases. With respect to the naive model forecast,
the remainder term forecast decreases linearly. The slope of the STL
linearity profile is steeper at lower values of the STL linearity. This
means that it has higher sensitivity at lower values.

The center plot shows the local effects for features of Level 2.
The most sensitive features are here selected. They correspond to the
forecasts of a Bayesian linear model, a Gaussian process and a linear
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Fig. 15. Visual representations of the Feature sensitivity module. (i) Morris’s elementary effects screening method: u * vs o. (ii) Overall feature interaction strength; (iii) Feature
sensitivity obtained by the Morris’s elementary effects screening method, performance-based feature importance method, and Shapley values.

Performance-based global sensitivity Shapley values-based global sensitivity

GP o GP
BalM 4 -e- BalLM
LM A . LM { —@— -
PLM{ -e PLM { e-
PLS{ @ PLS { e-
SVM{ e SVM { @ oo
RLM { @ oo T
GBDT { @ oo GBDT { o
BoLM{ e BoLM | e
FFNN { @-----cocceommm e FFNN | @ oo
RIBM { @ MARS { o
MARS { @ BART { o HDI,;
BART{ @----ooooooooooeee RFle 7 ,,,,,,,
KNN | o RIBM { @ - oo
RF { o---MASE ratio increment KNN { o---- Shapley values |4,
1 12 23 34 0 50 00 150
Feature interaction
0.1257] e H-statistic
0.100
0.075 .
oos] | 1T tor
ol | | N R S S A
RIBM KNN PLM FFNNMARS RE LM IVIARSBaLM Bls SVM BoLM GP BT GBDT

Fig. 16. Global sensitivity plots for the features of Level 2 of the stack ensemble
architecture.

Model. For the selected instance, the three models give similar forecasts
around 0.42EUR (MWh)~!. They behave linearly with respect to the
overall outcome. The Bayesian and Gaussian process models have the
largest sensitivity, as denoted by their slope. In addition, the Gaussian
process model tends to counter the Bayesian model by providing a
similar but opposite slope. This is due to their high correlation.
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The right plot shows the local effects for the three features of
Level 3. They correspond to the forecasts of a bagged of multiple
additive regression splines, a linear model and a feed-forward neural
network. As expected, when the level of the stack ensemble architecture
increases, the behavior of the individual model forecasts tend to be
more linear. In addition, the slope tends to unity and the intercept to
zero. Moreover, a similar behavior is observed for the three features.
It means that the individual models give roughly the same forecast.
Indeed, the three models obtain similar average performances (see Plot
iii.i of Fig. 12).

Plot ii shows several examples of global feature effects. The analysis
is carried out for all the observations of the year 2017. For this
reason, percentiles of the ICE profiles are displayed instead of one
curve for each observation. Three features based on exogenous factors
(Table 6) are chosen here for the analysis: the remainder component
of the electric power estimated for the Iberian Peninsula (n2 12), the
EUR/USD currency rate (n2 57) and the natural gas price in the Iberian
market (n2 54). The behavior of these features on the model outcome
are displayed on the left, center and right plots, respectively. A positive
linear behavior is observed for the three exogenous factors. A steeper
slope is found for the electric power forecast. This is consequent with
a higher sensitivity (see Plot iii of Fig. 15). At the lowest values of the
remainder term forecast, the influence of the EUR/USD currency rate
and the natural gas price tend to vary as the two factors increase. This
is seen by a slight variation of the percentile p,, ICE profiles.

The global relationship between features and predicted outcome is
supported by Shapley values. Plot iii shows the comparison between ICE
profiles (left plot) and Shapley values (right plot). In this case, the most
sensitive input feature is used for the example. It corresponds to the
forecast of a state-space ARIMA model (feature n2 30, Table 8). A pos-
itive linear increase is observed on both plots. However, a slight curve
relationship is presented at the lowest values of the final prediction. It
means that the state-space model tends to overestimate on this range
of values. The reason is that there are few observations whose final
prediction is below —10 EUR (MWh)~!. This is indicated by the isolated
dark blue dots on the southwest part of the Shapley values plot.
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Fig. 17. Visual representations of the Feature effects module (left) and Model simplification module (right). (i) Local feature effects of the stack ensemble model (Fig. 6). (ii)
Global feature effects for exogenous factors (Table 3). (iii) Comparison of global feature effects for the state-space ARIMA model. (iv) Model simplification visualization by a

decision tree surrogate model.

Table 5
Features based on time factors.
N2 Features Range No Features Range
1 Hour of day {0,1...23} 13 Month of year {0,1...11}
2-3 Hour of day. Cartesian coord. [-1,1] 14-15 Month of year. Cartesian coord. [-1,1]
4 Day of week {0,1...6} 16 Quarter of year {0,1,2,3}
5-6 Day of week. Cartesian coord. [-1,1] 17-18 Quarter of year. Cartesian coord. [-1,1]
7 Day of month {0,1...30} 19 AM/PM (0,1}
8-9 Day of month. Cartesian coord. [-1,1] 20 Weekday/Weekend {0,1}
10 Week of year {0,1...52} 21 National holidays {0,1}
11-12 Week of year. Cartesian coord. [-1,1]
Table 6
Features based on exogenous factors.
N2 Description Units Features
1-6 Electricity price of the French wholesale market EUR (MWh)~! T, S\, 854, Sgs Sies: R
7-12 Electric power forecast for the Iberian Peninsula MW T, S350, Sg4> Sies> R
13-15 Wind-generated electric power MW T,Sy, R
16 Nuclear-generated electric power MW Y
17-19 Coal-generated electric power MW T, S\ R
20-25 Combine cycle-generated electric power MW T, S5, 854, Ss4: S16s> R
26-31 Hydraulic-generated electric power MW T, S5, S5, Sgs Siess R
32-34 International electric interchanges MW T,S, R
35-38 Balearic Islands electric interchanges MW T,S1,, 54 R
39-42 Photovoltaic solar-generated electric power MW T,S5,54. R
43-46 Solar thermal-generated electric power MW T,S15,5,4. R
47 Renewable thermal-generated electric power MW Y
48-53 Cogeneration power MW T, S5, 8, Ss4Si68: R
54 Natural gas price in the Iberian Market EUR (MWh)~! Y
55 CO, European emission allowances EUR (t CO,eq)”! Y
56 Brent oil price USD barrel™! Y
57 EUR/USD currency rate EURUSD™! Y

4.0.6. Model simplification

Plot iv of Fig. 17 shows the representation of a decision tree used
as surrogate model to draw a summary of the forecasting model.

The coefficient of determination r2 between the forecasts of the

Pearson

surrogate model and the stack ensemble model is 0.840, 95% HDI
[0.839, 0.841]. A high strength correlation means that the decision tree
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surrogate model approximates the stack ensemble model reasonably
well.

The features used by the surrogate tree could be considered as
relevant. These features are the following: the state-space ARIMA model
forecasts (n2 30, Table 8), the simple average (SA) and interquartile
mean (IM) of the statistical time-series models’ forecasts (Table 3), the
median value of the remainder component observed for the previous
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Table 7

Features based on time series characteristics.
N2 Description Ref. No Description Ref.
1-5 Average, Median, Std. dev., Max., Min. - 35-37 Holt-Winter’s seasonal method: «, f, v [133]
6 |Max. — Min.| - 38-41 Heterogeneity: (ARCH, GARCH)-ACF, -R? [133]
7-9 First, Second, Third value - 42 Non linearity [133]
10-12 Last, Second last, Third last value - 43 ARCH statistic [134]
13 Spectral Shannon entropy [133] 44-47 Correlation: Embed2 , AC9, FirstMin, trev [135]
14-15 Stability, Lumpiness [133] 48-49 Distri.: HistogramMode, OutlierInclude [135]
16-18 Max level shift, Max var shift, Max kl shift [133] 50 Entropy: SampEn [135]
19 Crossing points [133] 51-52 Forecasting: LocalSimple, LoopLocalSimple [135]
20 Flat spots [133] 53 Non-linear time-series analysis: FluctAnal [135]
21 Hurst [133] 54-55 Stationary: Std1thDer, SpreadRandomLocal [135]
22-25 PACF features: (x, diffl, diff2, seas)-pacf5 [133] 56 Symbolic transformations: MotifTwo [135]
26-27 Holt’s linear trend method: «, f [133] 57 Others: Walker [135]
28-34 STL features: nperiods, seasonal period and strength, [133] 58-66 ACF features: (e, x, diffl, diff2, seas)-acfl, (e, x, diffl, [133]

trend, spike, linearity, peak

diff2)-acf10

day (n2 2, Table 7), and the remainder component of the electric power
estimated for the Iberian Peninsula (n2 12, Table 6).

An example of a local behavior is highlighted on the plot by a
specific path. The interpretation of the behavior is as follows: it starts
with the average forecast of —0.004 EUR (MWh)~! for all predictions
(100% of data). When the IM is above —0.47 EUR (MWh)~!, the average
forecast is corrected to 1.36 EUR (MWh)~!. This is true for the 66.6% of
all forecasts. From here and following the same path, the final forecast
will be 2.85EUR (MWh)~! when the IM is above 1.61 EUR (MWh)~!,
the SA is below 1.36 EUR (MWh)~! and the state-space ARIMA model
forecasts a value below 3.80 EUR (MWh)~!. This way, an intrinsically
interpretable model as a decision tree can help indicating the internal
mechanisms of the complex model when the final forecast is around
2.85EUR (MWh)~!.

5. Conclusions

The present article has proposed a novel framework that pro-
motes human-machine collaboration in forecasting day-ahead electric-
ity price in wholesale markets. The article has presented three major
contributions (i to iii) to the current state of the art in the electricity
price forecasting sector:

(i) A novel model architecture that includes a diverse set of predic-
tors: (i.i) a plethora of statistical time-series models that learn different
linear patterns; (i.ii) exogenous factors that affect the clearing prices;
(i.iii) a combination of several time series decomposition methods;
(i.iv) a collection of time series characteristics based on signal process-
ing and time series analysis methods. These features are fed into a stack
ensemble architecture that contains a diverse set of machine learning
models that recognize non-linear, complex patterns.

(ii) The use of two open-source AutoML platforms that provide a
baseline reference for the proposed model architecture.

(iii) A collection of state-of-the-art model-agnostic methods aimed at
interpreting the behavior of the forecasting models and their outcomes.
The framework has demonstrated the promotion of a human-machine
collaboration by providing a data story. It is based on graphical and
numeric explanations that augments understanding on the model and
its electricity price point forecasts.

The framework has successfully been applied to the case study
of the Spanish wholesale market. It has proven to not only provide
accurate predictions, but above all to be a human-centric solution by
providing explanations of the behavior of a new model architecture
and its forecasts. In particular, the following results (i to xvi) can be
highlighted for the Spanish wholesale market:

(i) The framework has successfully split the electricity price time se-
ries into four underlying periodical patterns of 12h, 24 h, 168 h (1 week)
and, to a lesser extent, 84 h (1/2 week). This patterns tend to fade in
the summer vacation season. The magnitude of the remainder term is
approximately twice larger than that of the seasonal components. This
indicates a high volatility of the electricity price.
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(ii) Analysis on the individual components of a time series has
shown to be effective to extract main characteristics of the main
series. Hourly patterns, correlation with exogenous factors and seasonal
behavior have been identified for the Spanish electricity price.

(iii) The divide-and-conquer strategy of modeling (more distinctive
and identifiable) individual components of the electricity price time
series, and then combining their forecasts have demonstrated good
results in terms of forecasting accuracy.

(iv) The forecasting results show good accuracy on mean abso-
lute error (1.859 EUR (MWh)~!, 95% HDI [0.575, 3.924]) and mean
absolute scaled error (0.378, 95% HDI [0.091, 0.934]).

(v) The highest error variance is given by the uncertainty of the re-
mainder component forecast. Its average mean absolute error and mean
absolute scaled error is 1.867 EUR (MWh)~! and 0.378, respectively.

(vi) The seasonal components of the electricity price have been
modeled by statistical time series models. No machine learning model
has been found to perform better.

(vii) The AutoML frameworks have helped to assure the perfor-
mance of the proposed model. H20 AutoML and TPOT get a MASE
of 1.0% and 2.4% higher than the metrics achieved by the proposed
model, respectively.

(viii) A first decomposition by the STL method followed by a second
decomposition by the DWT, EMD and VMD methods has achieved a
complete separation of all the underlying patterns of the electricity
price time series. The forecasts of the individual components of the
second decomposition (DWT, EMD and VMD) have not been selected as
individual predictors for the proposed model. Their forecasts are only
included by the linear combination methods of the statistical time series
models: SA, IM and MED. This means that the underlying components
of the first decomposition provides the most information.

(ix) Combining forecasts obtained from different training time win-
dows has shown to reduce the risk associated with selecting an individ-
ual time window. The linear combination method that achieves the best
accuracy is the interquartile mean (IM) — i.e., the 25% truncated mean.
Nevertheless, no statistical mean difference has been found among
the methods: IM, MED, BG, AT, SA and CLS. The NG method, the
eigenvector-based methods (EIG,, EIG,), OLS and LAD methods obtain
poor out-of-sample performance.

(x) Convergence analysis has shown to be a requirement when
applying global and local sensitivity methods. For this, a convergence
method is proposed and successfully been applied to assess on the
stability of the results. The number of Monte Carlo samples chosen
to achieve a variability lower than a threshold is 400 for the Shapley
values method; 5600 model predictions for the Morris’s elementary ef-
fects screening method; and 15 permutations for the performance-based
method.

(xi) A comparison between three global sensitivity methods (Mor-
ris’s elementary effects screening method, performance-based method
and Shapley values method) has been performed in order to sort
the predictors based on their influence on the model outcome. The
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three methods give a similar order of features, although the Morris’s
screening method tends to obtain a different order as the sensitivity
decreases. The work has demonstrated that the robustness of a global
sensitivity analysis is significantly increased by using multiple methods.

(xii) A three-level stack ensemble model has achieved an improve-
ment of 14.9% over the best statistical time series model for predicting
the remainder component of the electricity price. The best forecast
of Level O are given by a simple average of several statistical time
series models. The best models of Level 1 and Level 2 is a gradient
boosting linear model and a bagged of multiple additive regression
splines, respectively.

(xiii) For the given input features, no significantly better results
could have been obtained by the ensemble stacked architecture. The
model has shown an asymptotically optimal learning. This has been
concluded by reaching a performance asymptote on the MASE metric.

(xiv) The work has demonstrated the importance of a diverse set
of machine learning models for the stack ensemble architecture. Here,
diversity is presented by the absolute value of the Pearson correlation
coefficient obtained between the residuals of two models.

(xv) An exhaustive model audit has validated the model by diag-
nosing its residuals. The analysis has shown a linear relation between
electricity price observations and forecasts. Residuals can be said to
be normally distributed. Their variance presents a homogeneous be-
havior across the predicted values. The residuals are not partially
auto-correlated.

(xvi) The proposed framework has demonstrated to be a useful tool
to study the direction and magnitude of change in the predicted out-
come due to changes in feature values. In addition, it has successfully
drawn summary characteristics about the model such as pointing the
relevance of features and explaining local behaviors.
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Appendix. Features

See Tables 5-8.
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Table 8
List of statistical time series models whose forecasts are used as features.

N2 R-package::function Description Ref.

1 fitAR::fitAR AR(p) fitting [102]

2 fGarch::garchFit GARCH fitting [136]

3 forecast::Arima ARIMA(p, d, q)(P, D, Q) [137]

4 forecast::dshw Double-Seasonal Holt-Winters method [137]

5 forecast::ets Exponential smoothing state space model [137]

6 forecast::(s)naive (Seasonal) naive model [137]

7 forecast::nnetar Feed-forward neural network with one [137]

hidden layer

8 forecast::tbats TBATS model [137]

9 forecast::thetaf Theta method [137]

10 forecTheta::dotm Dynamic optimized Theta model [138]

11 forecTheta::dstm Dynamic standard Theta model [138]

12 forecTheta::otm Optimized Theta model [138]

13 forecTheta::stheta Standard Theta method [138]

14 forecTheta::stm Standard Theta model [138]

15 glmnet::glmnet Generalized linear model with lags [109]

16 greybox::alm Advanced linear model with lags [101]

17 greybox::lmCombine Linear model with combined lags [101]

18 greybox::lmDynamic Linear model with combined lags [101]

19 greybox::stepwise Linear model with stepwise selection of [101]

lags

20 MAPA::mapaest Mutliple aggregation prediction [139]

algorithm

21 nnfor::elm Extreme learning machine [140]

22 nnfor::mlp Multilayer perceptron [140]

23 PSF::psf Pattern sequence based forecasting [141]

24 rugarch::arfimafit ARFIMA fitting [142]

25 rugarch::ugarchfit GARCH fitting [142]

26 smooth::ces Complex exponential smoothing [143]

27 smooth::es Exponential smoothing in SSOE [143]

state-space form

28 smooth::gum Generalized exponential smoothing [143]

29 smooth::msarima Multiple seasonal state-space ARIMA [143]

30 smooth::sarima State-space ARIMA [143]

31 smooth::sma Simple moving average in state space [143]

form

32 stats::HoltWinters Holt-Winters filtering [144]

33 TSPred::fittestMAS Moving average smoothing [145]

34 xgboost::(gblinear) Regularized linear model with lags as [62]

regressors
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