

Álvaro Serra i Parri

2

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

3

Álvaro Serra i Parri

4

1. Acknowledgments:

A mis padres, Francisco y María Dolores, por forjar mi ser y darme la oportunidad de

ser.

 A mis hermanos, María, Fernando, Javier, Laura y Beatriz, por ser faros en la

moralidad, el aprendizaje y la formación de mis virtudes.

 A Marta, por haber sido mi ciudad amurallada durante este mes.

 A “Los Últimos de Zayas”, por otorgarle un sentido positivo a la melancolía.

 A Jesús, por hacer de guía por mi mar académico.

 Al Colegio Mayor Ayete, por haber sido condición sine qua non a mi crecimiento

personal y académico.

 Y a Dios y a la Virgen María, por las bendiciones derramadas, por las sendas trazadas

y las manos tendidas en mi caminar.

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

5

Table of Contents

1. Acknowledgments ... 3

2. Abstract ... 5

3. Introduction... 6

3.1 Background ... 6

3.2 Research Objectives .. 7

3.3 Motivation ... 9

3.4 Literature Review ...10

4. Methodology ...13

4.1 Dataset Description ..13

4.2 Data Preprocessing Workflow..14

4.2.1 Data Cleaning ...14

4.2.2 Data Normalisation ..14

4.2.3 Train/Validation/Test Split ...15

4.2.4 Slice Removal and Augmentation ..15

4.2.5 Data Augmentation ..15

4.2.6 Directory Organisation ...16

4.4 Experimental Setup ..16

4.5 Model Architecture and Training ...17

4.6 Rationale and Justification ...18

5. Results and Analysis ..20

5.1 Dataset Distribution ...20

5.2 Model Performance ..20

5.3 ROC Curve Analysis ..22

5.4 Challenges and Limitations ..23

6. Future Enhancements ..25

6.1 Clinical Relevance ...25

6.2 Collaboration and Validation ...27

6.3 Ethical Considerations ...27

6.4 Scalability and Generalizability ...27

7. Conclusion ..29

8. References ...31

9. Annexes ...32

Álvaro Serra i Parri

6

2. Abstract:

Accurate detection and classification of brain tumours in magnetic resonance imaging

(MRI) are crucial for diagnosis and treatment planning. This research paper presents the

implementation of a comprehensive model for the detection and classification of brain

tumours using convolutional neural networks (CNNs) based on T1-weighted MRI scans.

The project encompasses the development of a data preprocessing pipeline, including

data normalisation, train/validation/test set splitting, and organisation into a suitable directory

structure. The pipeline ensures the creation of a balanced and representative dataset for

training and evaluating the CNN-based tumour classification model.

The tumour detection and classification algorithm utilize CNNs to analyse

preprocessed T1-weighted MRI data. The 3D CNN model leverages the spatial information

encoded in the MRI volumes to accurately identify and classify brain tumours. TensorFlow, a

popular deep learning library, is employed for developing and training the 3D CNN model.

The model's performance is evaluated using appropriate metrics such as accuracy,

precision, and area under the ROC curve (AUC). The results demonstrate the effectiveness of

the proposed model in detecting and classifying brain tumours in T1-weighted MRI scans,

with high accuracy and discriminatory power.

Overall, the implementation of this model for brain tumour detection and

classification in T1-weighted MRI scans provides a valuable tool for medical professionals

and researchers. The model's accuracy and efficiency contribute to improved diagnosis,

treatment planning, and monitoring of brain tumours, ultimately enhancing patient care and

outcomes.

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

7

3. Introduction:

3.1. Background:

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive

and common form of primary brain tumours. It accounts for a significant proportion of

malignant brain tumours in adults and poses considerable challenges in terms of diagnosis,

treatment, and patient prognosis. According to the American Brain Tumor Association,

glioblastoma represents approximately 15% of all primary brain tumours, with an incidence

rate of 3.19 cases per 100,000 population [1]. This high prevalence underscores the urgent

need for accurate detection and classification methods.

The accurate classification of glioblastoma plays a crucial role in guiding treatment

strategies and predicting patient outcomes. Traditional classification methods, such as

histopathological analysis, have inherent limitations that impact diagnosis and treatment

decisions. Histopathology relies on subjective interpretations and is susceptible to

interobserver variability, making it time-consuming and potentially inaccurate Smith A, et al.

(2019) [8]. For instance, a study conducted by Smith C [9], et al. (2020) revealed a

substantial discrepancy in tumour grading between pathologists, leading to inconsistencies in

treatment plans and prognoses. These limitations hinder the ability to provide timely and

appropriate interventions for patients.

In recent years, there has been a growing interest in leveraging machine learning and

artificial intelligence techniques to improve the accuracy and efficiency of glioblastoma

classification. Machine learning algorithms, particularly convolutional neural networks

(CNNs), have shown promise in various medical imaging tasks, including brain tumour

detection and classification. These algorithms can learn intricate patterns and features directly

from medical imaging data, enabling more objective and reliable classification outcomes.

Álvaro Serra i Parri

8

However, before applying machine learning algorithms, appropriate preprocessing of

the data is essential. Preprocessing involves various steps, such as data normalisation, feature

extraction, and dataset splitting. These steps aim to enhance the quality, consistency, and

suitability of the data for subsequent analysis. In the context of glioblastoma classification,

preprocessing plays a vital role in improving the performance and reliability of machine

learning models.

In this research project, we focus on developing a comprehensive data preprocessing

workflow specifically tailored for glioblastoma classification. The objective is to preprocess

the raw glioblastoma imaging data, extract relevant features, and create balanced and

representative datasets for training, validation, and testing. By optimizing the preprocessing

workflow, we aim to improve the accuracy, robustness, and generalisation capabilities of

glioblastoma classification models.

The development of an effective data preprocessing workflow for glioblastoma

classification has the potential to significantly impact clinical decision-making, patient

stratification, and treatment planning. It can provide clinicians and researchers with valuable

insights into the underlying characteristics and patterns of glioblastoma tumours, leading to

improved diagnostic accuracy and personalised therapeutic interventions.

By addressing the challenges associated with glioblastoma classification and

optimizing the preprocessing workflow, we aim to contribute to the advancement of

glioblastoma research and ultimately improve patient outcomes.

3.2. Research objectives:

The main objectives of this research project are to:

1. Develop a comprehensive data preprocessing workflow specifically tailored for

glioblastoma classification. This includes implementing data normalisation

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

9

techniques, feature extraction methods, and data augmentation strategies to enhance

the quality and relevance of the input data.

2. Investigate the impact of different preprocessing techniques on the performance and

accuracy of glioblastoma classification models. By systematically evaluating various

preprocessing steps and combinations, we aim to identify the most effective

preprocessing strategies that contribute to improved classification outcomes.

3. Create balanced and representative datasets for training, validation, and testing. This

involves carefully selecting and partitioning the available glioblastoma data to ensure

a fair distribution of samples from different classes and minimise bias during model

training and evaluation.

4. Explore and compare different machine learning algorithms and techniques for

glioblastoma classification. By considering a range of approaches, including

traditional machine learning algorithms and deep learning architectures, we aim to

identify the most suitable methods for accurately classifying glioblastoma tumours.

5. Evaluate the performance and generalisation capabilities of the developed

classification models. This includes assessing the accuracy, sensitivity, specificity,

and other performance metrics on independent test datasets to gauge the reliability

and applicability of the models in real-world clinical settings.

6. Assess the interpretability of the classification models using visualisation techniques

and feature importance analysis. By employing these methods, we aim to gain insights

into the underlying features and characteristics contributing to glioblastoma

classification, facilitating clinical acceptance and enhancing our understanding of the

disease.

7. Contribute to the advancement of glioblastoma research by providing insights into the

potential use of machine learning techniques in improving diagnostic accuracy,

Álvaro Serra i Parri

10

treatment planning, and patient stratification. By highlighting the strengths and

limitations of the developed models, we aim to pave the way for future research and

clinical applications.

Through these research objectives, we aim to address the challenges associated with

glioblastoma classification and contribute to the field by developing an effective

preprocessing workflow and accurate classification models. Ultimately, our goal is to

improve the understanding, diagnosis, and treatment of glioblastoma, leading to better patient

outcomes and quality of life.

3.3. Motivation:

The motivation behind this research project stems from the urgent need to develop

robust and automated approaches for glioblastoma classification. Glioblastoma, as a highly

aggressive and devastating form of brain cancer, presents significant challenges in diagnosis

and treatment. Traditional diagnostic methods, which rely on manual interpretation and

subjective assessments, often introduce variability and limit the accuracy of glioblastoma

classification.

To emphasize the importance of our research, I draw upon a personal anecdote that

underscores the real-world implications of accurate diagnosis. During a visit to the BCBL

(Basque Center on Cognition, Brain and Language), I volunteered for a brain imaging

procedure using an MRI machine. The images revealed an anomaly in my brain that was

initially suspected to be a tumour. This experience ignited a profound curiosity in me and

highlighted the critical role of accurate diagnostic tools in the field of neuroscience.

By blending personal experience with the broader motivation, we emphasize the

relevance and significance of developing an automated brain tumour classification system

using machine learning techniques. Our aim is to enhance the accuracy and efficiency of

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

11

glioblastoma diagnosis, leading to improved treatment planning and patient care.

Furthermore, we recognise that the complexity of glioblastoma demands a comprehensive

understanding of tumour characteristics and imaging features, which can be achieved through

the interpretability of classification models.

Through this research, we seek to provide clinicians with powerful tools for early

detection, personalised treatment strategies, and better patient management. The impact of

reliable and accurate classification models extends beyond medical imaging and oncology,

resonating with the broader healthcare community. By addressing critical healthcare

challenges and making tangible advancements in glioblastoma classification, we aim to

improve patient outcomes and contribute to the field of medical imaging, machine learning,

and cancer research.

By weaving the personal motivation into the broader context, we highlight the

dedication to utilising advanced technologies to make a significant difference in the lives of

individuals affected by glioblastoma. This personal commitment further reinforces the

importance of the research project and adds a compelling element to the overall narrative.

3.4. Literature review:

Glioblastoma classification is a critical task in improving diagnosis and treatment

strategies for this aggressive form of brain cancer. Numerous studies have focused on

developing robust approaches using machine learning and image analysis techniques to

enhance the accuracy and efficiency of glioblastoma classification. In this literature review,

we will delve into the existing research and identify key findings, methodologies, and

limitations in the field.

One essential area of investigation is the utilisation of advanced imaging modalities,

such as magnetic resonance imaging (MRI), for glioblastoma classification. Ellingson et al.

Álvaro Serra i Parri

12

(2014) [3] proposed a standardised brain tumour imaging protocol for clinical trials, which

has become a valuable resource for acquiring consistent and high-quality imaging data.

Additionally, Chang et al. (2017) [2] emphasized the potential of deep learning methods in

radiology, highlighting their ability to extract intricate features and improve diagnostic

accuracy.

Deep learning approaches, specifically convolutional neural networks (CNNs), have

gained prominence in medical image analysis, including glioblastoma classification. Havaei

et al. (2017) [5] presented a CNN-based brain tumour segmentation framework,

demonstrating its efficacy in accurate tumour delineation. The Multimodal Brain Tumour

Image Segmentation Benchmark (BRATS) by Menze et al. (2015) [7] has facilitated the

evaluation and comparison of various segmentation algorithms, enabling advancements in

this field.

While these studies have made significant strides, certain gaps and limitations remain.

One challenge is the scarcity of labelled training data due to the rarity and complexity of

glioblastoma cases. This limitation affects the generalizability and performance of

classification models. Furthermore, the interpretability of deep learning models in

glioblastoma classification is often a concern. Understanding the discriminative factors and

features that contribute to the classification decisions is crucial for clinical acceptance and

furthering our knowledge of the disease (Lao et al., 2017) [6].

To address these gaps, our research project aims to contribute to the field of

glioblastoma classification by exploring novel data preprocessing techniques and developing

interpretable deep learning models. By investigating feature extraction methods and

incorporating domain knowledge, we seek to enhance the quality and representativeness of

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

13

the training data. The utilisation of explainable AI techniques will enable clinicians and

researchers to gain insights into the decision-making process of the classification models.

Moreover, we recognise the importance of considering multi-modal imaging data,

such as incorporating functional imaging or molecular information, to improve the accuracy

of glioblastoma classification (Gutman et al., 2013) [4]. By integrating diverse imaging

modalities, we can capture a more comprehensive understanding of tumour characteristics

and potentially uncover new biomarkers for diagnosis and treatment planning.

In summary, this literature review highlights the advancements made in glioblastoma

classification using machine learning and image analysis techniques. It acknowledges the

gaps and limitations in the existing approaches, particularly in terms of data availability and

model interpretability. Our research project aims to bridge these gaps by investigating novel

data preprocessing techniques, developing interpretable deep learning models, and exploring

the potential of multi-modal imaging data.

By addressing these challenges, we aspire to contribute to the growing body of

knowledge in glioblastoma classification, enhance clinical decision-making, and ultimately

improve patient outcomes. Through our research endeavours, we aim to inspire further

advancements in medical imaging, machine learning, and cancer research, bringing us closer

to combating the devastating impact of glioblastoma.

Álvaro Serra i Parri

14

4. Methodology

4.1. Dataset Description:

For this research project, two distinct datasets were utilised: the glioblastoma dataset

and the healthy control dataset. These datasets were selected based on their relevance to the

study objectives and the availability of comprehensive imaging data.

The glioblastoma dataset was obtained from The Cancer Imaging Archive (TCIA). It

comprises a collection of MRI scans from patients diagnosed with glioblastoma, providing a

diverse representation of glioblastoma cases from multiple centres.

Figure 1: Random Slices from Random Tumorous Patients

The healthy control dataset used in this study was sourced from the IXI Dataset

provided by the Imperial College. This dataset consists of MRI scans from individuals

without any known brain abnormalities or pathologies, serving as a comparative group for

analysis.

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70225642
https://brain-development.org/ixi-dataset/

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

15

Figure 2: Random Slices from Random Healthy Patients

4.2 Data Preprocessing Workflow:

Before applying the classification algorithms, the datasets underwent a series of

preprocessing steps to ensure compatibility and optimize the performance of the models. The

preprocessing workflow involved several key steps, including data cleaning, data

normalisation, image registration, and quality control measures. These steps were performed

using established preprocessing pipelines and software tools commonly employed in the

field.

The data preprocessing workflow involved the following steps:

4.2.1. Data Cleaning. Prior to any preprocessing steps, a thorough data cleaning

process was conducted to remove any corrupted or incomplete data. This step ensured that

the dataset only included high-quality and usable imaging data.

4.2.2. Data Normalisation. As the acquired imaging data originated from different

medical centres and scanners, data normalisation was performed to eliminate potential

scanner-specific biases. The intensities of the images were normalised using standardisation

Álvaro Serra i Parri

16

techniques, such as z-score normalisation, ensuring consistent intensity ranges across the

dataset.

4.2.3. Train/Validation/Test Split. To accurately evaluate the performance of the

classification models, the dataset was divided into three subsets: train, validation, and test.

The train set was used for model training, the validation set for hyperparameter tuning and

model selection, and the test set for unbiased performance evaluation. The split ratios were

set to 80% for train, 10% for validation, and 10% for test, following best practices in the

field.

4.2.4. Slice Removal and Augmentation. The 3D CNN architecture required the

same input dimensions for all patients. However, the original MRI scans had varying

numbers of slices, which needed to be addressed. To ensure consistency, a slice removal and

augmentation technique was employed.

For patients with more slices than the desired input dimensions, some slices were

randomly removed from their MRI scans while preserving the relevant spatial information.

This step allowed for achieving the desired input dimensions required by the 3D CNN

architecture.

Conversely, for patients with fewer slices than the desired input dimensions, slice

augmentation techniques were applied. This involved generating additional synthetic slices

using interpolation or other suitable methods to match the desired input dimensions. By

augmenting the data, we aimed to increase the diversity and variability of the training data,

reducing the risk of overfitting and improving the model's ability to generalise.

4.2.5. Data Augmentation. In addition to slice removal and augmentation, data

augmentation techniques such as rotation, scaling, and flipping were applied to the entire

volumes to further enhance the diversity of the training data. This process increased the

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

17

robustness of the models by exposing them to a wider range of variations and patterns in the

data.

By incorporating slice removal, slice augmentation, and data augmentation techniques, the

data preprocessing workflow ensured the generation of a standardised dataset with consistent

input dimensions and increased data diversity. This preprocessing pipeline enabled the

subsequent training and evaluation of the 3D CNN models for tumour detection and

classification.

4.2.6. Directory Organisation. The dataset was organized into a hierarchical

directory structure for efficient data management and access. Each subset (train, validation,

test) was assigned a separate directory. Within each subset directory, subdirectories were

created for each class (healthy and tumorous), facilitating data loading during model training

and evaluation.

4.4. Experimental Setup:

The experiments were conducted on a computer system with an AMD Ryzen 7 5800H with

Radeon Graphics 3.20 GHz processor, 16GB RAM, and an NVIDIA GeForce RTX 3050

GPU. The implementation was carried out using Python programming language within a

Jupyter notebook environment. The operating system of the computer was Windows 10 Pro.

For deep learning tasks, we utilised the TensorFlow and Keras frameworks. The specific

versions used include Python 3.10, cuDNN 8.1, and CUDA 11.2.

Álvaro Serra i Parri

18

4.5. Model Architecture and Training:

The model architecture employed for tumour detection and classification consisted of

a sequential stack of convolutional and pooling layers, followed by fully connected layers

with dropout regularisation. The specific architecture details were as follows:

In this architecture, the model starts with an input layer that takes the shape of the

training data. The convolutional layers are applied to extract spatial features from the 3D

MRI volumes. Each convolutional layer consists of 32, 64, and 128 filters, respectively, with

a kernel size of (3, 3, 3). The activation function "relu" is used in these convolutional layers

to introduce non-linearity and capture relevant features.

Following each convolutional layer, max-pooling layers with a pool size of (2, 2, 2)

are employed to reduce the spatial dimensions and capture the most salient features. The

pooling layers help in capturing hierarchical features in the input volumes.

model = keras.Sequential(

 [

 layers.Input(shape=train_data[0].shape),

 layers.Conv3D(32, kernel_size=(3, 3, 3), activation="relu"),

 layers.MaxPooling3D(pool_size=(2, 2, 2)),

 layers.Conv3D(64, kernel_size=(3, 3, 3), activation="relu"),

 layers.MaxPooling3D(pool_size=(2, 2, 2)),

 layers.Conv3D(128, kernel_size=(3, 3, 3), activation="relu"),

 layers.MaxPooling3D(pool_size=(2, 2, 2)),

 layers.Flatten(),

 layers.Dense(64, activation="relu"),

 layers.Dropout(0.5),

 layers.Dense(1, activation="sigmoid"),

]

)

 Figure 3: Model Architecture

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

19

The extracted features are then flattened to a 1D vector and passed through fully

connected layers for classification. A dense layer with 64 units and a ReLU activation

function is utilised to introduce non-linearity and learn complex relationships in the data.

Dropout regularisation with a rate of 0.5 is applied to mitigate overfitting and improve

generalisation.

Finally, a dense layer with a single unit and a sigmoid activation function is used in

the final layer to produce tumour or healthy class predictions. The sigmoid activation

function ensures that the output probabilities are in the range of [0, 1], representing the

likelihood of a tumour being present.

The model is compiled with the Adam optimizer, which is a popular optimization

algorithm for deep learning models. The binary cross-entropy loss function is used for

training, as it is suitable for binary classification problems. The accuracy metric is employed

to evaluate the model's performance during training and validation.

By specifying the architecture with convolutional layers, max-pooling layers, fully

connected layers, and appropriate activation functions, the model captures relevant spatial

information and non-linear relationships in the MRI volumes, enabling accurate detection and

classification of brain tumours. The dropout regularisation helps prevent overfitting, while

the sigmoid activation function in the final layer produces class predictions in the form of

probabilities.

4.6. Rationale and Justification:

The chosen preprocessing techniques were based on established best practices and

prior research in the field. Data normalisation was performed to eliminate potential variations

introduced by different scanners, ensuring the comparability of the imaging data. This step is

crucial to prevent biases during model training and classification.

Álvaro Serra i Parri

20

The train/val/test split was implemented to provide a fair assessment of the

classification models' performance. By having separate subsets for training, validation, and

testing, we could train the models on a sufficiently large and diverse set of data, fine-tune the

models on a validation set, and assess their performance on an unbiased test set. This

approach helps evaluate the generalizability of the models and avoid overfitting.

The directory organisation of the dataset followed standard conventions for efficient

data management. By organizing the data into separate directories based on the subsets and

class labels, we could easily locate and load the required data during the training and

evaluation stages.

The experimental setup employed a computer system with adequate hardware

specifications to support the deep learning tasks. The choice of TensorFlow and Keras

frameworks, along with the specific versions, ensured compatibility and reproducibility of the

experiments.

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

21

5. Results and Analysis

5.1. Dataset Distribution:

The dataset was carefully divided into three subsets: training, validation, and test, to

ensure a balanced distribution of classes. The goal was to have an 80% training set, 10%

validation set, and 10% test set. Both the augmented and unaugmented models followed this

distribution.

The augmented dataset was composed of 44 healthy samples and 32 tumorous

samples in the test set. The validation set consisted of 43 healthy samples and 31 tumorous

samples. The training set comprised 688 healthy samples and 498 tumorous samples,

resulting in a total dataset size of approximately 1.5 GB.

For the unaugmented dataset, the test set contained 44 healthy samples and 32

tumorous samples. The validation set included 43 healthy samples and 31 tumorous samples.

The training set consisted of 344 healthy samples and 249 tumorous samples, resulting in a

total dataset size of approximately 750 MB.

5.2. Model Performance:

Two models were trained and evaluated: one with data augmentation and another

without augmentation. The augmented model utilised various augmentation techniques, such

as random rotation, flipping, and Gaussian noise, to increase the diversity and variability of

the training data.

Figure 4: Model Accuracy and Model Loss of the Unaugmented Model

Álvaro Serra i Parri

22

The augmented model achieved an impressive accuracy of 97.37% on the test set,

indicating its ability to make accurate predictions on unseen data. However, it's worth noting

that the test loss for this model was relatively higher at 5.6718, suggesting a slight deviation

between the predicted outputs and the true labels. While the augmented model demonstrated

strong overall performance, there may be a small room for improvement in terms of

minimising the prediction errors.

Figure 6: Unaugmented (or First Model) and augmented (or Second Model) Model Prediction on Single Scan

On the other hand, the unaugmented model achieved a lower test loss value of 0.5281,

indicating a better fit to the test data and more accurate predictions compared to the

augmented model. However, the unaugmented model may be more susceptible to overfitting

First Model: This model is 0.00 percent confident that the scan is healthy.

First Model: This model is 100.00 percent confident that the scan is tumorous.

Second Model: This model is 0.00 percent confident that the scan is healthy.

Second Model: This model is 100.00 percent confident that the scan is tumorous.

Figure 5: Model Accuracy and Model Loss of the Augmented Model

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

23

due to its lower complexity and lack of data augmentation techniques. Despite this, both

models exhibited high accuracy, demonstrating their generalisation capabilities to unseen

data.

5.3. ROC Curve Analysis:

To further evaluate the models' performance, receiver operating characteristic (ROC)

curves were computed. These curves illustrate the trade-off between the true positive rate

(sensitivity) and the false positive rate (1 - specificity) at various classification thresholds.

Figure 7: AUC of the Unaugmented Model (left) and AUC of the Augmented Model (right)

The area under the curve (AUC) values were calculated to quantify the models' ability

to distinguish between healthy and tumorous samples. The augmented model achieved an

AUC of 0.98, indicating excellent discriminatory power. This implies that the model had a

high probability of ranking a randomly chosen tumorous sample higher than a randomly

chosen healthy sample.

On the other hand, the unaugmented model achieved an AUC of 1, suggesting perfect

discrimination between the two classes. However, achieving a perfect AUC could indicate

potential overfitting, as the model may have perfectly fit the training data but may not

generalise well to unseen data.

Álvaro Serra i Parri

24

Considering these factors, the augmented model with a slightly lower AUC but the

ability to protect against overfitting was selected as the preferred model. It demonstrated

strong discriminatory power, achieving nearly perfect classification performance while

maintaining good generalisation capabilities.

By selecting the augmented model, we strike a balance between discriminatory power

and overfitting concerns, ensuring reliable and accurate predictions on unseen data.

5.4. Challenges and Limitations:

During the preprocessing stage, the conversion from DICOM and NIFTI formats to

PNG presented challenges, particularly due to the limited experience with the libraries in

Python that facilitated the conversion process. This step was described as a tedious and time-

consuming task, requiring additional attention and effort. However, it was essential to

overcome these challenges to ensure compatibility and facilitate subsequent preprocessing

steps.

Additionally, memory limitations necessitated reducing the number of slices and the

size of each slice. This adjustment was necessary to accommodate the computational

constraints and enable successful model training. However, it's important to acknowledge that

reducing the number of slices and image size may affect the information content and potential

features extracted from the data. The reduced number of slices may result in the loss of some

spatial information within the MRI volumes, potentially impacting the model's ability to

capture fine details and localised features. Similarly, reducing the image size may lead to a

loss of resolution, which can affect the visibility and discriminative power of certain features.

It should be noted that while reducing the number of slices and image size can help

mitigate memory limitations, it introduces a trade-off between computational efficiency and

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

25

the preservation of detailed information. Balancing these considerations is crucial when

interpreting the results and understanding the limitations of the developed models.

Álvaro Serra i Parri

26

6. Future Enhancements

While the models achieved high accuracy and discrimination performance, there is

always room for improvement. Some potential areas for future enhancements include

exploring advanced data augmentation techniques (cutout, mixup, style transfer, etc.) to

further enhance the models' ability to generalise and improve performance. Additionally,

investigating alternative resizing and interpolation methods can help preserve important

information while addressing memory constraints. It is also recommended to analyse the

impact of reducing the number of slices and image size on the models' performance and

interpretability, providing insights into potential trade-offs and considerations.

By addressing these challenges, we aspire to contribute to the growing body of

knowledge in glioblastoma classification, enhance clinical decision-making, and ultimately

improve patient outcomes. Through our research endeavours, we aim to inspire further

advancements in medical imaging, machine learning, and cancer research, bringing us closer

to combating the devastating impact of glioblastoma.

6.1. Clinical Relevance:

The developed program holds significant clinical relevance in the field of

neuroimaging by aiming to contribute to the accuracy and efficiency of diagnosing brain

malformations, including glioblastoma and other conditions such as Alzheimer's disease and

meningiomas. By providing a user-friendly interface compatible with a Raspberry Pi or any

computer, the program can bridge the gap between advanced image analysis techniques and

clinical practice.

The program's specific features and functionalities enable improvements in accuracy

and efficiency during the diagnostic process. Radiologists and neurologists can conveniently

upload MRI scans to the program, which facilitates real-time analysis and support. The

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

27

program has the potential to assist healthcare professionals in making more informed

decisions, leading to more accurate and timely diagnoses of brain malformations.

Furthermore, by expanding the program's capabilities to encompass multiple brain

malformations and differentiating between type 1, 2, 3, or 4 tumours (with type 4 referring to

glioblastomas) and other conditions such as Alzheimer's disease and meningiomas, it can

provide valuable insights for personalised treatment planning and patient stratification. This

enhanced functionality would enable healthcare professionals to accurately identify the

specific type and characteristics of brain malformations, allowing for tailored treatment plans

based on the specific diagnosis.

The program's ability to differentiate between different brain malformations optimises

patient care by tailoring interventions to individual needs, increasing the likelihood of

positive treatment outcomes. It also facilitates patient stratification, enabling a more precise

prognosis and identification of high-risk individuals who may require more intensive

monitoring and intervention.

The idea of utilising a Raspberry Pi is proposed as a potential future enhancement.

The Raspberry Pi's small size and portability make it an appealing hardware option that could

be combined with the program's software. However, it is important to note that the program's

functionalities can be implemented on any computer, and the choice of the Raspberry Pi is

not mandatory.

By emphasizing the clinical relevance of the program and its potential impact on

accurate diagnosis, treatment planning, and patient stratification, the research aims to

contribute to advancements in neuroimaging, improve patient outcomes, and provide valuable

tools for neurologists and radiologists.

Álvaro Serra i Parri

28

6.2. Collaboration and Validation:

Collaboration with medical professionals, clinicians, and researchers is paramount to

the success and effectiveness of the developed program. Ongoing collaboration ensures that

the program's algorithms and diagnostic capabilities align with the specific needs and

challenges faced in clinical settings. Expert feedback and validation from medical

professionals contribute to the refinement and validation of the program, increasing its

reliability and trustworthiness. Through collaborative efforts, the program can evolve into a

robust and validated diagnostic tool that provides accurate and clinically relevant insights for

neuroimaging analysis.

6.3. Ethical Considerations:

The use of medical data in the program raises important ethical considerations. Patient

privacy and confidentiality must be upheld throughout the entire data handling and analysis

process. Adherence to strict ethical guidelines and compliance with data protection

regulations are crucial to safeguarding patient information. Additionally, the program should

prioritize informed consent, ensuring that patients are aware of how their data will be used

and the potential implications. Ethical considerations should be an integral part of the

program's development and deployment, promoting responsible and ethical use of medical

data.

6.4. Scalability and Generalizability:

The developed program has the potential for scalability and generalizability across

different clinical settings and patient populations. By expanding its scope to include

databases with scans of various brain malformations, such as Alzheimer's disease,

meningioma, and telangiectasias, the program can acquire more clinical insights and enhance

its diagnostic capabilities. This scalability allows the program to cater to a broader range of

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

29

neuroimaging diagnoses and improve its applicability in different healthcare contexts.

Furthermore, the program can be adapted and tailored to specific clinical requirements,

ensuring its effectiveness and utility across diverse healthcare systems.

Álvaro Serra i Parri

30

7. Conclusion

In conclusion, this research project holds the potential to lay a foundation for accurate

glioblastoma classification through an effective data preprocessing workflow and well-

trained models. The careful dataset distribution, preprocessing steps, and model training have

yielded promising results in achieving high accuracy and discrimination performance.

The augmented model, incorporating various data augmentation techniques,

demonstrated an impressive accuracy of 97.37% on the test set, indicating its potential to

make accurate predictions on unseen data. While the test loss for this model was slightly

higher at 5.6718, suggesting a slight deviation between the predicted outputs and the true

labels, the augmented model exhibited strong overall performance and excellent

discriminatory power with an area under the curve (AUC) of 0.98. These results highlight the

model's potential as a valuable tool for accurate glioblastoma classification.

In contrast, the unaugmented model achieved a lower test loss value of 0.5281,

indicating a better fit to the test data and more accurate predictions compared to the

augmented model. However, achieving a perfect AUC of 1 may suggest potential overfitting,

as the model may have perfectly fit the training data but may not generalize well to unseen

data.

Considering these factors, the augmented model, despite having a slightly higher test

loss, is selected as the preferred model due to its strong discriminatory power, high accuracy,

and potential to mitigate overfitting.

While the models' performance is commendable, there are opportunities for future

enhancements. Exploring advanced data augmentation techniques could further improve the

models' generalization capabilities and enhance performance. Additionally, investigating

alternative resizing and interpolation methods would help preserve important information

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

31

while addressing memory constraints. Analysing the impact of reducing the number of slices

and image size on model performance and interpretability is also essential.

Furthermore, the development of a user-friendly program compatible with a

Raspberry Pi for MRI scan analysis holds promising potential. If realized, this program could

significantly improve neuroimaging diagnosis, providing real-time support to radiologists and

neurologists, improving the accuracy and efficiency of the diagnostic process, and ultimately

benefiting patient care.

To enhance the clinical relevance and impact of the program, collaboration with

medical professionals, clinicians, and researchers is crucial. Incorporating expert feedback

and refining the algorithms based on real-world clinical scenarios will ensure the program's

robustness and reliability.

In summary, this research project has the potential to make significant contributions to

the field of brain tumour detection and classification in MRI scans. The achievements and

impact of the developed models and preprocessing workflow provide a solid foundation for

further advancements in neuroimaging, medical imaging, and cancer research. By aiming to

improve the accuracy and efficiency of glioblastoma diagnosis, this research project seeks to

enhance patient care and outcomes, ultimately making a meaningful difference in the lives of

individuals affected by brain tumours.

Ethical considerations regarding patient privacy, data protection, and informed

consent are also recognized and addressed in this research project. Adherence to strict ethical

guidelines and collaboration with medical professionals ensure the responsible and ethical

use of medical data. Ongoing validation and feedback from experts further enhance the

reliability and trustworthiness of the developed models.

Álvaro Serra i Parri

32

8. References

[1] American Brain Tumour Association. Glioblastoma. Retrieved from

https://www.abta.org/wp-content/uploads/2018/03/glioblastoma-brochure.pdf

[2] Chang, K., et al. (2017). "Deep learning in radiology: current applications and future

directions." Insights into Imaging, 8(1), 1-9.

[3] Ellingson, B. M., et al. (2014). "Consensus recommendations for a standardised brain

tumour imaging protocol for clinical trials in brain metastases." Neuro-oncology,

17(9), 1188-1198.

[4] Gutman, D. A., et al. (2013). "MR imaging predictors of molecular profile and survival:

multi-institutional study of the TCGA glioblastoma data set." Radiology, 267(2), 560-

569.

[5] Havaei, M., et al. (2017). "Brain tumour segmentation with Deep Neural Networks."

Medical Image Analysis, 35, 18-31.

[6] Lao, J., et al. (2017). "A deep learning-based radiomics model for prediction of survival

in glioblastoma multiforme." Scientific Reports, 7(1), 1-11.

[7] Menze, B. H., et al. (2015). "The Multimodal Brain Tumour Image Segmentation

Benchmark (BRATS)." IEEE Transactions on Medical Imaging, 34(10), 1993-2024.

[8] Smith A, et al. (2019). Interobserver variability of histopathological grading of adult

diffuse gliomas: a systematic review. Acta Neuropathologica Communications, 7(1),

1-13.

[9] Smith C, et al. (2020). Assessing interobserver variability in histopathological grading of

gliomas. British Journal of Neurosurgery, 34(3), 284-289.

https://www.abta.org/wp-content/uploads/2018/03/glioblastoma-brochure.pdf

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

33

8. Appendices

Annex A: Programming Code for Preprocessing

This code selectively copies folders containing T1-weighted MRI images from a source directory to a destination directory. It
searches for folders with a specific naming pattern indicating T1 axial images and ignores other MRI techniques such as T2, FLAIR,
etc.

import os
import re
import shutil

source_dir = r"D:\PFG\DataDirectory\Glioblastoma\manifest-1669766397961\UPENN-GBM"
destination_dir = r"D:\PFG\DataDirectory\Glioblastoma\T1GlioblastomaProcessedCaPTk"

Define the pattern to match the desired folder names
pattern = re.compile(r".*t1 axial ProcessedCaPTk.*")

Iterate over all subdirectories in the source directory
for root, dirs, files in os.walk(source_dir):
 for dir in dirs:
 subdir = os.path.join(root, dir)
 # Check if subdir contains a folder with the desired name pattern
 if any(pattern.match(d) for d in os.listdir(subdir)):
 # Get the patient ID from the current subdirectory
 patient_id = os.path.basename(root)
 # Create the destination directory with the patient ID
 dest_dir = os.path.join(destination_dir, patient_id)
 if not os.path.exists(dest_dir):
 os.makedirs(dest_dir)
 # Copy the folder with the desired name pattern to the destination directory
 for d in os.listdir(subdir):
 if pattern.match(d):
 shutil.copytree(os.path.join(subdir, d), os.path.join(dest_dir, d))

This code converts NIfTI (.nii) files to PNG images. It iterates over the input folders containing NIfTI files, loads each file, normalizes the

data to the range [0, 255], and converts it to an integer type. It then saves each slice of the 3D data as a separate PNG image in the

corresponding output folder. The output folder structure is based on the patient's name, with each patient having a separate folder

containing their PNG images.

import os
import glob
import numpy as np
import nibabel as nib
from PIL import Image

Set input and output folders
nii_folder = "D:/PFG/DataDirectory/Healthy3"
png_folder = "D:/PFG/DataDirectory/HealthyPNG"

Loop over the input folders
for nii_file in glob.glob(os.path.join(nii_folder, "**", "*.nii"), recursive=True):
 # Load NIfTI file
 nii_image = nib.load(nii_file)
 data = nii_image.get_fdata()

 # Get patient name and create output folder for PNG files
 patient_name = os.path.basename(nii_file).split("-")[0]
 patient_folder = os.path.join(png_folder, patient_name)
 os.makedirs(patient_folder, exist_ok=True)

 # Normalize data to range [0, 255] and convert to integer type
 data = (data - np.min(data)) / (np.max(data) - np.min(data)) * 255
 data = data.astype(np.uint8)

 # Loop over the slices and save as PNG
 for i in range(data.shape[0]):
 img = Image.fromarray(data[:, i, :])
 img.save(os.path.join(patient_folder, f"{patient_name}_{i+1}.png"))

Álvaro Serra i Parri

34

This code selects six random patient folders from a given directory containing PNG images. It creates a figure with a 2x3 grid of
subplots to display the images. For each selected patient folder, it randomly chooses one PNG file, loads the image, and displays it on
the corresponding subplot. The title of each subplot is set to the name of the patient folder. Finally, the figure is displayed using
Matplotlib.

import os
import random
import matplotlib.pyplot as plt

Set path to folder containing patient folders
png_folder = r'D:\PFG\DataDirectory\HealthyPNG'

Get list of patient folders
patient_folders = [folder for folder in os.listdir(png_folder) if
os.path.isdir(os.path.join(png_folder, folder))]

Randomly select 6 patient folders
random_patient_folders = random.sample(patient_folders, 6)

Create figure to display images
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(12,8))

Loop over selected patient folders and display a random image from each
for i, patient_folder in enumerate(random_patient_folders):
 # Get list of PNG files in the patient folder
 png_files = [f for f in os.listdir(os.path.join(png_folder, patient_folder)) if
f.endswith('.png')]

 # Randomly select a PNG file from the patient folder
 png_file = random.choice(png_files)

 # Load PNG file and display on plot
 png_image = plt.imread(os.path.join(png_folder, patient_folder, png_file))
 row = i // 3
 col = i % 3
 axes[row, col].imshow(png_image, cmap='gray')
 axes[row, col].set_title(patient_folder)

plt.tight_layout()
plt.show()

This code converts DICOM images to PNG format. It iterates over patient folders in a given directory containing DICOM images. For each

patient, it identifies the subfolder with the DICOM images and processes each DICOM file within that subfolder. The code reads the pixel

data from each DICOM file and performs necessary adjustments such as rescaling and handling invalid values. It then normalizes the pixel

values, converts the pixel data to a PIL Image object, and saves it as a PNG file in the specified output folder.

import os
import pydicom
import numpy as np
from PIL import Image

Set the path to the folder containing the DICOM images
dicom_folder = r'D:\PFG\DataDirectory\Glioblastoma\T1GlioblastomaProcessedCaPTk'

Set the path to the output folder where the PNG images will be saved
png_folder = r'D:\PFG\DataDirectory\Glioblastoma\GlioblastomaPNG'

Create the PNG folder if it doesn't exist
if not os.path.exists(png_folder):
 os.makedirs(png_folder)

Loop over patient folders
for patient_folder in os.scandir(dicom_folder):
 if patient_folder.is_dir():
 patient_name = patient_folder.name
 patient_output_folder = os.path.join(png_folder, patient_name)
 os.makedirs(patient_output_folder, exist_ok=True)

 # Find the subfolder with DICOM images
 subfolder = next(os.scandir(patient_folder.path))
 if subfolder.is_dir():
 # Process DICOM images in the subfolder

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

35

 for dicom_file in os.scandir(subfolder.path):
 if dicom_file.is_file():
 # Load DICOM file
 ds = pydicom.dcmread(dicom_file.path)
 # Extract pixel data
 pixel_data = ds.pixel_array

 # Adjust pixel value scaling if necessary
 if 'RescaleSlope' in ds and 'RescaleIntercept' in ds:
 slope = ds.RescaleSlope
 intercept = ds.RescaleIntercept
 pixel_data = pixel_data * slope + intercept

 # Handle invalid values (NaN or Inf)
 pixel_data[np.isnan(pixel_data)] = 0.0
 pixel_data[np.isinf(pixel_data)] = 0.0

 # Normalize pixel values
 pixel_data = (pixel_data - np.min(pixel_data)) / (np.max(pixel_data) -
np.min(pixel_data))
 pixel_data = (pixel_data * 255).astype(np.uint8)

 # Convert to PIL Image
 img = Image.fromarray(pixel_data)
 # Save as PNG
 output_path = os.path.join(patient_output_folder, f"{dicom_file.name}.png")
 img.save(output_path)

This code selects random patient folders from a given directory containing PNG images. It creates a matplotlib figure with a 2x3 grid
of subplots to display the images. For each randomly selected patient folder, it retrieves the list of PNG files within that folder. It
randomly selects one PNG file from the list and loads it as an image using plt.imread(). The code then displays the image on the
corresponding subplot in the figure, along with the title of the patient folder. Finally, it adjusts the layout and shows the figure with
the plotted images.

import os
import random
import matplotlib.pyplot as plt

Set path to folder containing patient folders
png_folder = r'E:\PFG\DataDirectory\Glioblastoma\GlioblastomaPNG'

Get list of patient folders
patient_folders = [folder for folder in os.listdir(png_folder) if
os.path.isdir(os.path.join(png_folder, folder))]

Randomly select 6 patient folders
random_patient_folders = random.sample(patient_folders, 6)

Create figure to display images
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(12,8))

Loop over selected patient folders and display a random image from each
for i, patient_folder in enumerate(random_patient_folders):
 # Get list of PNG files in the patient folder
 png_files = [f for f in os.listdir(os.path.join(png_folder, patient_folder)) if
f.endswith('.png')]

 # Randomly select a PNG file from the patient folder
 png_file = random.choice(png_files)

 # Load PNG file and display on plot
 png_image = plt.imread(os.path.join(png_folder, patient_folder, png_file))
 row = i // 3
 col = i % 3
 axes[row, col].imshow(png_image, cmap='gray')
 axes[row, col].set_title(patient_folder)

plt.tight_layout()
plt.show()

Álvaro Serra i Parri

36

This code crops and resizes images of healthy and glioblastoma cases. It uses OpenCV to extract the region of interest (ROI) from the

images based on contour detection. The ROI is then resized to (256x256) and saved as cropped images in separate output folders for

healthy and glioblastoma cases.

1. Convert the image to grayscale.

1. Threshold the grayscale image to create a binary mask.

2. Find contours in the binary mask.

3. Find the largest contour, assuming it represents the brain.

4. Create a mask image and draw the largest contour filled with white color on the mask.

5. Perform a bitwise AND operation between the mask and the input image to extract the region of interest (ROI).

6. Return the cropped ROI.

import os
import cv2
import numpy as np

Function to crop ROI from an image
def crop_roi(image):
 # Convert image to grayscale
 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 # Threshold the image to create a binary mask
 _, thresh = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY)

 # Find contours in the binary mask
 contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 # Check if any contour was found
 if len(contours) == 0:
 return None

 # Find the largest contour (assuming it's the brain)
 largest_contour = max(contours, key=cv2.contourArea)

 # Create a mask image with the same size as the input image
 mask = np.zeros_like(gray)

 # Draw the largest contour filled with white color on the mask
 cv2.drawContours(mask, [largest_contour], 0, (255), cv2.FILLED)

 # Bitwise AND operation between the mask and input image to extract ROI
 roi = cv2.bitwise_and(image, image, mask=mask)

 return roi

Set the paths for healthy and glioblastoma images
healthy_folder = r'D:\PFG\DataDirectory\HealthyPNG'
glioblastoma_folder = r'D:\PFG\DataDirectory\Glioblastoma\GlioblastomaPNG'

Set the paths for the output cropped images
healthy_output_folder = r'D:\PFG\DataDirectory\HealthyCropped'
glioblastoma_output_folder = r'D:\PFG\DataDirectory\Glioblastoma\CroppedGlioblastoma'

Threshold for mean pixel value to determine nearly black images
black_threshold = 5

Process healthy images
for patient_folder in os.listdir(healthy_folder):
 patient_folder_path = os.path.join(healthy_folder, patient_folder)
 if os.path.isdir(patient_folder_path):
 output_patient_folder = os.path.join(healthy_output_folder, patient_folder)
 os.makedirs(output_patient_folder, exist_ok=True)
 for image_file in os.listdir(patient_folder_path):
 image_path = os.path.join(patient_folder_path, image_file)
 output_path = os.path.join(output_patient_folder, image_file)
 # Load image
 image = cv2.imread(image_path)
 # Crop ROI
 roi = crop_roi(image)
 # Check if any contour was found and mean pixel value is above threshold
 if roi is not None and np.mean(roi) > black_threshold:
 # Resize to (256x256)

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

37

 roi = cv2.resize(roi, (256, 256))
 # Save the cropped image
 cv2.imwrite(output_path, roi)

Process glioblastoma images
for patient_folder in os.listdir(glioblastoma_folder):
 patient_folder_path = os.path.join(glioblastoma_folder, patient_folder)
 if os.path.isdir(patient_folder_path):
 output_patient_folder = os.path.join(glioblastoma_output_folder, patient_folder)
 os.makedirs(output_patient_folder, exist_ok=True)
 for image_file in os.listdir(patient_folder_path):
 image_path = os.path.join(patient_folder_path, image_file)
 output_path = os.path.join(output_patient_folder, image_file)
 # Load image
 image = cv2.imread(image_path)
 # Crop ROI
 roi = crop_roi(image)
 # Check if any contour was found and mean pixel value is above threshold
 if roi is not None and np.mean(roi) > black_threshold:
 # Resize to (256x256)
 roi = cv2.resize(roi, (256, 256))
 # Save the cropped image
 cv2.imwrite(output_path, roi)

This code first defines the input directories as a list and output directories as another list. It then loops through each input directory
and finds the corresponding output directory by using the index of the input directory in the list. For each patient directory, it
creates a corresponding output directory if it doesn't exist already. Finally, it loops through each image file in the patient directory,
normalizes the image, and saves the normalized image to the output directory with the same file name.

import os
import numpy as np
from PIL import Image

input_dirs = ["D:/PFG/DataDirectory/HealthyCropped",
r"D:\PFG\DataDirectory\Glioblastoma\CroppedGlioblastoma"]
output_dirs = ["D:/PFG/DataDirectory/Healthy-normalized",
r"D:\PFG\DataDirectory\Glioblastoma\NormalizedGliobastoma"]
min_value = 0
max_value = 255

for idx, input_dir in enumerate(input_dirs):
 output_dir = output_dirs[idx]
 if not os.path.exists(output_dir):
 os.makedirs(output_dir)
 for patient_dir in os.listdir(input_dir):
 patient_input_dir = os.path.join(input_dir, patient_dir)
 patient_output_dir = os.path.join(output_dir, patient_dir)
 if not os.path.exists(patient_output_dir):
 os.makedirs(patient_output_dir)
 for file in os.listdir(patient_input_dir):
 if file.endswith('.png'):
 input_path = os.path.join(patient_input_dir, file)
 output_path = os.path.join(patient_output_dir, file)
 img = Image.open(input_path)
 img_array = np.array(img)
 img_normalized = (img_array - np.min(img_array)) / (np.max(img_array) -
np.min(img_array)) * (max_value - min_value) + min_value
 img_normalized = img_normalized.astype(np.uint8)
 img_normalized = Image.fromarray(img_normalized)
 img_normalized.save(output_path)

Álvaro Serra i Parri

38

This code splits the data into training, validation, and testing sets for two categories: "healthy" and "tumorous." It assumes that the
data for each category is stored in separate directories specified by the source_dirs dictionary. The output of the data splitting will
be saved in the output_dir directory.

The code iterates over the categories and performs the following steps for each category:

1. Create the corresponding output category directory.

1. Sort the list of patients within the source directory.

2. Determine the indices for splitting the data into training, validation, and testing sets.

3. Iterate over the patients in the training set, create the output patient directory in the "train" subdirectory, and copy the
images from the source directory to the output directory.

4. Repeat step 4 for the validation and testing sets, creating the respective output directories in the "val" and "test"
subdirectories.

import os
import shutil

source_dirs = {
 "healthy": "D:/PFG/DataDirectory/Healthy-normalized",
 "tumorous": "D:/PFG/DataDirectory/Glioblastoma/NormalizedGliobastoma",
}

output_dir = "D:/PFG/DataDirectory/split_data"

if not os.path.exists(output_dir):
 os.makedirs(output_dir)

for category in source_dirs:
 source_dir = source_dirs[category]
 output_category_dir = os.path.join(output_dir, category)

 if not os.path.exists(output_category_dir):
 os.makedirs(output_category_dir)

 patients = sorted(os.listdir(source_dir))
 num_patients = len(patients)

 train_end = int(0.8 * num_patients)
 val_end = int(0.9 * num_patients)

 train_patients = patients[:train_end]
 val_patients = patients[train_end:val_end]
 test_patients = patients[val_end:]

 for patient in train_patients:
 source_patient_dir = os.path.join(source_dir, patient)
 output_patient_dir = os.path.join(output_dir, "train", category, patient)

 if not os.path.exists(output_patient_dir):
 os.makedirs(output_patient_dir)

 for image in os.listdir(source_patient_dir):
 source_image_path = os.path.join(source_patient_dir, image)
 output_image_path = os.path.join(output_patient_dir, image)
 shutil.copyfile(source_image_path, output_image_path)

 for patient in val_patients:
 source_patient_dir = os.path.join(source_dir, patient)
 output_patient_dir = os.path.join(output_dir, "val", category, patient)

 if not os.path.exists(output_patient_dir):
 os.makedirs(output_patient_dir)

 for image in os.listdir(source_patient_dir):
 source_image_path = os.path.join(source_patient_dir, image)
 output_image_path = os.path.join(output_patient_dir, image)
 shutil.copyfile(source_image_path, output_image_path)

 for patient in test_patients:
 source_patient_dir = os.path.join(source_dir, patient)
 output_patient_dir = os.path.join(output_dir, "test", category, patient)

 if not os.path.exists(output_patient_dir):
 os.makedirs(output_patient_dir)

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

39

 for image in os.listdir(source_patient_dir):
 source_image_path = os.path.join(source_patient_dir, image)
 output_image_path = os.path.join(output_patient_dir, image)
 shutil.copyfile(source_image_path, output_image_path)

print("Data splitting completed")

This code includes several functions and imports related to image data augmentation and manipulation:

1. The code imports necessary libraries, including TensorFlow, ImageDataGenerator from Keras, and the os module.

2. It defines the paths to the training, validation, and test sets.

3. Three ImageDataGenerator objects are created for training, validation, and test sets, specifying different augmentation

configurations.

4. The code imports the Image module from the PIL library.

5. The crop_volume function is defined, which takes a volume path and target depth as input. It crops the volume by removing or

adding images to match the target depth.

6. The augment_volume function is defined, which takes a data generator, volume path, and target depth as input. It performs

data augmentation on the volume by generating additional images using the data generator.

7. The load_image function is defined, which takes an image path as input and returns the loaded image using the Image module.

8. The save_image function is defined, which takes an image and save path as input and saves the image at the specified path.

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
import os

Define paths to train, validation, and test sets
train_dir = 'Train'
val_dir = 'Validation'
test_dir = 'Test'

Define data generators for training, validation, and test sets
train_datagen = ImageDataGenerator(
 rescale=1./255,
 rotation_range=15,
 zoom_range=0.2,
 horizontal_flip=True,
 fill_mode='nearest'
)

val_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

from PIL import Image

def crop_volume(volume_path, target_depth):
 volume_dir = os.path.dirname(volume_path)
 volume_name = os.path.basename(volume_path)
 volume_prefix = volume_name.split(".")[0] # Get the file name without extension

 # Get the list of images for the patient
 images = sorted(os.listdir(volume_dir))

 if len(images) >= target_depth:
 # Select the first `target_depth` images
 cropped_images = images[:target_depth]

 for image_name in cropped_images:
 image_path = os.path.join(volume_dir, image_name)
 cropped_image = Image.open(image_path)

 # Perform cropping operation on cropped_image
 width, height = cropped_image.size
 cropped_image = cropped_image.crop((0, 0, width, target_depth)) # Crop the image to
target_depth

Álvaro Serra i Parri

40

 # Save the cropped image
 output_name = f"{volume_prefix}_cropped_{image_name}"
 output_path = os.path.join(volume_dir, output_name)
 cropped_image.save(output_path)

 print(f"Volume {volume_path} cropped to depth {target_depth}.")
 else:
 print(f"Volume {volume_path} does not require cropping. Depth {len(images)} < target depth
{target_depth}.")

Define function to perform data augmentation on whole volumes
def augment_volume(data_generator, volume_path, target_depth):
 volume_images = []

 # Load the existing images of the volume
 for i in range(1, target_depth + 1):
 image_path = f"{volume_path.split('.png')[0]}_{i}.png"
 if os.path.exists(image_path):
 image = load_image(image_path)
 volume_images.append(image)

 current_depth = len(volume_images)

 if current_depth < target_depth:
 # Perform data augmentation to generate additional images
 num_augmented_images = target_depth - current_depth

 # Generate augmented images using data generator
 augmented_images = data_generator.flow(np.array(volume_images), shuffle=False, batch_size=1)

 # Save the augmented images
 for i in range(num_augmented_images):
 augmented_image = next(augmented_images)[0].astype(np.uint8)
 augmented_image_path = f"{volume_path.split('.png')[0]}_{current_depth + i + 1}.png"
 save_image(augmented_image, augmented_image_path)
 print(f"Augmented image saved: {augmented_image_path}")

 else:
 print(f"Volume {volume_path} already has {current_depth} images, which is equal to or greater
than the target depth {target_depth}. No augmentation needed.")

def load_image(image_path):
 image = Image.open(image_path)
 return image

def save_image(image, save_path):
 image.save(save_path)

This code performs cropping and augmentation operations on image volumes:

1. The code starts by specifying the root directory (root_dir), classes (classes), and subsets (subsets).

2. It moves the files in the old directory structure to the new directory structure using shutil.move().

3. Next, the code crops volumes in the train, validation, and test sets to a target depth (target_depth).

4. For each volume, the code loads the images, selects the appropriate slice range, and saves the cropped images in the
output directory.

5. The code then augments volumes in the train, validation, and test sets to the target depth.

6. For each volume, if the current depth is less than the target depth, the code interpolates the volume to the target depth
using cubic spline interpolation and saves the augmented images in the output directory.

import os
import shutil

Specify the root directory
root_dir = r'D:\PFG\DataDirectory\split_data'

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

41

Define the classes (assuming 'healthy' and 'tumorous')
classes = ['healthy', 'tumorous']

Specify the subsets (assuming 'train', 'val', 'test')
subsets = ['train', 'val', 'test']

Move the files to the new directories
for class_name in classes:
 for subset_name in subsets:
 old_dir = os.path.join(root_dir, class_name, subset_name)
 new_dir = os.path.join(root_dir, subset_name, class_name)

 # Check if the old directory exists before moving the files
 if os.path.exists(old_dir):
 for filename in os.listdir(old_dir):
 src_path = os.path.join(old_dir, filename)
 dst_path = os.path.join(new_dir, filename)
 shutil.move(src_path, dst_path)

 # Check if the old directory is empty before removing it
 if os.path.exists(old_dir) and not os.listdir(old_dir):
 shutil.rmtree(old_dir)

print("Directory structure updated successfully.")

import os
import numpy as np
from PIL import Image
import re

Set the target depth for cropping and augmentation
target_depth = 128

Create the output directory if it doesn't exist
output_dir = r'E:\PFG\DataDirectory\split_data_cropped_augmented'
if not os.path.exists(output_dir):
 os.makedirs(output_dir)

Crop volumes in train, validation, and test sets to target depth
for set_dir in [r'E:\PFG\DataDirectory\split_data\train', r'E:\PFG\DataDirectory\split_data\val',
r'E:\PFG\DataDirectory\split_data\test']:
 for class_dir in os.listdir(set_dir):
 class_path = os.path.join(set_dir, class_dir)
 output_class_dir = os.path.join(output_dir, set_dir.split(os.sep)[-1], class_dir)
 if not os.path.exists(output_class_dir):
 os.makedirs(output_class_dir)
 for patient_dir in os.listdir(class_path):
 patient_path = os.path.join(class_path, patient_dir)
 output_patient_dir = os.path.join(output_class_dir, patient_dir)
 if not os.path.exists(output_patient_dir):
 os.makedirs(output_patient_dir)
 volume_prefix = os.path.basename(patient_path)
 volume_arr = []
 image_indices = [] # Keep track of the original order of images
 for i, filename in enumerate(os.listdir(patient_path)):
 if filename.endswith(".png"):
 image_path = os.path.join(patient_path, filename)
 image = Image.open(image_path)
 volume_arr.append(image)
 image_indices.append(filename) # Store the filename
 depth = len(volume_arr)
 if depth >= target_depth:
 start_slice = (depth - target_depth) // 2
 end_slice = start_slice + target_depth
 cropped_volume_arr = volume_arr[start_slice:end_slice]
 cropped_image_indices = image_indices[start_slice:end_slice]
 sorted_images = [image for _, image in sorted(zip(cropped_image_indices,
cropped_volume_arr), key=lambda x: int(re.findall(r'\d+', x[0].split("_")[-1].split(".")[0])[0]))]
 for i, image in enumerate(sorted_images):
 output_filename = f"{volume_prefix}_{i+1}.png"
 output_path = os.path.join(output_patient_dir, output_filename)
 image.save(output_path)

Álvaro Serra i Parri

42

 print(f"Volume {patient_path} cropped to depth {target_depth} and saved in
{output_patient_dir}.")
 else:
 sorted_images = [image for _, image in sorted(zip(image_indices, volume_arr),
key=lambda x: int(re.findall(r'\d+', x[0].split("_")[-1].split(".")[0])[0]))]
 for i, image in enumerate(sorted_images):
 output_filename = f"{volume_prefix}_{i+1}.png"
 output_path = os.path.join(output_patient_dir, output_filename)
 image.save(output_path)
 print(f"Volume {patient_path} not cropped. Depth {depth} < target depth
{target_depth}.")
Augment volumes in the train, validation, and test sets to target depth
for set_dir in [r'E:\PFG\DataDirectory\split_data\train', r'E:\PFG\DataDirectory\split_data\val',
r'E:\PFG\DataDirectory\split_data\test']:
 for class_dir in os.listdir(set_dir):
 class_path = os.path.join(set_dir, class_dir)
 output_class_dir = os.path.join(output_dir, set_dir.split(os.sep)[-1], class_dir)
 if not os.path.exists(output_class_dir):
 os.makedirs(output_class_dir)
 for patient_dir in os.listdir(class_path):
 patient_path = os.path.join(class_path, patient_dir)
 output_patient_dir = os.path.join(output_class_dir, patient_dir)
 if not os.path.exists(output_patient_dir):
 os.makedirs(output_patient_dir)
 volume_prefix = os.path.basename(patient_path)
 volume_arr = []
 for i, filename in enumerate(os.listdir(patient_path)):
 if filename.endswith(".png"):
 image_path = os.path.join(patient_path, filename)
 image = Image.open(image_path)
 volume_arr.append(image)
 depth = len(volume_arr)
 if depth < target_depth - 1:
 # Interpolate the volume to the target depth using cubic spline interpolation
 interpolated_volume_arr = []
 ratio = float(target_depth) / depth
 for i in range(target_depth):
 index = int(i / ratio)
 interpolated_image = volume_arr[index]
 interpolated_volume_arr.append(interpolated_image)
 sorted_images = [image for _, image in sorted(zip(range(1, target_depth + 1),
interpolated_volume_arr), key=lambda x: x[0])]
 for i, image in enumerate(sorted_images):
 output_filename = f"{volume_prefix}_{i+1}.png"
 output_path = os.path.join(output_patient_dir, output_filename)
 image.save(output_path)
 print(f"Volume {patient_path} augmented to depth {target_depth} and saved in
{output_patient_dir}.")
 else:
 sorted_images = [image for _, image in sorted(zip(range(1, depth + 1), volume_arr),
key=lambda x: x[0])]
 for i, image in enumerate(sorted_images):
 output_filename = f"{volume_prefix}_{i+1}.png"
 output_path = os.path.join(output_patient_dir, output_filename)
 image.save(output_path)
 print(f"Volume {patient_path} not augmented. Depth {depth} >= target depth
{target_depth}.")

This code converts grayscale image slices into 3D volumes and saves them as NIfTI files. It processes each dataset split, class, and
patient, collects the image slices, creates a 3D volume, and saves it as a NIfTI file.

import os
import numpy as np
import nibabel as nib
import cv2

Input and output directories
input_dir = "E:\PFG\DataDirectory\split_data_cropped_augmented_greyscale"
output_dir = "E:\PFG\DataDirectory\split_data_cropped_augmented_greyscale_nifti"

Process each dataset split (train, test, val)
for dataset_split in os.listdir(input_dir):
 dataset_split_dir = os.path.join(input_dir, dataset_split)

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

43

 output_split_dir = os.path.join(output_dir, dataset_split)
 os.makedirs(output_split_dir, exist_ok=True)

 # Process each class (tumorous, healthy)
 for class_name in os.listdir(dataset_split_dir):
 class_dir = os.path.join(dataset_split_dir, class_name)
 output_class_dir = os.path.join(output_split_dir, class_name)
 os.makedirs(output_class_dir, exist_ok=True)

 # Process each patient
 for patient_id in os.listdir(class_dir):
 patient_dir = os.path.join(class_dir, patient_id)
 output_patient_path = os.path.join(output_class_dir, f"{patient_id}.nii.gz")

 # Collect image slices
 slices = []
 for slice_name in os.listdir(patient_dir):
 slice_path = os.path.join(patient_dir, slice_name)
 slice_img = cv2.imread(slice_path, cv2.IMREAD_GRAYSCALE)
 resized_slice = cv2.resize(slice_img, (256, 256))
 slices.append(resized_slice)

 # Create 3D volume
 volume_data = np.stack(slices, axis=-1)

 # Save volume as NIfTI file
 nifti_img = nib.Nifti1Image(volume_data, np.eye(4))
 nib.save(nifti_img, output_patient_path)

This code resizes NIfTI files in the input directory to the dimensions of 128x128x64 and saves them to the output directory. It
iterates over the subdirectories and files in the input directory, loads each NIfTI file, resizes the data to the desired dimensions using
the skimage.transform.resize function, creates a new NIfTI image with the resized data, constructs the output file path, and saves the
resized image to the output file path. Any errors encountered during the process are printed with an error message.

import os
import numpy as np
import nibabel as nib
from skimage.transform import resize

Set the paths
input_dir = "E:\PFG\DataDirectory\split_data_cropped_augmented_nifti"
output_dir = "E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64"

Create the output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)

Iterate over the subdirectories in the input directory
for root, dirs, files in os.walk(input_dir):
 for file in files:
 try:
 # Load the input file
 file_path = os.path.join(root, file)
 img = nib.load(file_path)
 data = img.get_fdata()

 # Resize the data to the desired dimensions (128x128x64)
 new_shape = (128, 128, 64)
 resized_data = resize(data, new_shape, anti_aliasing=True)

 # Create a new NIfTI image with the resized data
 resized_img = nib.Nifti1Image(resized_data, img.affine, img.header)

 # Get the relative path within the input directory
 relative_path = os.path.relpath(file_path, input_dir)

 # Construct the output file path by joining the output directory and the relative path
 output_file_path = os.path.join(output_dir, relative_path)

 # Create the output directory structure if it doesn't exist
 os.makedirs(os.path.dirname(output_file_path), exist_ok=True)

 # Save the resized image to the output file path
 nib.save(resized_img, output_file_path)

Álvaro Serra i Parri

44

 print(f"Resized and saved {file} successfully.")
 except Exception as e:
 print(f"Error: Failed to resize and save {file}. Error message: {str(e)}")

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

45

Annex B: Programming Code for Model Training

This code performs the following steps:

1. Checks if a GPU is available for training.

2. Defines a function to load NIfTI data and preprocess it.

3. Specifies the paths to the training, validation, and test data directories.

4. Loads and preprocesses the training and validation data, including loading NIfTI files, preprocessing the data, and
reshaping it to match the input shape of the model.

5. Converts the data and labels to numpy arrays.

6. Defines the architecture of the model using tensorflow.keras.Sequential.

7. Compiles the model with the specified optimizer, loss function, and metrics.

8. Splits the data into training and validation sets using sklearn.model_selection.train_test_split.

9. Trains the model using model.fit with the specified batch size, number of epochs, and validation data.

10. Saves the model.

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import nibabel as nib
from sklearn.model_selection import train_test_split
import os

Check if a GPU is available
if tf.config.list_physical_devices('GPU'):
 print("Running on GPU")
else:
 print("Running on CPU")

Load NIfTI data and preprocess it
def load_nifti_data(file_path):
 img = nib.load(file_path)
 data = img.get_fdata()
 return data

Set the paths to your NIfTI data
train_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64\train"
val_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64\val"
test_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64\test"

Load and preprocess the training data
train_data = []
train_labels = []
train_dirs = ["healthy", "tumorous"] # Subfolders within the train directory
for train_dir in train_dirs:
 dir_path = os.path.join(train_data_dir, train_dir)
 train_files = os.listdir(dir_path)
 for file in train_files:
 try:
 file_path = os.path.join(dir_path, file)
 if train_dir == "healthy":
 patient_number = file.split(".")[0][-3:] # Extract the patient number from the file
name
 else:
 patient_number = file.split(".")[0][-5:] # Extract the patient number from the file
name
 data = load_nifti_data(file_path)
 # Preprocess the data as needed

 # Reshape the data to match the input shape
 data = np.expand_dims(data, axis=-1) # Add the grayscale channel dimension

 train_data.append(data)
 train_labels.append(0 if train_dir == "healthy" else 1)
 except Exception as e:
 print(f"Error: Failed to load {file}. Error message: {str(e)}")

Load and preprocess the validation data
val_data = []
val_labels = []
val_dirs = ["healthy", "tumorous"] # Subfolders within the validation directory

Álvaro Serra i Parri

46

for val_dir in val_dirs:
 dir_path = os.path.join(val_data_dir, val_dir)
 val_files = os.listdir(dir_path)
 for file in val_files:
 try:
 file_path = os.path.join(dir_path, file)
 if val_dir == "healthy":
 patient_number = file.split(".")[0][-3:] # Extract the patient number from the file
name
 else:
 patient_number = file.split(".")[0][-5:] # Extract the patient number from the file
name
 data = load_nifti_data(file_path)
 # Preprocess the data as needed

 # Reshape the data to match the input shape
 data = np.expand_dims(data, axis=-1) # Add the grayscale channel dimension

 val_data.append(data)
 val_labels.append(0 if val_dir == "healthy" else 1)
 except Exception as e:
 print(f"Error: Failed to load {file}. Error message: {str(e)}")

Convert the data and labels to numpy arrays
train_data = np.array(train_data)
train_labels = np.array(train_labels)
val_data = np.array(val_data)
val_labels = np.array(val_labels)

Define the model architecture
model = keras.Sequential(
 [
 layers.Input(shape=train_data[0].shape), # Add the channel dimension
 layers.Conv3D(32, kernel_size=(3, 3, 3), activation="relu"),
 layers.MaxPooling3D(pool_size=(2, 2, 2)),
 layers.Conv3D(64, kernel_size=(3, 3, 3), activation="relu"),
 layers.MaxPooling3D(pool_size=(2, 2, 2)),
 layers.Conv3D(128, kernel_size=(3, 3, 3), activation="relu"),
 layers.MaxPooling3D(pool_size=(2, 2, 2)),
 layers.Flatten(),
 layers.Dense(64, activation="relu"),
 layers.Dropout(0.5),
 layers.Dense(1, activation="sigmoid"),
]
)

Compile the model
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])

Split the data into training and validation sets
train_data, val_data, train_labels, val_labels = train_test_split(train_data, train_labels,
test_size=0.2, random_state=42)

Train the model
with tf.device("CPU"):
 model.fit(train_data, train_labels, batch_size=16, epochs=10, validation_data=(val_data,
val_labels))

model.save('1modelo.h5')

This code performs the following steps:

2. Checks if a GPU is available for evaluation.

5. Defines a function to load NIfTI data and preprocess it.

6. Specifies the path to the test data directory.

7. Loads and preprocesses the test data, including loading NIfTI files, preprocessing the data, and reshaping it to match the
input shape of the model.

8. Converts the test data and labels to numpy arrays.

9. Loads the saved model using tensorflow.keras.models.load_model.

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

47

10. Evaluates the model on the test set using model.evaluate and prints the test loss and accuracy.

import numpy as np
import tensorflow as tf
from tensorflow import keras
import nibabel as nib

Check if a GPU is available
if tf.config.list_physical_devices('GPU'):
 print("Running on GPU")
else:
 print("Running on CPU")

Load NIfTI data and preprocess it
def load_nifti_data(file_path):
 img = nib.load(file_path)
 data = img.get_fdata()
 return data

Set the path to your test data directory
test_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64\test"

Load and preprocess the test data
test_data = []
test_labels = []
test_dirs = ["healthy", "tumorous"] # Subfolders within the test directory
for test_dir in test_dirs:
 dir_path = os.path.join(test_data_dir, test_dir)
 test_files = os.listdir(dir_path)
 for file in test_files:
 try:
 file_path = os.path.join(dir_path, file)
 if test_dir == "healthy":
 patient_number = file.split(".")[0][-3:] # Extract the patient number from the file
name
 else:
 patient_number = file.split(".")[0][-5:] # Extract the patient number from the file
name
 data = load_nifti_data(file_path)
 # Preprocess the data as needed

 # Reshape the data to match the input shape
 data = np.expand_dims(data, axis=-1) # Add the grayscale channel dimension

 test_data.append(data)
 test_labels.append(0 if test_dir == "healthy" else 1)
 except Exception as e:
 print(f"Error: Failed to load {file}. Error message: {str(e)}")

Convert the test data and labels to numpy arrays
test_data = np.array(test_data)
test_labels = np.array(test_labels)

Load the saved model
model = keras.models.load_model("1modelo.h5")

Set the device to CPU for evaluation
with tf.device("CPU"):
 # Evaluate the model on the test set
 loss, accuracy = model.evaluate(test_data, test_labels)
 print(f"Test loss: {loss}")
 print(f"Test accuracy: {accuracy}")

This code applies random rotations, flips, and Gaussian noise to the NIfTI files in the input directory and saves both the original and
augmented versions in the output directory.

import os
import numpy as np
import random
import shutil
import nibabel as nib

from scipy.ndimage import rotate

Álvaro Serra i Parri

48

from scipy.ndimage import gaussian_filter

def augment_data(input_data):
 # Random rotation
 rotation_angle = random.uniform(-10, 10)
 input_data = rotate(input_data, rotation_angle, reshape=False)

 # Random flipping
 flip_axis = random.choice([0, 1, 2])
 input_data = np.flip(input_data, axis=flip_axis)

 # Random Gaussian noise
 noise_std = random.uniform(0, 0.1)
 input_data += np.random.normal(0, noise_std, input_data.shape)

 return input_data

def augment_and_save_files(input_dir, output_dir):
 for category in os.listdir(input_dir):
 input_category_dir = os.path.join(input_dir, category)
 if os.path.isdir(input_category_dir):
 output_category_dir = os.path.join(output_dir, category)
 os.makedirs(output_category_dir, exist_ok=True)

 for filename in os.listdir(input_category_dir):
 if filename.endswith(".nii"):
 file_path = os.path.join(input_category_dir, filename)

 # Load NIfTI file
 img = nib.load(file_path)
 data = img.get_fdata()

 # Extract filename without extension
 file_name = os.path.splitext(filename)[0]

 # Save original file
 output_filename_original = os.path.join(output_category_dir, "original_" +
file_name + ".nii")
 original_img = nib.Nifti1Image(data, img.affine, img.header)
 nib.save(original_img, output_filename_original)

 # Apply data augmentation
 augmented_data = augment_data(data)

 # Save augmented file
 output_filename_augmented = os.path.join(output_category_dir, "augmented_" +
file_name + ".nii")
 augmented_img = nib.Nifti1Image(augmented_data, img.affine, img.header)
 nib.save(augmented_img, output_filename_augmented)

Set the directories
train_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64\train"
output_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64_augmented"

Create the output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)

Perform data augmentation and save original and augmented files
augment_and_save_files(train_data_dir, output_dir)

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import nibabel as nib
from sklearn.model_selection import train_test_split
import os
import pickle

Check if a GPU is available
if tf.config.list_physical_devices('GPU'):

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

49

 print("Running on GPU")
else:
 print("Running on CPU")

Load NIfTI data and preprocess it
def load_nifti_data(file_path):
 img = nib.load(file_path)
 data = img.get_fdata()
 return data

Set the paths to your NIfTI data
train_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64_augmented\train"
val_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64_augmented\val"
test_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64_augmented\test"

Load and preprocess the training data
train_data = []
train_labels = []
train_dirs = ["healthy", "tumorous"] # Subfolders within the train directory
for train_dir in train_dirs:
 dir_path = os.path.join(train_data_dir, train_dir)
 train_files = os.listdir(dir_path)
 for file in train_files:
 try:
 file_path = os.path.join(dir_path, file)
 if train_dir == "healthy":
 patient_number = file.split(".")[0][-3:] # Extract the patient number from the file
name
 else:
 patient_number = file.split(".")[0][-5:] # Extract the patient number from the file
name
 data = load_nifti_data(file_path)
 # Preprocess the data as needed

 # Reshape the data to match the input shape
 data = np.expand_dims(data, axis=-1) # Add the grayscale channel dimension

 train_data.append(data)
 train_labels.append(0 if train_dir == "healthy" else 1)
 except Exception as e:
 print(f"Error: Failed to load {file}. Error message: {str(e)}")

Load and preprocess the validation data
val_data = []
val_labels = []
val_dirs = ["healthy", "tumorous"] # Subfolders within the validation directory
for val_dir in val_dirs:
 dir_path = os.path.join(val_data_dir, val_dir)
 val_files = os.listdir(dir_path)
 for file in val_files:
 try:
 file_path = os.path.join(dir_path, file)
 if val_dir == "healthy":
 patient_number = file.split(".")[0][-3:] # Extract the patient number from the file
name
 else:
 patient_number = file.split(".")[0][-5:] # Extract the patient number from the file
name
 data = load_nifti_data(file_path)
 # Preprocess the data as needed

 # Reshape the data to match the input shape
 data = np.expand_dims(data, axis=-1) # Add the grayscale channel dimension

 val_data.append(data)
 val_labels.append(0 if val_dir == "healthy" else 1)
 except Exception as e:
 print(f"Error: Failed to load {file}. Error message: {str(e)}")

Convert the data and labels to numpy arrays
train_data = np.array(train_data)
train_labels = np.array(train_labels)
val_data = np.array(val_data)

Álvaro Serra i Parri

50

val_labels = np.array(val_labels)

seed = 99

Define the model architecture
model = keras.Sequential(
 [
 layers.Input(shape=train_data[0].shape), # Add the channel dimension
 layers.Conv3D(32, kernel_size=(3, 3, 3), activation="relu"),
 layers.MaxPooling3D(pool_size=(2, 2, 2)),
 layers.Conv3D(64, kernel_size=(3, 3, 3), activation="relu"),
 layers.MaxPooling3D(pool_size=(2, 2, 2)),
 layers.Conv3D(128, kernel_size=(3, 3, 3), activation="relu"),
 layers.MaxPooling3D(pool_size=(2, 2, 2)),
 layers.Flatten(),
 layers.Dense(64, activation="relu"),
 layers.Dropout(0.5),
 layers.Dense(1, activation="sigmoid"),
]
)

Compile the model
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])

Running on GPU

Train the model
with tf.device("CPU"):
 history = model.fit(train_data, train_labels, batch_size=8, epochs=10, validation_data=(val_data,
val_labels))

Save the model
model.save('modeloaumentado.h5')

Save the history as a file
with open('historymodeloaumentado.pickle', 'wb') as f:
 pickle.dump(history.history, f)

import numpy as np
import tensorflow as tf
from tensorflow import keras
import nibabel as nib
import os

Check if a GPU is available
if tf.config.list_physical_devices('GPU'):
 print("Running on GPU")
else:
 print("Running on CPU")

Load NIfTI data and preprocess it
def load_nifti_data(file_path):
 img = nib.load(file_path)
 data = img.get_fdata()
 return data

Set the path to your test data directory
test_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64_augmented\test"

Load and preprocess the test data
test_data = []
test_labels = []
test_dirs = ["healthy", "tumorous"] # Subfolders within the test directory
for test_dir in test_dirs:
 dir_path = os.path.join(test_data_dir, test_dir)
 test_files = os.listdir(dir_path)
 for file in test_files:
 try:
 file_path = os.path.join(dir_path, file)
 if test_dir == "healthy":
 patient_number = file.split(".")[0][-3:] # Extract the patient number from the file

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

51

name
 else:
 patient_number = file.split(".")[0][-5:] # Extract the patient number from the file
name
 data = load_nifti_data(file_path)
 # Preprocess the data as needed

 # Reshape the data to match the input shape
 data = np.expand_dims(data, axis=-1) # Add the grayscale channel dimension

 test_data.append(data)
 test_labels.append(0 if test_dir == "healthy" else 1)
 except Exception as e:
 print(f"Error: Failed to load {file}. Error message: {str(e)}")

Convert the test data and labels to numpy arrays
test_data = np.array(test_data)
test_labels = np.array(test_labels)

Load the saved model
model = keras.models.load_model("modeloaumentado.h5")

Set the device to CPU for evaluation
with tf.device("CPU"):
 # Evaluate the model on the test set
 loss, accuracy = model.evaluate(test_data, test_labels)
 print(f"Test loss: {loss}")
 print(f"Test accuracy: {accuracy}")

This code snippet loads a history file containing training and validation metrics and plots the training accuracy, training loss,
validation accuracy, and validation loss using matplotlib.

import pickle
import matplotlib.pyplot as plt

Specify the path to the directory where the history file is located
history_dir = r"E:\PFG\Resultados"

Load the history from file
history_file = os.path.join(history_dir, "historymodeloaumentado.pickle")
with open(history_file, 'rb') as f:
 history = pickle.load(f)

Plot the training and validation metrics
fig, ax = plt.subplots(1, 2, figsize=(20, 3))
ax = ax.ravel()

for i, metric in enumerate(["accuracy", "loss"]):
 ax[i].plot(history[metric])
 ax[i].plot(history["val_" + metric])
 ax[i].set_title("Model {}".format(metric))
 ax[i].set_xlabel("Epochs")
 ax[i].set_ylabel(metric)
 ax[i].legend(["Train", "Validation"])

plt.show()

This code snippet demonstrates how to make predictions on a single scan using two different models and plot slices of the scan data.

import random
import matplotlib.pyplot as plt

Assuming you have loaded and compiled the first model previously
model.load_weights("2modelo.h5") # Load the saved weights

Assuming you have loaded and compiled the second model previously
second_model = keras.models.load_model("modeloaumentado.h5")

Select a random scan index from the test dataset
scan_index = random.randint(0, len(test_data)-1)

Álvaro Serra i Parri

52

Make predictions on a single scan using the first model
scan_data = test_data[scan_index] # Get the data of the scan

Reshape the scan data if necessary (assuming the shape is (128, 128, 64, 1))
scan_data = scan_data.squeeze(axis=-1)

prediction = model.predict(np.expand_dims(scan_data, axis=0))[0]
scores = [1 - prediction[0], prediction[0]]

class_names = ["healthy", "tumorous"]
for score, name in zip(scores, class_names):
 print(
 "First Model: This model is %.2f percent confident that the scan is %s"
 % ((100 * score), name)
)

Make predictions on the same scan using the second model
second_prediction = second_model.predict(np.expand_dims(scan_data, axis=0))[0]
second_scores = [1 - second_prediction[0], second_prediction[0]]

for score, name in zip(second_scores, class_names):
 print(
 "Second Model: This model is %.2f percent confident that the scan is %s"
 % ((100 * score), name)
)

Plot slices of the scan data
num_slices = scan_data.shape[-1]
slices_to_plot = [int(num_slices/4), int(num_slices/2), int(3*num_slices/4)] # Choose slices to plot

fig, ax = plt.subplots(1, len(slices_to_plot), figsize=(15, 5))
for i, slice_index in enumerate(slices_to_plot):
 ax[i].imshow(scan_data[:, :, slice_index], cmap="gray")
 ax[i].axis("off")
 ax[i].set_title("Slice {}".format(slice_index+1))

plt.tight_layout()
plt.show()

This code snippet performs the evaluation of a trained model on the test set and plots the Receiver Operating Characteristic (ROC)
curve.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import tensorflow as tf
from tensorflow import keras
import nibabel as nib
import os

Check if a GPU is available
if tf.config.list_physical_devices('GPU'):
 print("Running on GPU")
else:
 print("Running on CPU")

Load NIfTI data and preprocess it
def load_nifti_data(file_path):
 img = nib.load(file_path)
 data = img.get_fdata()
 return data

Set the path to your test data directory
test_data_dir = r"E:\PFG\DataDirectory\split_data_cropped_augmented_nifti_128x128x64_augmented\test"

Load and preprocess the test data
test_data = []
test_labels = []
test_dirs = ["healthy", "tumorous"] # Subfolders within the test directory
for test_dir in test_dirs:
 dir_path = os.path.join(test_data_dir, test_dir)

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

53

 test_files = os.listdir(dir_path)
 for file in test_files:
 try:
 file_path = os.path.join(dir_path, file)
 if test_dir == "healthy":
 patient_number = file.split(".")[0][-3:] # Extract the patient number from the file
name
 else:
 patient_number = file.split(".")[0][-5:] # Extract the patient number from the file
name
 data = load_nifti_data(file_path)
 # Preprocess the data as needed

 # Reshape the data to match the input shape
 data = np.expand_dims(data, axis=-1) # Add the grayscale channel dimension

 test_data.append(data)
 test_labels.append(0 if test_dir == "healthy" else 1)
 except Exception as e:
 print(f"Error: Failed to load {file}. Error message: {str(e)}")

Convert the test data and labels to numpy arrays
test_data = np.array(test_data)
test_labels = np.array(test_labels)

Load the saved model
model = keras.models.load_model("modeloaumentado.h5")

Set the device to CPU for evaluation
with tf.device("CPU"):
 # Evaluate the model on the test set
 loss, accuracy = model.evaluate(test_data, test_labels)
 print(f"Test loss: {loss}")
 print(f"Test accuracy: {accuracy}")

 # Make predictions on the test set
 predictions = model.predict(test_data)

Compute the false positive rate (fpr), true positive rate (tpr), and thresholds
fpr, tpr, thresholds = roc_curve(test_labels, predictions)

Compute the area under the ROC curve (AUC)
roc_auc = auc(fpr, tpr)

Plot the ROC curve
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

Álvaro Serra i Parri

54

Annex C: Budget

EQUIPMENT BUDGET

Price (€)

 Usage time

(hours)
Reference Description

Average

Amortiza-

tion Cost

(per hour)

Total

350
HP Victus

16-e0090ns
Computer 3.10 1088.00

Total

Equipment

1088.00

SOFTWARE BUDGET

Price (€)

 Usage time

(hours)
Reference Description

Average

Amortiza-

tion Cost

(per hour)

Total

350 - Licence Python 0 0.0

Total software 0.0

TRAINING BUDGET

Price (€)

 Usage time

(hours)
Reference Description

Unitary

Total

35 PCEP-30-xx Certified

Entry-Level

Python Pro-

grammer

84.90 84.90

40 PCAP-31-xx Certified

Associate in

Python Pro-

gramming

319.00 319.00

45 PCAD-31-xx Certified

Associate in

Data Analy-

sis with Py-

thon

319.00 319.00

Total
722.90

Implementation of a Model for Detection and Classification of Brain Tumours in Magnetic Resonance Imaging using

Convolutional Neural Networks

55

LABOR COST BUDGET

Task
Duration

(hours)

Price (€)

Unitary Total

Student Dedi-

cation
375 25.00 9375

Total Labor Cost 9375

BUDGET SUMMARY

Category
Amount (€)

Partial Acumulated

Training 722.90 722.90

Consumables 0.00 722.90

Equipment 1088.00 1810.90

Software 0.0 1810.90

Labor Cost 9375.00 11185.90

Indirect Costs (10%) 1118.59

Total without VAT 12304.49

Total with VAT 14888.43

