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Abstract: Viral vector use is wide-spread in the field of gene therapy, with new clinical trials starting
every year for different human pathologies and a growing number of agents being approved by
regulatory agencies. However, preclinical testing is long and expensive, especially during the early
stages of development. Nowadays, the model organism par excellence is the mouse (Mus musculus),
and there are few investigations in which alternative models are used. Here, we assess the possibility
of using zebrafish (Danio rerio) as an in vivo model for adenoviral vectors. We describe how
E1/E3-deleted adenoviral vectors achieve efficient transduction when they are administered to
zebrafish embryos via intracranial injection. In addition, helper-dependent (high-capacity) adenoviral
vectors allow sustained transgene expression in this organism. Taking into account the wide
repertoire of genetically modified zebrafish lines, the ethical aspects, and the affordability of this
model, we conclude that zebrafish could be an efficient alternative for the early-stage preclinical
evaluation of adenoviral vectors.

Keywords: Danio rerio; adenovirus; high-capacity adenoviral vector; helper-dependent adenovirus;
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1. Introduction

Gene therapy seeks to treat or prevent different diseases through the use of genetic materials by
following different approaches. Among the best-known, we can highlight the introduction of a new
gene to recover a wild-type phenotype (gene supplementation), the correction of an altered genome
(gene editing), and the inhibition/inactivation of a mutated gene responsible for a harmful phenotype.
To date, there are several mechanisms to introduce the desired genetic material into the target cell,
such as physical methods (electroporation, microinjection, etc.), chemical methods (non-viral vectors),
and viral vectors [1,2]. Viral vectors are of great clinical interest due to their high efficacy, especially
when the genetic material is intended to reach the nucleus. Adenovirus was among the first viruses to
be adapted as a gene therapy vector [3]. These non enveloped viruses, with 100 nm icosahedral capsids
and linear double-stranded DNA genomes of about 36 Kb, provide remarkable genetic stability and
a high efficacy of infection in a variety of cell types. Once inside the cell, viral capsids are degraded in
a programmed fashion and lead the genomes into the nucleus, where they stay in an episomal state.
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Early versions (E1/E3-deleted vectors or first-generation) are useful tools for genetic transfers in vitro,
but their in vivo applications are limited to vaccination strategies due to the short duration of transgene
expression. This is mainly due to the fact that residual expression of viral genes in transduced cells
triggers cytotoxic immune responses [4]. In contrast, third-generation adenoviral vectors, also known
as high-capacity vectors (HC-AdV helper-dependent, or “gutless”), are devoid of all viral coding genes,
only retaining two cis-acting sequences: inverted terminal repeats (ITRs) and packaging signals (ψ) [5].
Apart from possessing an extended cloning capacity, these vectors can sustain transgene expression for
long periods of time in vivo in organs with slow cellular turnover, such as the liver or brain [6,7].

Over the years, a wide variety of model organisms have been established for the evaluation of gene
therapy vectors. In this sense, the zebrafish has begun to expand with respect to the model organism
par excellence—the mouse—due to a series of advantages, such as (i) size, as these animals are around
3 to 4 cm in adulthood, which means less space for maintenance, facilitates manipulation, and allows
for the possibility of working with a greater number of individuals at a lower cost; (ii) reproduction,
as each couple of zebrafish can produce hundreds of eggs per week, which can be fertilized externally
with an embryonic development independent from the mother, allowing analysis from a single-cell
stage and follow-up through the whole process [8]. Embryonic and post-embryonic growth is fast,
granting the possibility of detecting any anomaly in a matter of days [9]; and (iii) genetics, as zebrafish
knock-outs and knock-downs are easy to obtain, and around 70% of human protein coding genes
related to diseases have an equivalent gene in this fish, making it possible for researchers to study
human diseases on a large scale [10,11].

In this work, we describe the transduction efficacy of first- generation and HC-Ad vectors encoding
the reporter gene luciferase in zebrafish embryos.

2. Materials and Methods

2.1. Zebrafish Handling

Adult individuals were held at 28 ◦C in 30 L aquaria at a rate of 1 fish per liter, with a light–dark
cycle of 14:10. The aquarium was located in the veterinary facility of the University of Santiago
de Compostela (Lugo), with the REGA code ES270280346401. Embryos came from wild- type
individuals, and the moment selected for experimentation corresponded to 48 h post- fertilization (hpf).
Every procedure was performed in agreement with the European Parliament and Council Directive
2010/63/EU on the protection of animals used for scientific purposes and the Spain Royal Decree 53/2013
on animal welfare standards. When needed, organisms were euthanized by tricaine (sigma) overdose.

2.2. Vectors

All adenoviral vectors were based on human adenovirus type 5 and contained the same expression
cassette. It consisted of the CMV enhancer and promoter, the enhanced green fluorescent protein coding
sequence (EGFP), and the SV40 polyadenylation sequence. The E1/E3-deleted vector (designated here
as Ad-EGFP) has been previously described by the authors of [12]. The HC-AdV (HCA-EGFP) was
amplified using the AdTetCre helper virus [13]. Both types of vectors were purified by double- cesium
chloride density gradients and desalted by Sephadex size-exclusion columns. The titers of Ad-EGFP
and HCA-EGFP were 1.1 × 1011 and 8 × 1010 infectious units/mL, respectively. Contamination with
helper virus was less than 1% in HCA-EGFP.

2.3. Microinjection

Zebrafish embryos were anesthetized with 0.3 mg/mL tricaine at 48 h post-fertilization (hpf) before
injection. Each vector was loaded into borosilicate glass capillary needles, and the injections were performed
using an IM-31 electric microinjector (Narishige). The established parameters’ pressure was 30–35 kPa,
with an injection time of 20–30 ms. Injections were executed manually into the midbrain area between the
telencephalon and the rhombencephalon, as shown in Figure 1A. The injected volume ranged from 1 to 2 nL.
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2.4. Incubation

After injections, embryos were placed in two different conditions. First, they were incubated in
60 mm × 15 mm petri dishes with salt dechlorinate tap water obtained from a reverse osmosis filter
system for 72 h in 34 ◦C chambers. Later, positive individuals were transferred to separate aquarium
fish tanks, depending on the vector, with the previously explained conditions.

2.5. Imaging

Embryos were photographed individually with an AZ-100 Nikon fluorescence stereomicroscope
every 24 h post- injection (hpi) in order to visualize the fluorescence progression over time. Images were
finally analyzed with ZFTool software (own analysis software is currently being further developed and
tested, https://gitlab.citius.usc.es/zebrafish/zftool.) and Photoshop (version CS6, Adobe Inc. Mountain
View, CA, USA) in order to compare the fluorescent-positive individuals between different treatments.

Zebrafish embryos showed autofluorescence around the yolk area in the surrounding wavelengths
of GFP (Green fluorescent Protein) so in order to accurately discriminate between positive and negative
populations, images were also compared with non-injected wild- type controls.

2.6. Immunohistochemistry (IHC)

Tissue samples were fixed in 4% formaldehyde (Panreac, Barcelona, Spain) for 24 h, and then
incubated in 70% ethanol for an additional 24 h before paraffin embedding. Serial paraffin sections
(3-µm thick) were cut, and immunohistochemistry was applied using rabbit anti-GFP (ab6556, Abcam,
Cambridge, UK) as the primary antibody (1:2000). Detection was performed by EnVision anti-rabbit
K4011 (Dako, Glostrup, Denmark).

2.7. Statistical Analysis

Differences observed between the two vectors were analyzed via statistics using PSPP software
and Microsoft Excel (version 2010, Microsoft Corporation, Albuquerque, NM, USA). A student’s t-test
with 95% confidence intervals and a Fisher’s exact test with two tails were applied. Results with
p-value over 0.05 were considered significant.

3. Results

3.1. Adenoviral Vectors Transduce the Brain of Zebrafish Embryos

Taking into account that E1/E3-deleted adenoviral vectors are easy to produce at high titers and
they share the same tropism as HC-AdV, these are the vectors of choice for an initial assessment of
vector transduction and biodistribution. Therefore, we injected the Ad-EGFP vector into the midbrain
area between the telencephalon and the rhombencephalon of zebrafish embryos at 48 hpf, and they
were firstly visualized using a fluorescent stereomicroscope at 48 hpi. Clear GFP signal was detected
in 56% of embryos (Table 1), concentrated in the cephalic region (Figure 1).

Table 1. Quantification of zebrafish embryos transduced with adenoviral vectors.

Experiments
48 h Post-Injection (hpi) 72 hpi

E1/E3-Deleted
Vector (Ad-EGFP)

HC-AdV
(HCA-EGFP) Ad-EGFP HCA-EGFP

Positive 45 (45.92%) 29 (31.87%) 55 (56.12%) 35 (38.46%)

Negative 38 (38.77%) 52 (57.14%) 26 (26.53%) 44 (48.35%)
Dead * 15 (15.30%) 10 (10.99%) 17 (17.35%) 12 (13.19%)
Total 98 91 98 91

Dead *: in reference to those individuals found dead before being introduced to the aquarium tank (<72 hpi).

https://gitlab.citius.usc.es/zebrafish/zftool
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Figure 1. Expression of green fluorescent protein (GFP) in zebrafish embryos injected with Ad-EGFP.
(A) Schematic representation of brain regions: telencephalon (T), mesencephalon (M), and rhombencephalon
(R), modified from. The blue arrow represents the injection area. Ad-EGFP was injected in the brain of
zebrafish embryos at 48 hpf. (B) Representative images of zebrafish embryos photographed 48 h later
using a fluorescence stereomicroscope (100x). (C) Immunohistochemistry against GFP (100× and 200×
magnification, as indicated).

Similar results were obtained when the HCA-EGFP vector was injected in zebrafish embryos
using the same experimental conditions (Figure 2). Although the intensity of fluorescence and the
percentage of GFP-positive embryos at 48 hpi (36%) were slightly lower than in the case of Ad-EGFP,
this quantitative difference could be due to the fact that the HCA-EGFP batch was less concentrated
(37% reduction compared to Ad-EGFP). The same trend was observed when the number of positive
embryos was quantified at 72 hpi (Table 1). This was the moment in which the fish were moved from
petri dishes with salt dechlorinated tap water to the aquarium.

Figure 2. Expression of GFP in zebrafish embryos injected with HCA-EGFP. HCA-EGFP was injected in
the brain of zebrafish embryos at 48 hpf. (A) Representative images of zebrafish embryos photographed
48 h later using a fluorescence stereomicroscope. A control embryo not injected with the vector is
included to show autofluorescence (100x). (B) Immunohistochemistry against GFP (100× and 200×
magnification, as indicated).
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The results of immunohistochemistry (Figures 1C and 2B) offered another perspective of the
transduced areas. Positive sections matched the surrounding regions of the telencephalon, medulla
oblongata, and semicircular canal. Positive spots were detected close to the heart and surrounding the
yolk that had not been detected with the fluorescence microscope in the IHC controls. The results were
similar for both vectors, although Ad-EGFP showed a greater concentration of positive cell populations
along the hindbrain. Fluorescence microphotographs obtained at 3 dpi allowed better visualization of
extracranial positive regions close to the heart, extending in a caudal direction (Figure 3).

Figure 3. Biodistribution of adenoviral vectors in zebrafish. The indicated vectors were injected
in the brain of zebrafish embryos at 48 hpf. Representative images at 3 dpi using a fluorescence
stereomicroscope (100x).

3.2. Hc-Advs Are Better Tolerated Than e1/e3-Deleted Vectors in Zebrafish

Initial evaluation of the mortality rate was performed at 72 hpi, right before the change from petri
dishes with salt dechlorinated tap water to the aquarium. This was a stressful process that tended
to increase mortality, so it should not be taken into account when evaluating vector-related toxicity.
Acute mortality was not statistically different between HCA-EGFP (14%) and Ad-EGFP (18%), despite
the higher transduction rate obtained with the latter (Table 2). This mortality rate could have been due
to the injection procedure [14], since similar rates were routinely observed when the same volume of
vehicle or fluorescent tracer was injected (not shown).

In sharp contrast with this observation, no individuals treated with Ad-EGFP survived past 11 dpi,
whereas 36% of zebrafish treated with HCA-EGFP reached the end of the 35- day observation period
(Table 2).

Table 2. Mortality rates in zebrafish embryos injected intracranially with adenoviral vectors at 48 hpf.

Vector

Mortality

11 dpi

Alive Dead Percentage

Ad-EGFP 0 55 100%

HCA-EGFP 12 21 64%

3.3. Hc-Ad Vectors Allow Sustained Expression of Transgenes in Zebrafish

After an initial maintenance period of 3 dpi and incubation in petri dishes with salt dechlorinated
tap water at 34 ◦C, individual zebrafish were transferred to the aquarium for up to 1 month, with periodic
GFP expression reviews. Fluorescence intensity in fish injected with Ad-EGFP increased during the
first week (Figure 4), but long-term follow-up was not possible due to the mortality rate observed at
11 dpi.

In contrast, some fish injected with HCA-EGFP completed the 35-day observation period and
showed an increase in GFP signal intensity during the first week, followed by a stabilization period,
and then finally a decline starting at 15 dpi. The remaining fluorescence completely disappeared at 30
days post-injection (Figure 5).
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Figure 4. Fluorescence progression in zebrafish injected with Ad-EGFP. The vector was injected in the
brain of zebrafish embryos at 48 hpf. Scale = 500 µm.

Figure 5. Fluorescence progression in zebrafish injected with HCA-EGFP. The vector was injected in the
brain of zebrafish embryos at 48 hpf. The last two images were edited with Photoshop by overlaying
a black and white image, facilitating the visualization of the zebrafish. The blue circle marks the alleged
cell population remaining positive at 32 dpi, which were absent three days later. Scale = 500 µm.
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4. Discussion

Since both E1/3-deleted and HC-Ad vectors (Ad-EGFP and HCA-EGFP, respectively) were
designed with the same promoter and capsid, equivalent levels of expression and targets would
be expected. Despite this, although tropism was similar, the rate of transduced individuals was
statistically different, being higher for those treated with Ad-EGFP, with a p-value of 0.05. A possibility
that arose was that this variability was due to different concentrations for each vector and the fact that
the microinjector worked with a fixed pressure instead of a fixed volume. In addition, it should be
taken into account that the intensity of GFP expression in transduced cells could be influenced by
the vector genome. The strong viral enhancers present in the E1/E3-deleted vectors could increase
expression of the transgene, in contrast to the HC-Ad vectors. Stronger expression in cells infected
with Ad-EGFP could facilitate the visualization in the fluorescence microscope, contributing to the
perception of a higher transduction rate.

As for mortality, results showed no difference between treatments at 72 hpi, with a survival rate
over 80%. This observation ruled out acute toxicity derived from infection and/or expression of GFP and
viral genes. Again, E1/E3-deleted vectors retained most viral genes in their genome, in contrast with
HC-Ads. Although transcription of these genes was activated by E1A, residual expression has been
described in the absence of the E1 region in mammalian cells [15]. Therefore, under our experimental
conditions, cells infected with Ad-EGFP could express adenoviral proteins, plus higher amounts of
GFP in comparison with HCA-EGFP. Both elements could compromise the viability of transduced cells.
Although they had no apparent impact on the early development of zebrafish embryos, the scenario
was quite different when survival was followed long-term. An increased mortality was relatively
normal after 72 hpi. This was related to the environment changes and the fact that zebrafish have
a high reproductive rate, so it would be expected that, individually, the survival of the embryos
would be lower. However, all individuals treated with Ad-EGFP died before 11 dpi and showed more
apathetic behaviors with slow movements, being easier to capture overall. In contrast, more than 30%
of fish treated with HCA-EGFP completed the observation period of 35 days, and exhibited normal
behaviors. There were potential reasons for this difference. It was possible that the high levels of
GFP expression in Ad-EGFP-infected cells caused accumulative cell toxicity, which was not evident
during the first 72 hpi. In theory, the involvement of cellular immune responses against GFP or viral
epitopes being expressed by the cells was unlikely, taking into account that injection was performed
at 48 hpf, when the embryos have an immature immune system [16,17]. However, we could not
completely rule out the possibility that immune tolerance was not completely established in our assay
conditions, and the persistence of antigen expressions triggered immune responses later on. In this
regard, the main difference between cells infected with HCA-EGFP and Ad-EGFP was the presence
of adenoviral antigens in the latter, which have been described as an excellent target for cytotoxic
responses in mammals [4,15]. In summary, cumulative cellular toxicity caused by viral proteins and/or
high GFP expression was the most likely explanation for the reduced survival of zebrafish infected with
Ad-EGFP, although immune responses against residual viral gene expressions cannot be ruled out.

Finally, regarding maintenance of transgene expression, the HC-Ad vector established
a fluorescence monitoring up to 32 days. That is, for clinical application, re-administrations should
be around this period of time, assuming similar cell replication rates in the population of interest.
Nevertheless, other studies in rodents, among other mammals, showed long-term expressions beyond
one year [6,7]. This could be due to the higher cellular replication rate that embryos have compared to
an adult individual, speeding up the dilution of the transgenes. In fact, the loss of expressions matched
with the second half of the embryo transition from larva to juvenile (which went from three days post-
fecundation to around 30 days post -fecundation) [18], a period where they also increased significantly
in size and morphology, supports this explanation.
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5. Conclusions

In conclusion, this study demonstrates that adenoviral vectors can transduce zebrafish and
maintain expression of transgenes for up to one month (HC-AdV) after a single administration.
The small size of the organisms facilitates not only working on a larger scale with a greater number of
individuals in less space, but also obtaining results with smaller sample volumes. Although zebrafish
will never be a substitute for other mammalian models when it comes to pre clinical experiments, they
can be a powerful tool for investigations in early stages.
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