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Mendelian randomization implies 
no direct causal association 
between leukocyte telomere length 
and amyotrophic lateral sclerosis
Yixin Gao1,107, Ting Wang1,107, Xinghao Yu1, International FTD-Genomics Consortium (IFGC)*, 
Huashuo Zhao1,2* & Ping Zeng1,2*

We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte 
telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-
wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; 
n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation 
roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of 
LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 
0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL 
and frontotemporal dementia in the European population. However, we found that an indirect 
effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in 
the European population. These results were robust against extensive sensitivity analyses. Overall, 
our MR study did not support the direct causal association between LTL and the ALS risk in neither 
population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of 
LTL and ALS in the European population.

Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal multisystem neurodegenerative disease, leading to 
substantial public health threat although it is relatively rare worldwide. However, the cause and pathogen-
esis underlying ALS mostly remains unknown, with few replicable and definitive risk factors and scarce drugs 
available1–4. The number of ALS cases is predicted to increase dramatically due to population aging in the 
coming years5, which would further aggravate the ALS-associated social and economic burden. Therefore, the 
identification of its risk factors can provide better understanding of ALS and has the potential to pave the way 
for therapeutic intervention.

In the past few years the role of telomere in various complex diseases has attracted much attention6. Progres-
sive telomere shortening occurs in all dividing normal cells due to incomplete synthesis of DNA lagging-strand, 
oxidative damage and other factors, which ultimately leads to cellular growth arrest or apoptosis that is thought 
to be an initial proliferative barrier to tumor development in humans7. Indeed, recent studies suggested that 
leukocyte telomere length (LTL) was widely relevant to age-related diseases and disorders (e.g. many types of 
cancer and coronary heart disease)8–11. In particular, it was demonstrated that shorter LTL was associated with 
various neurodegenerative disorders. For example, a latest study showed LTL at baseline and 18 months was 
shorter in patients of Parkinson’s disease (PD) compared to healthy controls12, although prior studies found 
nonsignificant association between LTL and PD (Table 1). In addition, telomere shortening was recognized as 
an indicator of progression for Alzheimer’s disease (AD) (Table 1).

However, the knowledge about the relationship between LTL and ALS is very limited. Previous studies pro-
posed that telomerase inhibition could be a pathogenetic contributor to the neurodegeneration in ALS13. A 
recent study14, along with ALS animal models15, offered some evidence that shorter LTL likely decreased the risk 
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of ALS (Table 1). However, it remains uncertain whether such association is causal or not. Because it is rather 
challenging to determinate causal relationship between LTL and ALS via observational studies or randomized 
controlled trials (RCT), in this study we resort to another novel statistical approach called Mendelian randomiza-
tion (MR)16,17. Briefly, depending on single nucleotide polymorphisms (SNPs) as instrumental variables, MR can 
infer the causal association between an exposure (e.g. LTL) and an outcome (e.g. ALS)17,18. The basic idea behind 
MR is that the two alleles of a genetic variant are randomly allocated during the process of gamete formation 
under the Mendel’s law; such allocation is analogous to the randomization of subjects in RCT and hence has a 
powerful control for reverse causality and confounders19 (Supplementary Fig. S1). Furthermore, the recent suc-
cess of large-scale genome-wide association studies (GWASs)20–24 allows us to choose appropriate SNPs as valid 
instrumental variables for a variety of exposures for causal inference in MR25–27.

In this study we aim to investigate whether there exists a causal association between LTL and the risk of ALS. 
To achieve such goal, we conducted the two-sample MR analysis with summary statistics publicly available from 
GWASs with ~ 38,000 individuals for LTL and ~ 81,000 individuals for ALS in the European population, and with 
~ 23,000 individuals for LTL and ~ 4,100 individuals for ALS in the Asian population. Additionally, we further 
explored the mediation role of lipids in the relationship between LTL and ALS with network MR analysis given 
the evidence that blood lipids may be relevant to ALS.

Materials and methods
GWAS data sources for LTL, ALS and other relevant traits.  We first obtained genetic data for LTL 
from the ENGAGE Telomere Consortium21, where a total of ~ 2.3 million SNPs for 37,684 individuals of Euro-
pean ancestry were contained after quality control (Supplementary Text). In this study LTL was measured as 
a continuous variable, and the linear additive regression was implemented for each genetic variant to detect 
the association with LTL21. A set of independent associated index SNPs (p < 5.00E−8) were selected as candi-
date instrumental variables for LTL. To minimize the pleiotropic bias of instruments, we applied a conservative 
manner28 that was previously undertaken in many MR studies20,29–32. Specifically, we would remove index SNPs 
that were located within 1 Mb of ALS-associated locus (Supplementary Table S1) and that may be potentially 
related to ALS if their Bonferroni-adjusted p values were less than 0.05. Finally, we reserved seven SNPs to serve 
as instrumental variables. To estimate the causal effect of LTL on ALS, we obtained summary statistics from the 
largest ALS GWAS that contained ~ 10 million SNPs on 80,610 European individuals (20,806 ALS cases and 
59,804 controls)20 (https​://als.umass​med.edu/). The summary statistics (e.g. marginal effect size, standard error 
and effect allele) of these instruments are shown in Table 2.

In addition, since ALS and frontotemporal dementia (FTD) often represent a continuous disease spectrum 
with comorbidity in up to 50% cases, and share common genetic mechanisms33–35, we also explored the causal 
association between LTL and FTD with MR approaches (Table 3). We removed index SNPs that were associated 
with FTD36 and reserved six instruments as one instrument was missing in the FTD GWAS data set (Supple-
mentary Tables S2-S3). Furthermore, we attempted to validate whether the identified relationship between LTL 
and ALS in the European population also holds in the Asian population. Therefore, we performed additional 
MR analyses with another two GWAS datasets in which both LTL22 and ALS37 were conducted on the Asian 
individuals (Supplementary Text). Note that, the two sets of index SNPs of LTL from the two populations share 
no common instruments (Table 2 and Supplementary Table S4).

We note that the ALS cases were sporadic and the European-ALS GWAS adjusted the effect of age in the 
association analysis (Supplementary Text). The latter indicates that the confounding effect due to age on the 

Table 1.   Estimated effect sizes of shorter LTL on neurodegenerative diseases in previous studies. NDD 
neurodegenerative disease, PD Parkinson’s disease, ALS amyotrophic lateral sclerosis, AD Alzheimer’s disease, 
OR odds ratio, HR hazard ratio, CI confidence internal, p p value, N sample size, EUR European.

NDD OR/HR (95% CI, p) N (case/control) Country References

PD 0.70 (0.38–1.28, 0.246) 956/1,284 EUR and Asian 74

PD 0.91 (0.71–1.16, 0.450) 96/172 USA 75

PD 0.99 (0.77–1.27, 0.535) 131/115 Finland 76

PD 0.99 (0.88–1.12, 0.875) 408/809 USA 77

PD 1.30 (0.76–2.17, 0.340) 28/27 Japan 78

ALS 0.89 (0.68–1.16, 0.400) 6,100/7,125 EUR 9

ALS 0.92 (0.87–0.97, 0.008) 1,241/335 UK 14

AD 1.03 (1.01–1.05, 0.012) 71,880/383,378 EUR 79

AD 1.05 (1.01–1.09, 0.010) 71,880/383,378 EUR 80

AD 1.19 (1.02–1.41, 0.030) 17,008/37,154 EUR 9

AD 1.35 (1.12–1.67, 0.002) 25,580/48,466 EUR 81

AD 1.35 (1.11–1.67, 0.003) 25,580/48,466 EUR 82

AD 2.70 (1.69–4.17, 1.47E−05) 860/2,022 Multiethnic 83

Dementia 1.20 (1.00–1.47, 0.058) 190/1,469 Multiethnic 84

Dementia 5.26 (1.85–14.3, 0.002) 20/151 UK 85

https://als.umassmed.edu/


3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12184  | https://doi.org/10.1038/s41598-020-68848-9

www.nature.com/scientificreports/

causal effect estimation was removed. In addition, given the fact that LTL would shorten progressively with 
age, to facilitate the explanation of our results, we thus made a sign transformation for effect sizes of those used 
instrumental variables so that the causal relationship corresponds to shorter LTL.

Causal effect estimation via two‑sample Mendelian randomization.  We implemented the two-
sample MR to estimate the causal effect of LTL on ALS via inverse-variance weighted (IVW) methods38–41 (Sup-
plementary Text). We also employed the weighted median method42, likelihood-based approach43, leave-one-
out (LOO) analysis44, MR-PRESSO test45 and MR-Egger regression38,46 as part of sensitivity analyses to validate 
the robustness of our results. As a supplementary analysis, we further implemented the generalized summary 
based Mendelian Randomization (GSMR) method47 by leveraging possible linkage disequilibrium among 
instruments, and applied the HEIDI-outlier approach to detect pleiotropic instrumental variables.

Table 2.   Summary information of instrumental variables for LTL and ALS in the European population. SNP 
the label of single-nucleotide polymorphism that served as instrumental variable, CHR chromosome, BP base 
position, A1 effect allele, indicates the allele that is associated with shorter LTL, explaining why all the BETA 
estimates are negative, A2 alternative allele, BETA SNP effect size, SE standard error of the SNP effect size, 
p and N are respectively the p value and sample size, PVE proportion of variance explained by the SNP (i.e. 
PVEi = (β̂x

i
)2/((β̂x

i
)2 + var(β̂x

i
)× Ni)

86, where β̂x
i
 and var(β̂x

i
) are the estimated effect size and variance for 

instrument i; F: F statistic (i.e. Fi = PVEi(Ni − 1− k)/(k − k × PVEi)
87,88, where Ni is the sample size for 

instrument i and k is the number of instruments). Both of PVE and F statistic are calculated to validate the 
issue of weak instruments.

SNP GENE CHR BP A1/A2

LTL ALS

PVE FBETA SE p N BETA SE p N

rs11125529 TERT 2 54,329,370 C/A − 0.056 0.010 4.48E−08 37,653 − 0.007 0.020 0.730 80,610 8.32E−04 31.4

rs10936599 TERC 3 170,974,795 T/C − 0.079 0.008 2.54E−31 37,669 0.003 0.016 0.839 80,610 3.89E−03 147.0

rs7675998 ZNF208 4 164,227,270 A/G − 0.074 0.009 4.35E−16 34,694 − 0.005 0.016 0.747 80,610 1.94E−03 67.6

rs2736100 NAF1 5 1,339,516 A/C − 0.078 0.009 4.38E−19 25,842 0.010 0.014 0.493 80,610 2.90E−03 75.1

rs9420907 ACYP2 10 105,666,455 A/C − 0.069 0.010 6.90E−11 37,653 0.050 0.019 0.011 80,610 1.26E−03 47.6

rs8105767 RTEL1 19 22,007,281 A/G − 0.048 0.008 1.11E−09 37,499 0.006 0.015 0.683 80,610 9.59E−04 36.0

rs755017 OBFC1 20 61,892,066 A/G − 0.062 0.011 6.71E−09 37,113 − 0.005 0.022 0.831 80,610 8.55E−04 31.8

Table 3.   GWAS data sets used in our MR analysis in the present study. Here k1 is the final number of 
instruments employed in the analysis while k0 is the number of candidate instruments. ALS amyotrophic 
lateral sclerosis, FTD frontotemporal dementia, HDL high density lipoprotein, LDL low density lipoprotein, 
TC total cholesterol, TG triglycerides, LTL leukocyte telomere length, Pop population, EUR European, AVS 
the ALS Variant Server, IFGC International FTD-Genomics Consortium, GLGC Global Lipids Genetics 
Consortium, ENGAGE European Network for Genetic and Genomic Epidemiology, SCHS Singapore Chinese 
Health Study.

Traits Pop k1/k0 N (case/control) Data source

ALS EUR 80,610 (20,806/59,804) AVS20

HDL EUR 85/87 93,561 GLGC61

LDL EUR 78/78 89,138 GLGC61

TC EUR 86/86 93,845 GLGC61

TG EUR 53/54 90,263 GLGC61

LTL EUR 7/7 37,684 ENGAGE21

FTD EUR 12,928 (3,526/9,402) IFGC36

HDL EUR 79/87 93,561 GLGC61

LDL EUR 66/78 89,138 GLGC61

TC EUR 76/86 93,845 GLGC61

TG EUR 47/54 90,263 GLGC61

LTL EUR 6/7 37,684 ENGAGE21

ALS Asian 4,084 (1,234/2,850) Benyamin37

HDL Asian 30/31 70,657 Kanai89

LDL Asian 21/22 72,866 Kanai89

TC Asian 31/32 128,305 Kanai89

TG Asian 26/26 105,597 Kanai89

LTL Asian 8/10 23,096 SCHS22
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Mediation analysis to explore the mediation effect of lipids between LTL and ALS/FTD.  In our 
MR analysis, we attempted to provide deeper insight into the relationship between LTL and ALS/FTD by con-
ducting mediation analysis although non-significant causal associations were identified in neither population. 
Because previous studies showed LTL was associated with blood lipid levels48–52 (as would be also confirmed by 
our results; see below for details), and because there existed evidence for potential causal associations between 
lipids and ALS3,53,54, we further investigated whether the effect of LTL on ALS/FTD might be mediated through 
lipids55–59 by implementing network MR analysis60 with the lipid trait (e.g. HDL, LDL, TC or TG)61 as mediator 
(Supplementary Fig. S2 and Supplementary Text). Besides LTL, in the network MR analysis each of lipids should 
also have a set of instrumental variables (Table 3). The details of selecting instrumental variables for lipids were 
described elsewhere53. To make the estimated causal effects comparable between the European and Asian popu-
lations, following prior work53 we unified the units of lipid in the two populations (Supplementary Text). The 
summary statistics of instruments for lipids are displayed in Supplementary Tables S5-S9.

Results
Causal effect of LTL on ALS and FTD.  A total of seven instrumental variables of LTL were employed 
in the European population (Table  2). All the selected instruments collectively explain about 1.26% pheno-
typic variation of LTL and all the F statistics are above 10 (ranging from 31.4 to 147.0 with an average of 62.3) 
(Table 2), which rules out the possibility of weak instrument bias28,39,62. With the fixed-effects IVW method, we 
observe that the odds ratio (OR) per standard deviation (SD) decrease of LTL (~ 30 base pair per year) on ALS is 
1.10 (95% confidence interval [CI] 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, 
p = 0.116) in the Asian population (Table 4). We also fail to detect statistically significant causal relationship 
between LTL and FTD in the European population, with the OR per SD decrease of LTL on FTD estimated to be 
0.81 (95% CI 0.44–1.48, p = 0.498) (Table 4).

We now validated the causal effect of LTL on ALS estimated above through various sensitivity analyses. 
Here, we mainly focused on the relationship between LTL and ALS in the European population (Table 4). The 
weighted median and maximum likelihood methods generate similar null causal effect estimates. In particular, 
the OR is estimated to be 1.06 (95% CI 0.85–1.32, p = 0.624) by the weighted median method and 1.10 (95% CI 
0.92–1.32, p = 0.290) by the maximum likelihood approach. Both the LOO (Supplementary Table S10) and MR-
PRESSO analyses indicate that no instrument outliers exist (see also Fig. 1). The MR-Egger regression provides 
little evidence of horizontal pleiotropy as its intercept is not significantly deviated from zero (0.006, 95% CI 
− 0.079–0.090, p = 0.872). The results of sensitivity analyses for LTL and ALS in the Asian population as well as 
for LTL and FTD in the European population are summarized in Supplementary Tables S11-S12.

Finally, we conducted GSMR with genotypes of 503 European individuals or 504 Asian individuals in the 
1,000 Genomes Project as reference panel63. It is shown that GSMR generates consistent causal effect estimates 
with previous results (Table 4), again supporting the null association between LTL and ALS/FTD. In addition, 
the HEIDI-outlier approach does not detect any instruments that exhibit apparent pleiotropic effects, implying 
the observed association between LTL and ALS/FTD would be not confounded by pleiotropy.

Mediation analysis of the role between LTL, lipids and ALS/FTD.  Although we do not find statis-
tically significant evidence that LTL causally influences ALS/FTD in the direct biological pathway, we cannot 
fully exclude the probability that LTL may impact ALS/FTD via other indirect pathways. We selected six or 
eight index association SNPs to serve as instrumental variables for LTL on lipids in the European and Asian 
populations, respectively. In the European population, the causal effects per SD decrease of LTL on HDL and 
TG are 0.08 (95% CI 0.03–0.14, p = 0.005) and − 0.10 (95% CI − 0.15 to − 0.04, p = 0.001), respectively (Table 5). 
However, HDL and TG are not associated with ALS, implying there may be no indirect effects of LTL on ALS 
mediated by HDL or TG.

On the other hand, the causal effect per SD decrease of LTL on LDL and TC are − 0.06 (95% CI − 0.12–0.00, 
p = 0.057) and − 0.06 (95% CI − 0.12–0.00, p = 0.052), respectively, both of which are marginally significant 
at the level of 0.05. Moreover, in the European population these two lipids are causally associated with ALS: 
the ORs per SD decrease of LDL (~ 37.0 mg/dL) and TC (~ 42.6 mg/dL) on ALS are − 0.11 (95% CI − 0.17 to 
− 0.05, p = 3.41E−04) and − 0.10 (95% CI − 0.16 to − 0.04, p = 0.002), respectively. Therefore, based on the basic 

Table 4.   Association of LTL with the risk of ALS or FTD in the European and Asian populations. The 
intercept of the MR-Egger regression is 0.006 (95% CI − 0.079–0.090, p = 0.872), 0.055 (95% CI − 0.214–0.323, 
p = 0.601) or 0.026 (95% CI − 0.076–0.128, p = 0.552), respectively. a Seven instruments were finally employed 
because the genotype of rs41309367 on gene RTEL1 was missing in the 1,000 Genomes Project.

Method

ALS-european FTD-european ALS-asian

OR (95% CI, p) OR (95% CI, p) OR (95% CI, p)

IVW-random 1.10 (0.92–1.32, 0.284) 0.81 (0.44–1.48, 0.498) 0.75 (0.53–1.07, 0.116)

IVW-fixed 1.10 (0.93–1.31, 0.274) 0.81 (0.44–1.48, 0.498) 0.75 (0.53–1.07, 0.116)

MR-Egger 1.02 (0.32–3.29, 0.964) 0.40 (0.01–14.71, 0.516) 0.61 (0.24–1.56, 0.241)

Weighted Median 1.06 (0.85–1.32, 0.624) 0.73 (0.35–1.52, 0.400) 0.67 (0.43–1.05, 0.082)

Likelihood 1.10 (0.92–1.32, 0.290) 0.81 (0.44–1.48, 0.496) 0.75 (0.53–1.07, 0.115)

GSMR 1.10 (0.93–1.31, 0.274) 0.81 (0.44–1.48, 0.498) 0.73 (0.51–1.05, 0.086)a
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principle of the classical mediation inference, we can reasonably state that there likely exists potential indirect 
effect of LTL on ALS mediated by LDL (ab = 0.007 and p = 0.079) or TC (ab = 0.006 and p = 0.092) (Table 6). More 
specifically, in terms of the suggestive evidence of mediation effects displayed above, in the European popula-
tion we can conclude that shorter LTL can reduce the LDL/TC level, which in turn results in the lower risk of 
ALS. However, we fail to repeat such mediation association for ALS in the Asian population or for FTD in the 
European population (Tables 5, 6).

Finally, we examined whether the lack of detectable non-zero causal effect of LTL on ALS is due to the lack 
of statistical power. We calculated the statistical power to detect an OR of 1.10 or 1.20 (approximately equal the 
estimated causal effects above) per SD decrease of LTL on the risk of ALS following an analytic approach (https​
://cnsge​nomic​s.shiny​apps.io/mRnd/)64. It is shown the estimated statistical power is only 15% or 44% (Fig. 2), 
indicating we have low to moderate power to identify such causal effect with current sample sizes if LTL is indeed 
causally associated with the risk of ALS.

Discussion
In the present study we have implemented a comprehensive two-sample MR analysis to dissect whether there 
exists causal relationship between LTL and the risk of ALS. To our knowledge, this is the first MR study to 
investigate the relationship between LTL and ALS using statistical genetic approaches via summary statistics 
available from large-scale GWAS. We found that an indirect effect of LTL on ALS might be mediated by LDL 
or TC, although our MR analysis did not support the existence of direct causal association between LTL and 

Figure 1.   Relationship between effect sizes on LTL and ALS/FTD for SNPs served as instrumental variables. 
Results are shown for seven SNPs of ALS (a) and six SNPs of FTD (b) in the European population. Results 
are also displayed for eight SNPs of ALS in the Asian population (c). In each panel, horizontal/vertical lines 
represent the 95% confidence intervals.

Table 5.   Three directions of the relation with exposure to mediator, mediator to outcome and exposure to 
outcome. Pop population, EUR European, LTL leukocyte telomere length, HDL high density lipoprotein, 
LDL low density lipoprotein, TC total cholesterol, TG triglycerides, ALS amyotrophic lateral sclerosis, FTD 
frontotemporal dementia, p p value, The effect size and the standard error of the relationship with Exposure 
to Mediator, Mediator to Outcome and Exposure to Outcome are denoted as a, b, c and SE(a), SE(b), SE(c), 
respectively. The marginally significant causal association between LTL and LDL/TC and the significant causal 
association between LDL/TC and ALS in the European population are shown in bold.

Pop Exposure Mediator a SE (a) p Mediator Outcome b SE (b) p Exposure Outcome c SE (c) p

EUR

LTL HDL 0.082 0.029 0.005 HDL ALS 0.013 0.039 0.743 LTL ALS 0.097 0.089 0.274

LTL LDL − 0.060 0.031 0.057 LDL ALS − 0.110 0.031 3.41E−04 LTL ALS 0.097 0.089 0.274

LTL TC − 0.059 0.031 0.052 TC ALS − 0.098 0.032 0.002 LTL ALS 0.097 0.089 0.274

LTL TG − 0.095 0.028 0.001 TG ALS − 0.045 0.044 0.309 LTL ALS 0.097 0.089 0.274

LTL HDL 0.082 0.029 0.005 HDL FTD − 0.035 0.125 0.786 LTL FTD − 0.208 0.308 0.498

LTL LDL − 0.060 0.031 0.057 LDL FTD − 0.139 0.107 0.196 LTL FTD − 0.208 0.308 0.498

LTL TC − 0.059 0.031 0.052 TC FTD − 0.142 0.104 0.172 LTL FTD − 0.208 0.308 0.498

LTL TG − 0.095 0.028 0.001 TG FTD − 0.018 0.140 0.898 LTL FTD − 0.208 0.308 0.498

Asian

LTL HDL − 0.020 0.022 0.366 HDL ALS 0.108 0.129 0.404 LTL ALS − 0.284 0.180 0.116

LTL LDL 0.003 0.023 0.898 LDL ALS − 0.234 0.131 0.073 LTL ALS − 0.284 0.180 0.116

LTL TC − 0.002 0.014 0.911 TC ALS − 0.276 0.214 0.197 LTL ALS − 0.284 0.180 0.116

LTL TG 0.018 0.014 0.214 TG ALS 0.160 0.195 0.414 LTL ALS − 0.284 0.180 0.116

https://cnsgenomics.shinyapps.io/mRnd/)
https://cnsgenomics.shinyapps.io/mRnd/)
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ALS/FTD. These findings were robust to the choice of statistical methods and were carefully validated through 
various sensitivity analyses.

Our results are not fully consistent with those in previous studies (Table 1). For example, previous studies 
displayed distinct association in direction and magnitude between LTL and ALS in the European population9,14. 
Compared to those prior work, our study has the advantage of larger sample size (20,806/59,804 vs. 6,100/7,125 
and 1,241/335) and thus holds higher power. In addition, we recognize that the estimated causal effect of shorter 
LTL on ALS had an opposite direction in the two populations although they were non-significant in neither 
population. Given the substantial difference of ALS in clinical features and molecular mechanisms between 
European and Asian populations65–69, this finding may not be unexpected. As little has been known about the 
causal factors for ALS to date1, our study therefore contributes considerably to the research area on the relation-
ship between LTL and the risk of ALS, and has potential implication for the therapeutic intervention of ALS.

Besides revealing the null causal relationship between LTL and ALS in the two populations, our study also, 
at least in part, offers empirical evidence for several questions that were previously unanswered. First, we also 
validated that the causal association did not hold between LTL and FTD, which might be partly due to the fact 
that FTD and ALS share extensive similarities in clinical manifestation and genetic foundation33–35. Second, 
unlike previous studies, the mediation analysis was performed, which provided suggestive evidence supporting 
the mediation role of LDL or TC in the causal pathway from LTL to ALS in the European population. Therefore, 
interventions by targeting LDL or TC can be considered as a potential promising manner to counteract the effect 
of LTL changes on the risk of ALS.

Table 6.   Mediation analysis of the role between telomere length, lipids and ALS/FTD. Pop population, EUR 
European, LTL leukocyte telomere length, HDL high density lipoprotein, LDL low density lipoprotein, TC 
total cholesterol, TG triglycerides, ALS amyotrophic lateral sclerosis, FTD frontotemporal dementia, ab the 
mediation effect, Sab standard error of the mediation effect, CI, Z and p represent confidence internal, Z 
statistic and p value, respectively. The marginally significant mediated effect of LTL on the risk of ALS by LDL 
or TC are shown in bold.

Pop Exposure Mediator Outcome ab (Sab) 95% CI Z p

EUR

LTL HDL ALS 0.001 (0.003) − 0.005–0.007 0.354 0.724

LTL LDL ALS 0.007 (0.004) − 0.001–0.014 1.754 0.079

LTL TC ALS 0.006 (0.003) − 0.001–0.013 1.682 0.092

LTL TG ALS 0.004 (0.004) − 0.004–0.012 1.021 0.307

LTL HDL FTD − 0.003 (0.010) − 0.022–0.016 − 0.298 0.766

LTL LDL FTD 0.008 (0.007) − 0.005–0.022 1.194 0.232

LTL TC FTD 0.008 (0.007) − 0.005–0.022 1.227 0.220

LTL TG FTD 0.002 (0.013) − 0.023–0.027 0.134 0.893

Asian

LTL HDL ALS − 0.002 (0.002) − 0.006–0.002 − 1.048 0.295

LTL LDL ALS − 0.001 (0.004) − 0.009–0.008 − 0.157 0.875

LTL TC ALS 0.001 (0.002) − 0.004–0.005 0.223 0.824

LTL TG ALS 0.003 (0.003) − 0.003–0.009 0.916 0.360

Figure 2.   Statistical power calculation for the causal effect of LTL on ALS estimated with the method proposed 
in64. In the calculation, the total phenotypic variance explained by instrumental variables was 1.26% and the 
proportion of ALS cases varied from 0.1 to 0.5, the significance level was 0.05, the sample size was 20,000, 
37,684, 80,610 or 100,000, and the OR = 1.10 or 1.20.
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Of course, our study is not without drawbacks. In addition to the general MR limitations similar to other 
work (e.g. the linear effect assumption), other potential shortcomings should be mentioned17,18,70. First, in our 
study telomere length measured in blood leukocytes was employed; however, LTL may be not representative 
of telomere length in tissues that are most relevant to ALS. Second, we note that the Asian-ALS GWAS and the 
European-FTD GWAS did not adjust the effect of age in their association analyses (Supplementary Text), which 
may bias our estimates because telomere length would become short with age. However, we cannot examine 
the causal effect between LTL and ALS/FTD stratified by the age group1,6 as it is impossible for us to obtain 
individual-level GWAS datasets due to privacy concerns. Third, as C9orf72, TARDBP and FUS are known to be 
the most common mutated genes in ALS71–73. Removing ALS patients with mutations in those genes and perform-
ing additional sensitivity analysis can shed new lights on the relationship between LTL and ALS in more general 
population of sporadic ALS cases (note that excluding those special ALS cases might lead to the reduction of 
statistical power because of decreased sample size). Again, we cannot conduct such analysis as individual datasets 
are not accessible. Fourth, as shown above, our MR analysis has only limited statistical power; in addition, our 
mediation analysis showed that the mediated effect of LTL on the risk of ALS by LDL or TC was only marginally 
significant. Therefore, studies with larger sample size are required to validate our results in both the European 
and Asian populations.

Conclusions
Our MR study did not support the causal association between LTL and the risk of ALS in neither the European 
population nor the Asian population, but provided suggestive evidence supporting the mediation role of LDL 
or TC on the influence of LTL and ALS in the European population.
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