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Abstract 

The liquid phase formation temperatures of the quinary system W-C-Co-Fe-Ni with a ratio of 

Fe:Co:Ni = 40:20:40 were determined by means of DSC analysis. Besides, the experimental C-

window of this system with a binder content of 14.3 ± 2 wt.% is accurately defined. Based on the 

experimental results, a thermodynamic modelling is carried out using the CALPHAD approach. 

Temperature-composition sections of the W-C-Co-Fe-Ni system with different binder contents are 

calculated to verify the rationality of the present modelling. There is a good correlation between 

the experimental and calculated results showing that the experimental data can be well 

reproduced by the present modelling. 

 

1. Introduction 

It is well known that partial or total substitution of Co in cemented carbides is an important issue 

for the hardmetal industry [1]. Among these alternative cemented carbides, those based on WC-

Fe-Ni-Co powder mixtures have been extensively studied due to their good combination of fatigue 

strength and fracture toughness [2,3]. According to different authors, larger carbon windows are 

obtained by combining Fe, Ni and Co, especially for compositions within the austenitic range [4, 

5]. 

Revised manuscript (clean version)
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Among them, the alloy consisting of 40wt.%Fe-40wt.%Ni-20wt.%Co is one of the most promising 

due to its relatively wide C window and its high toughness compared with other Fe-Ni-Co based 

compositions [4]. 

Guillermet [6] established a thermodynamic database of the Co-Fe-Ni-W-C system. However, his 

results need more experimental data to improve the accuracy of this database [7]. 

Lengauer et al. [8] have constructed a thermodynamic description of the W-C-Co-Fe-Ni system 

by applying the Calphad approach to provide a general revision for the C-Co-Fe-Ni-W database. 

They study the four-phase equilibria, i.e., L + WC + fcc + M6C and L + WC + fcc + graphite, and 

give maximum and minimum melting temperatures of binders for favourable hardmetals within 

the WC + fcc window. 

Nevertheless, few experimental data on the two four-phase transformations, C-window and 

mechanical properties in the C-Co-Fe-Ni-W system are available in the literature. Thus, in the 

present work the main goal is to focus on the quinary system C-Co-Fe-Ni-W with a binder content 

of 14.3 ± 2 wt% and a ratio of Fe:Co:Ni = 40:20:40. The microstructure of the alloys and their 

correspondence liquid phase formation temperatures are given, not only for the four-phase 

equilibria, i.e., L + WC + fcc + M6C and L + WC + fcc + graphite, but also for the three-phase 

equilibria, i.e., L + WC+ fcc, that corresponds to the alloys within the C-window. Besides, a study 

of the effect of binder content on the carbon window which is defined precisely and it is very 

important for industrial processing. Finally, the thermodynamic parameters of Guillermet and 

Lengauer et al. [6,8] were studied thoroughly to provide a new thermodynamic description for this 

quinary system. 

 

 
2. Experimental procedure 

Over 10 different compositions have been prepared with these materials in order to define with 

precision the compositional ranges free of precipitation of undesired phases. A selection of 4 

alloys are included in Table 1. In the case of alloys 1 and 4 the W or C content was adjusted to 

ensure the appearance of M6C or graphite respectively. The other compositions included in Table 

1 are those corresponding to the upper (alloy 3) and lower (alloy 2) bounds of the corresponding 

C windows. The total metallic content was 14.3 ± 2 wt%. The ratio between Fe, Ni and Co was 

40/40/20 (in wt%) in all cases. Powder processing and sintering of these materials have already 

been described elsewhere [9]. C contents were measured by means of infrared spectrometry both 



in green compacts and sintered materials. Standard ISO 3369 was used for density 

measurements. Sintered specimens were ground and polished down to 1 μm diamond paste for 

microstructural analysis, which was carried out by optical and scanning electron microscopy 

(FEG-SEM) and energy dispersive X-ray spectroscopy (EDS). For each DSC analysis, about 

100–150 mg of mixed powder was used. The powder was pressed into an Al2O3 crucible,which 

was then subjected to DSC investigations using a TGA/DSC Setaram Setsys Evolution 16/18. 

DSC samples were cubes of aprox. 1 mm side. The heating cycle consisted of a heating ramp of 

10 °C/min up to 1450 °C. Dwelling time at this temperature was 10 min. Argon at atmospheric 

pressure was used as a protective atmosphere. The onset temperature is known as the 

intersection between the extrapolated base line and endothermic peak onset, indicating the liquid-

phase formation in the sample. In all cases, the heating and cooling cycles was repeated thrice. 

Since the first heating ramp of un-sintered powder mixture regards to an alloying process, the 

temperature at which the thermal signal appear may not be a real equilibrium, the onset 

temperature of the third heating ramp was considered as the liquid-phase formation temperature 

in the present work. 

 

3. Thermodynamic models 

In the present modelling, the Gibbs Energy functions for pure elements C, Co, Fe, Ni, and W are 

taken from the SGTE compilation by Dinsdale [10]. The liquid phase is described by a 

substitutional solution model, and its Gibbs Energy expression is described by the following 

polynomial [11]: 

𝐺𝑚
𝐿 = ∑ 𝑥𝑖𝑖 𝐺𝑖

𝐿 + 𝑅𝑇 ∑ 𝑥𝑖𝑖 𝑙𝑛𝑥𝑖 + ∑ 𝑥𝑖𝑖≠𝑗 𝑥𝑗𝐿𝑖,𝑗
𝐿 + ∑ 𝑥𝑖𝑖≠𝑗≠𝑘 𝑥𝑗𝑥𝑘𝐿𝑖,𝑗,𝑘

𝐿 + ∑ 𝑥𝑖𝑖≠𝑗≠𝑘≠𝑙 𝑥𝑗𝑥𝑘𝑥𝑙𝐿𝑖,𝑗,𝑘,𝑙
𝐿              (1)  

where 𝑅 is the gas constant, 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 , and 𝑥𝑙 (i, j, k, and l represents C, Co, Fe, Ni, and W) are 

the mole fraction of elements i, j, k, and l, respectively. The standard element reference (SER) 

state, i.e., the stable structure of the element at 25 °C and 1 bar, is used as the reference state 

of Gibbs Energy. 

 𝐿𝑖,𝑗
𝐿 ,  𝐿𝑖,𝑗,𝑘

𝐿 , and 𝐿𝑖,𝑗,𝑘,𝑙
𝐿  are the binary, ternary, and quaternary interaction parameters, respectively. 

The L parameters can be composition dependent, usually only in ternary systems and then will 

be defined by: 

  𝐿𝑖,𝑗,𝑘 =  𝑥𝑖𝐿1 + 𝑥𝑗𝐿2 + 𝑥𝑘𝐿3                                                                                                           (2) 



The solid solution phases are described using sublattice models developed by Hillert and 

Staffansson [12]. A solid solution phase may be described with the two-, three-, or four-sublattice 

model based on its crystallography. Taking the two-sublattice (Co,Fe,Ni,W)a(C,Va)c as an 

example, the first sublattice is a substitutional one occupied by Co, Fe, Ni, and W atoms, while 

the second sublattice is an interstitial one occupied by C atoms and vacancies. The symbols a 

and c denote the amounts of sites on each sublattice and have values of a = 1 and c = 1 for the 

fcc phase, a = 1 and c = 3 for the bcc phase, and a = 1 and c = 0.5 for the hcp phase. For one 

formula unit of (Co,Fe,Ni,W)a(C,Va)c, the Gibbs Energy is expressed as follows: 

 𝐺𝑚
𝜙

= ∑ (𝑦𝑖
′

𝑖 𝑦𝐶
′′𝐺𝑖:𝐶

𝜙
+ 𝑦𝑖

′𝑦𝑉𝑎
′′ 𝐺𝑖:𝑉𝑎

𝜙
) + 𝑅𝑇(𝑎 ∑ 𝑦𝑖

′
𝑖 𝑙𝑛𝑦𝑖

′ + 𝑐𝑦𝑐
′′𝑙𝑛𝑦𝑐

′′ + 𝑐𝑦𝑉𝑎
′′ 𝑙𝑛𝑦𝑉𝑎

′′ ) + ∑ 𝑦𝑖
′

𝑖 𝑦𝐶
′′𝑦𝑉𝑎

′′ 𝐿𝑖:𝐶,𝑉𝑎
𝜙

+

             ∑ 𝑦𝑖
′

𝑖≠𝑗 𝑦𝑗
′𝑦𝐶

′′𝐿𝑖,𝑗:𝐶
𝜙

+ ∑ 𝑦𝑖
′

𝑖≠𝑗 𝑦𝑗
′𝑦𝑉𝑎

′′ 𝐿𝑖,𝑗:𝑉𝑎
𝜙

+ ∑ 𝑦𝑖
′

𝑖≠𝑗 𝑦𝑗
′𝑦𝐶

′′𝑦𝑉𝑎
′′ 𝐿𝑖,𝑗:𝐶,𝑉𝑎

𝜙
+ ∑ 𝑦𝑖

′
𝑖≠𝑗≠𝑘 𝑦𝑗

′𝑦𝑘
′ 𝑦𝐶

′′𝐿𝑖,𝑗,𝑘:𝐶
𝜙

+

             ∑ 𝑦𝑖
′

𝑖≠𝑗≠𝑘 𝑦𝑗
′𝑦𝑘

′ 𝑦𝑉𝑎
′′ 𝐿𝑖,𝑗,𝑘:𝑉𝑎

𝜙
+ 𝐺𝑚

𝑚𝑎𝑔𝑛,𝜙
                                                                                    (3) 

where 𝑦𝑖
′, 𝑦𝑗

′ , and 𝑦𝑘
′   are the site fractions of i, j, and k (i, j, k represents Fe, Co, Ni, or W) in the 

first sublattice, and 𝑦𝐶
′′ and 𝑦𝑉𝑎

′′  are the site fractions of C and Va in the second sublattice. The 

parameter 𝐺𝑖:𝑉𝑎
𝜙

 is the Gibbs Energy of pure element i, and the parameter 𝐺𝑖:𝐶
𝜙

  is the Gibbs Energy 

of a hypothetical state where all the interstitial sites are completely filled with C. 𝐿𝑖,𝑗:𝑉𝑎
𝜙

 or 𝐿𝑖:𝐶,𝑉𝑎
𝜙

is 

a binary interaction parameter from the i-j or i-C sub-system. 𝐿𝑖,𝑗:𝐶
𝜙

 or 𝐿𝑖,𝑗,𝑘:𝑉𝑎
𝜙

 is a ternary interaction 

parameter from the C-i-j or i-j-k sub-system. 𝐿𝑖,𝑗,𝑘:𝐶
𝜙

 is a quaternary interaction parameter from the 

C-i-j-k sub-system. 𝐺𝑚
𝑚𝑎𝑔𝑛,𝜙

 is the magnetic contribution to the Gibbs energy. 

 

4. Thermodynamic assessment 

The thermodynamic parameters of liquid is adjusted by using the experimental data of the present 

DSC measurement. Each DSC value was given an equal weight due to the same experimental 

condition. Since the assessment covers a large number of sub-systems in the C-Co–Fe-Ni-W 

quinary system, a step-by-step modelling is explained as the following. 

Firstly, the thermodynamic parameters of sub-systems from the following literature, C-Co [13], C-

Fe [14], C-Ni [15], C-W [16], Co-Fe [17], Co-Ni [18], Co-W [19], Fe-Ni [20], Fe-W [21], Ni-W [22], 

C-Co-Fe [23], C-Co-Ni [24], C-Co-W [19], C-Fe-Ni [25], C-Fe-W [26], Co-Fe-W [27], C-Ni-W [22], 

Co-Ni-W [6, 8] , Fe-Ni-W [28], C-Co-Fe-W [6], C-Co-Ni-W [6, 8] and C-Fe-Ni-W [29], were 

collected to establish a preliminary thermodynamic database.  



Secondly, the assessment was conducted in the liquid phase by changing one by one the values 

and using the Lengauer parameters [8]. By this procedure it was shown that the Gibbs energies 

of liquid phase of Co,Ni,W and C,Co,Ni,W are the most important, and by adding only these from 

[8], the calculated results fit pretty well. 

Finally, the DSC values C-Co-Fe-Ni-W alloys were taken into account. In this step, the Gibbs 

energies of liquid phase of Co,Ni,W and C,Co,Ni,W are adjusted to reproduce the present 

experimental data. 

 

5. Results and discussion 

5.1. Microstructure and thermal analysis 

The thermodynamic parameters used in the present work are summarised in Table S1.  

Fig. 1 shows the microstructure and the C content (Table 2) of the four compositions, the alloy 1 

with eta phase, alloys 2 and 3 within the C-window and alloy 4 with free C. 

Fig. 2 shows the heating cycles of the four alloys. From the heating cycles, the melting onset is 

obtained (Table 2). Table 2 shows the displacement of melting onset to higher temperatures as 

C activity decreases, this is a well-known effect in cemented carbides. 

Table 3 presents the calculated temperatures of the four-phase transformations taking into 

account the thermodynamic parameters of Table S1 together with the presently measured DSC 

values (Table 2). The agreement of the present calculations with the experiments is excellent. In 

addition, these results are compared with the Lengauer data [8] and it can be seen that the values 

of the liquid phase formation in the four-phase transformation are pretty similar, and lie within the 

experimental uncertainties. 

5.2. Binder content, C-window and melting onset 

Tables 4 and 5 compare the calculated values of melting onset and C-window of the quinary 

system W-C-Co-Fe-Ni with different binder contents and with a ratio of Fe/Ni/Co = 40/40/20 using 

different databases. This comparison shows the importance of the binder content in the obtained 

values for the calculated C-window. It shows the shift to lower C contents when the binder content 

increases. Furthermore, when the binder content increases, the width of the carbon window 

increases as it can be shown in Tables 4 and 5. Therefore, when the binder content increases is 

less difficult to obtain materials that fulfil the requirement on the C-window. It is vital to define 

precisely the C-window to avoid secondary carbides or undesirable phases. In addition, it is 



important to take into account the loss of carbon in the sintering process. For this reason, it is 

useful to have access to accurate calculations to predict the C-window. 

The importance of the C-window and the binder content was experimentally verified by Schubert 

et al. [4] who compared the C-window of the Fe-Ni-Co-W-C system with different ratios of 

Fe:Ni:Co. In the case of Fe:Co:Ni = 40:20:40 at Fe + Co + Ni = 10 wt%, the C-window is 0.09 

which is narrower than the C-window obtained with WC–10 wt% Co hardmetals  which is about 

0.14 (Table 5). In the case of 11.8 wt% binder and Fe:Co:Ni = 40:20:40 the C-window calculated 

by Schubert et al. is 0.11. These C-window ranges obtained by Schubert et al. agrees with the 

prediction of C-window range using our database, Lengauer database and TCFE10 database 

(Tables 4 and 5). 

In our case (Tables 4 and 5), at Fe+Co+Ni = 14.3 wt% and Fe:Co:Ni = 40:20:40 the C-window is 

0.10, the same range as obtained with calculations using the Lengauer database [8]. However, it 

is 0.21 when calculated with the Guillermet database [6] and 0.13 when using the TCFE10 

database. As shown in Tables 4 and 5, in the case of our database and Lengauer database the 

C range is the same and it is pretty similar to TCFE10 database and Guillemet database. The 

difference is in the side of eta phase since the C content is different. Besides, the melting onset 

in the side of eta phase and free C is higher in our database and the Lengauer database in 

comparison to the other databases.  

Our experimental results (Table 2), not only the C-window (5.24-5.36; ΔC = 0.12) but also the 

melting onset in both sides (1366 (M6C) and 1263 (Free C)), fit pretty well with the Lengauer 

database in the case of 14.3 and 13.3 wt.% in binder content (Table 4). 

In the case of WC-Co with 13.3 and 14.3 wt% of Co in all the databases the C-window is in the 

range of 0.20 (Table 5). This means that the width of the C-window is higher in the case of Co 

binder in comparison to use Fe:Ni:Co = 40:40:20 as binder (Tables 4 and 5). Fig. 3 shows, using 

the new thermodynamic description, the comparison between the calculated section through the 

W-C-Co system and W-C-Fe-Ni-Co system at 14.3 wt.% Co and 14.3 wt.% 40Fe-40Ni-20Co. It is 

obvious the difference in C-window which is wider in the case of Co as binder and also the melting 

temperature is higher in the free C side. It is well known that Fe as binder reduces the width of 

the C-window and decreases the melting temperatures [4, 5].  Nevertheless, the C-window in the 



case of this system (Fe/Ni/Co = 40/40/20) is quite promising because is wider than other Fe:Ni:Co 

ratios [4, 30]. 

 

5.3. Calculated Phase Diagrams 

Table S1 shows the thermodynamic parameters that were used to calculate the phase diagrams 

of the quinary system W-C-Fe-Ni-Co.  

Fig. 4, Fig. 5, Fig. 6 and Fig. 7 show ternary and quaternary phase diagrams, with comparisons 

to Lengauer`s experimental data [8], to validate the modeling for the sub-systems. Besides, Table 

6 provides a comparison between the Lengauer`s DSC data and this new thermodynamic 

description. 

Fig. 4 shows the vertical sections of C-Co-W, C-Fe-W and C-Ni-W systems at 20 wt.% binder 

together with the present experimental results of Lengauer et al. [8]. In the case of the C-Co-W 

system, the calculated reaction temperatures of the two four-phase equilibria are in good 

agreement with the experimental DSC values of Lengauer et al. [8]. On the other hand, as it can 

be seen in the C-Fe-W system, the transformation temperature in the side of free C can be well 

reproduced, while in the side of M6C the present calculation shows a slight difference to the DSC 

value. Regarding the C-Ni-W system, in the side of eta phase, the agreement between the present 

calculation and the experimental value is quite good. Nevertheless, in the side of free C, there is 

a slight difference between the predicted value and the experimental value. Fig. 5 presents the 

calculated vertical section of C-Co-Fe-W system at 20 wt.% binder with Fe:Co = 85:15, 50:50, 

and 15:85, together with the present experimental results. The experimental values are a little bit 

higher than the predicted. However, there is a good correlation between the calculated values 

and the experimental values. Fig. 6 shows the calculated vertical section of the C-Co-Ni-W system 

at 20wt.% binder with Co:Ni = 85:15, 50:50, and 15:85, together with the present experimental 

results. In this case, the measured melting temperatures lie close to the calculated melting range. 

Fig. 7 presents the calculated vertical section of the C-Fe-Ni-W system at 20 wt.% binder with the 

Fe:Ni = 85:15, 50:50, and 15:85, together with the present experimental results. The experimental 

values of Lengauer et al. [8] are a little bit higher than the predicted values. Nevertheless, the fit 

between both data is pretty good. 



Fig. 8 demonstrates the vertical sections of C-Co-Fe-Ni-W at 14.3±2 wt.% binder with Fe:Co:Ni = 

40:20:40 in comparison with the present experimental results. As it is revealed, the experimental 

DSC values can be satisfactorily reproduced by the present calculation. Particularly, in the case 

of Fe+Co+Ni = 12.3 and 13.3 wt% in which the melting onset of the experimental data fits very 

well with the calculation. Besides, with a binder content of 12.3, 13.3 and 14.3 wt.% the C-window 

prediction is quite similar to the experimental C-window. 

Fig. 9 shows, using the new thermodynamic description, the vertical sections of C-Co-Fe-Ni-W at 

20 wt.% binder with Fe:Co:Ni = 62:20:18, 54:20:26, 40:20:40, 51:40:9 and 30:40:30 together with 

the experimental results of Lengauer et al. [8]. The measured melting temperatures lie close to 

the calculated melting range. Besides, Table 7 provides a comparison between the Lengauer`s 

data and this new thermodynamic description. It can be seen the good correlation between both. 

Work is in progress to analyze the C-window and melting temperatures of quinary systems C-Co-

Fe-Ni-W with different Fe:Ni:Co ratios and different binder contents. It is expected to obtain 

reliable calculations using this new thermodynamic description. 

 
6. Conclusions 

The phase transformation temperatures of three and four-phase equilibria, i.e., L + fcc + WC , L 

+ fcc + WC + M6C and L + fcc + WC + C, of WC-14.3 ± 2 wt.% Fe+Co+Ni hardmetals with a ratio 

of Fe:Co:Ni = 40:20:40 were measured. Also, the C-window was defined accurately with a binder 

content of 12.3, 13.3 and 14.3 wt.%. A thermodynamic modelling of the C-Co-Fe-Ni-W quinary 

system was conducted based on the present experimental results and literature data. To verify 

the rationality of this new database some thermodynamic calculations was carried out. 

Comparisons between experimental data and theoretical prediction show a good correlation 

between both. The combination of these experimental results with the thermodynamic predictions 

could provide an insight on the sinterability this system which is a challenge to the hardmetal 

industry. 
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Figure captions 

Fig. 1 BSE-SEM micrographs corresponding to WC-FeNiCo alloys. 

Fig. 2 DSC plots corresponding to WC-FeNiCo alloys. 

Fig. 3 Calculated vertical section of the C-Co-W at 14.3 wt.% binder (red dashed lines) and C-

Fe-Co-Ni-W system at 14.3 wt.% binder with Fe:Co:Ni = 40:20:40 (blue solid lines). 

Fig. 4 Calculated vertical section of the (a) C-Co-W system, (b) C-Fe-W and (c) C-Ni-W at 20 

wt.% binder, in comparison with Lengauer`s experimental results [8] (the red square 

symbol corresponds to Lengauer`s alloy with eta phase and the red star symbol 

corresponds to Lengauer`s alloy with free C). 

Fig. 5 Calculated vertical section of the C-Co-Fe-W system at 20 wt.% binder with Fe:Co = (a) 

85:15, (b) 50:50 and (c) 15:85 in comparison with Lengauer`s experimental results [8] (the 

red square symbol corresponds to Lengauer`s alloy with eta phase and the red star symbol 

corresponds to Lengauer`s alloy with free C). 

Fig. 6 Calculated vertical section of the C-Co-Ni-W system at 20 wt.% binder with Co:Ni = (a) 

85:15, (b) 50:50 and (c) 15:85 in comparison with Lengauer`s experimental results [8] (the 

red square symbol corresponds to Lengauer`s alloy with eta phase and the red star symbol 

corresponds to Lengauer`s alloy with free C). 

Fig. 7 Calculated vertical section of the C-Fe-Ni-W system at 20 wt.% binder with Fe:Ni = (a) 

85:15, (b) 50:50 and (c) 15:85 in comparison with Lengauer`s experimental results [8] (the 

red square symbol corresponds to Lengauer`s alloy with eta phase and the red star symbol 

corresponds to Lengauer`s alloy with free C). 

 



Fig. 8 Calculated vertical section of the C-Fe-Co-Ni-W system at (a) 12.3 wt.%, (b) 13.3 wt.%, (c) 

14.3 wt.%, (d) 15.3 wt.% and (e) 16.3 wt.% binder with Fe:Co:Ni = 40:20:40, in comparison 

with the present experimental results (the blue square symbol corresponds to alloy 1 with 

eta phase, the blue triangle symbol corresponds to alloys 2 and 3 within the C window and 

the blue star symbol corresponds to alloy 4 with free C). 

Fig. 9 Calculated vertical section of the C-Fe-Co-Ni-W system at 20 wt.% binder with Fe:Co:Ni = 

(a) 62:20:18, (b) 54:20:26, (c) 40:20:40, (d) 51:40:9 and (e) 30:40:30 in comparison with 

Lengauer`s experimental results [8] (the red square symbol corresponds to Lengauer`s 

alloy with eta phase and the red star symbol corresponds to Lengauer`s alloy with free C). 

 

 

 



 

Table 1. Composition of selected WC-Fe-Ni-Co alloys (wt%). All binder phases are based on the 

same Fe/Ni/Co ratio (in wt%): 40/40/20. 

Ref. C W Fe Ni Co 

Alloy 1    5.25  80.42 5.73 5.73 2.87 

Alloy 2    5.30  80.38 5.73 5.73 2.86 

Alloy 3 5.34 80.35 5.73 5.72 2.86 

Alloy 4    5.53  80.19 5.71 5.71 2.86 

 

 

Table 1 Click here to access/download;Table;Table 1.docx

https://www.editorialmanager.com/ijrmhm/download.aspx?id=108859&guid=b7538f37-a99b-447e-94d2-95ceb1fc4b7a&scheme=1
https://www.editorialmanager.com/ijrmhm/download.aspx?id=108859&guid=b7538f37-a99b-447e-94d2-95ceb1fc4b7a&scheme=1


Table 2. Temperatures corresponding to the measured melting onset and the C content of WC- 

FeNiCo alloys from the present work. 

Ref. Temperatures of DSC 
(°C) 

C content** (wt.%) 
 

Melting onset* 

Alloy 1 1366 5.24 ± 0.01 

Alloy 2 1360 5.28 ± 0.01 

Alloy 3 1344 5.31 ± 0.04 

Alloy 4 1263 5.36 ± 0.03 

 
* Data obtained from the heating ramp 
 
**Obtained by infrared spectrometry 

 

Table 2 Click here to access/download;Table;Table 2.docx

https://www.editorialmanager.com/ijrmhm/download.aspx?id=108860&guid=1c57f313-0fc7-4b3a-9ac3-f5ba9e7c7d49&scheme=1
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Table 3. Melting temperatures of alloys studied by DSC in comparison with calculated results. 

 

*As defined in ref. [8] 

Four-phase 
transformation 

Experimental data 
(°C) 

Thermodynamic 
prediction 

 (°C)  
Present work 

Lengauer et al. 
prediction*   

(°C) 

Lengauer et al. 
experimental data*  

(°C) 

L+fcc+WC+M6C 1366 1366 1373 1372 

L+fcc+WC+C 1263 1262 1275 1278 

Table 3 Click here to access/download;Table;Table 3.docx
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Table 4. C-window and melting onset predictions, using different databases, of W-C-Fe-Ni-Co system with Fe/Ni/Co ratio (in wt%): 40/40/20 and different binder 
contents. 

 

*As defined in ref. [6] 

** As defined in ref. [8] 

 

 
 
 
 

Ref. 
 

Databases 
 

TCFE10 Guillermet database* Lengauer database** Our database 

C-window  
(wt.%) 

Melting onset   
(°C) 

C-window  
(wt.%) 

Melting onset  
(°C) 

C-window   
(wt.%) 

Melting onset   
(°C) 

C-window   
(wt. %)  

 

Melting onset   
(°C) 

Fe:Co:Ni = 40:20:40 
10 wt.% binder 

5.47-5.56 
(ΔC = 0.09) 

1314-1282 
(M6C-Free C) 

5.42-5.56 
(ΔC = 0.14) 

1282-1229 
(M6C-Free C) 

5.49-5.57 
(ΔC = 0.08) 

1373-1275 
(M6C-Free C) 

5.49-5.57 
(ΔC = 0.08) 

1366-1262 
(M6C-Free C) 

Fe:Co:Ni = 40:20:40 
11.8 wt.% binder 

5.36-5.46 
(ΔC = 0.10) 

1314-1282 
(M6C-Free C) 

5.29-5.46 
(ΔC = 0.17) 

1282-1229 
(M6C-Free C) 

5.38-5.47 
(ΔC = 0.09) 

1373-1275 
(M6C-Free C) 

5.38-5.47 
(ΔC = 0.09) 

1366-1262 
(M6C-Free C) 

Fe:Co:Ni = 40:20:40 
12.3 wt.% binder 

5.32-5.43 
(ΔC = 0.11) 

1314-1282 
(M6C-Free C) 

5.25-5.43 
(ΔC = 0.18) 

1282-1229 
(M6C-Free C) 

5.34-5.44 
(ΔC = 0.10) 

1373-1275 
(M6C-Free C) 

5.34-5.44 
(ΔC = 0.10) 

1366-1262 
(M6C-Free C) 

Fe:Co:Ni = 40:20:40 
13.3 wt.% binder 

5.26-5.38 
(ΔC = 0.12) 

1314-1282 
(M6C-Free C) 

5.18-5.38 
(ΔC = 0.20) 

1282-1229 
(M6C-Free C) 

5.28-5.38 
(ΔC = 0.10) 

1373-1275 
(M6C-Free C) 

5.28-5.38 
(ΔC = 0.10) 

1366-1262 
(M6C-Free C) 

Fe:Co:Ni = 40:20:40 
14.3 wt.% binder 

5.19-5.32 
(ΔC = 0.13) 

1314-1282 
(M6C-Free C) 

5.11-5.32 
(ΔC = 0.21) 

1282-1229 
(M6C-Free C) 

5.22-5.32 
(ΔC = 0.10) 

1373-1275 
(M6C-Free C) 

5.22-5.32 
(ΔC = 0.10) 

1366-1262 
(M6C-Free C) 

Fe:Co:Ni = 40:20:40 
15.3 wt.% binder 

5.13-5.26 
(ΔC = 0.13) 

1314-1282 
(M6C-Free C) 

5.03-5.26 
(ΔC = 0.23) 

1282-1229 
(M6C-Free C) 

5.15-5.27 
(ΔC = 0.12) 

1373-1275 
(M6C-Free C) 

5.15-5.27 
(ΔC = 0.12) 

1366-1262 
(M6C-Free C) 

Fe:Co:Ni = 40:20:40 
16.3 wt.% binder 

5.06-5.21 
(ΔC = 0.15) 

1314-1282 
(M6C-Free C) 

4.96-5.21 
(ΔC = 0.25) 

1282-1229 
(M6C-Free C) 

5.09-5.21 
(ΔC = 0.12) 

1373-1275 
(M6C-Free C) 

5.09-5.21 
(ΔC = 0.12) 

1366-1262 
(M6C-Free C) 

Fe:Co:Ni = 40:20:40 
20 wt.% binder 

4.82-5.00 
(ΔC = 0.18) 

1314-1282 
(M6C-Free C) 

4.70-4.99 
(ΔC = 0.29) 

1282-1229 
(M6C-Free C) 

4.85-5.00 
(ΔC = 0.15) 

1373-1275 
(M6C-Free C) 

4.85-5.00 
(ΔC = 0.15) 

1366-1262 
(M6C-Free C) 

Table 4 Click here to access/download;Table;Table 4.docx
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Table 5. C-window predictions, using different databases, of W-C-Co and W-C-Fe-Ni-Co systems 

with Fe/Ni/Co ratio (in wt%): 40/40/20 and different binder contents. 

 

*As defined in ref. [6] 

** As defined in ref. [8] 

 

 

 

 
 
 
 

Ref. 
 

Databases 
 

TCFE10 Guillermet database* Lengauer database** Our database 

C-window  
 (wt.%) 

C-window  
(wt.%) 

C-window   
(wt.%) 

C-window  
 (wt.%)  

Co 
10 wt.% binder 

5.39-5.53 
(ΔC = 0.14) 

5.39-5.53 
(ΔC = 0.14) 

5.39-5.53 
(ΔC = 0.14) 

5.39-5.53 
(ΔC = 0.14) 

Fe:Co:Ni = 40:20:40 
10 wt.% binder 

5.47-5.56 
(ΔC = 0.09) 

5.42-5.56 
(ΔC = 0.14) 

5.49-5.57 
(ΔC = 0.08) 

5.49-5.57 
(ΔC = 0.08) 

Co 
11.8 wt.% binder 

5.26-5.43 
(ΔC = 0.17) 

5.26-5.43 
(ΔC = 0.17) 

5.26-5.43 
(ΔC = 0.17) 

5.26-5.43 
(ΔC = 0.17) 

Fe:Co:Ni = 40:20:40 
11.8 wt.% binder 

5.36-5.46 
 (ΔC = 0.10) 

5.29-5.46 
(ΔC = 0.17) 

5.38-5.47 
(ΔC = 0.09) 

5.38-5.47 
(ΔC = 0.09) 

Co 
12.3 wt.% binder 

5.22-5.40 
(ΔC = 0.18) 

5.22-5.40 
(ΔC = 0.18) 

5.22-5.40 
(ΔC = 0.18) 

5.22-5.40 
(ΔC = 0.18) 

Fe:Co:Ni = 40:20:40 
12.3 wt.% binder 

5.32-5.43 
(ΔC = 0.11) 

5.25-5.43 
(ΔC = 0.18) 

5.34-5.44 
(ΔC = 0.10) 

5.34-5.44 
(ΔC = 0.10) 

Co  
13.3  wt.% binder 

5.15-5.34 
(ΔC = 0.19) 

5.15-5.34 
(ΔC = 0.19) 

5.15-5.34 
(ΔC = 0.19) 

5.15-5.34 
(ΔC = 0.19) 

Fe:Co:Ni = 40:20:40 
13.3 wt.% binder 

5.26-5.38 
(ΔC = 0.12) 

5.18-5.38 
(ΔC = 0.20) 

5.28-5.38 
(ΔC = 0.10) 

5.28-5.38 
(ΔC = 0.10) 

Co  
14.3 wt.% binder 

5.08-5.28 
(ΔC = 0.20) 

5.08-5.28 
(ΔC = 0.20) 

5.08-5.28 
(ΔC = 0.20) 

5.08-5.28 
(ΔC = 0.20) 

Fe:Co:Ni = 40:20:40 
14.3 wt.% binder 

5.19-5.32 
(ΔC = 0.13) 

5.11-5.32 
(ΔC = 0.21) 

5.22-5.32 
(ΔC = 0.10) 

5.22-5.32 
(ΔC = 0.10) 

Co  
15.3 wt.% binder 

5.00-5.22 
(ΔC = 0.22) 

5.00-5.22 
(ΔC = 0.22) 

5.00-5.22 
(ΔC = 0.22) 

5.00-5.22 
(ΔC = 0.22) 

Fe:Co:Ni = 40:20:40 
15.3 wt.% binder 

5.13-5.26 
(ΔC = 0.13) 

5.03-5.26 
(ΔC = 0.23) 

5.15-5.27 
(ΔC = 0.12) 

5.15-5.27 
(ΔC = 0.12) 

Co  
16.3 wt.% binder 

4.93-5.16 
(ΔC = 0.23) 

4.93-5.16 
(ΔC = 0.23) 

4.93-5.16 
(ΔC = 0.23) 

4.93-5.16 
(ΔC = 0.23) 

Fe:Co:Ni = 40:20:40 
16.3 wt.% binder 

5.06-5.21 
(ΔC = 0.15) 

4.96-5.21 
(ΔC = 0.25) 

5.09-5.21 
(ΔC = 0.12) 

5.09-5.21 
(ΔC = 0.12) 

Co  
20 wt.% binder 

4.66-4.94 
(ΔC = 0.28) 

4.66-4.94 
(ΔC = 0.28) 

4.66-4.94 
(ΔC = 0.28) 

4.66-4.94 
(ΔC = 0.28) 

Fe:Co:Ni = 40:20:40 
20 wt.% binder 

4.82-5.00 
(ΔC = 0.18) 

4.70-4.99 
(ΔC = 0.29) 

4.85-5.00 
(ΔC = 0.15) 

4.85-5.00 
(ΔC = 0.15) 
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Table 6. Melting onset, using Lengauer experimental data [8] and the thermodynamic description 

in the present work, of ternary and quaternary systems at 20 wt.% binder. 

 

 

 
Ref. 

 

 
Lengauer et al. [8] 

 
Our database 

Melting onset experimental data 
(ºC) 

Melting onset prediction 
(ºC) 

W-C-Co 1368-1298 
(M6C-Free C) 

1368-1298 
(M6C-Free C) 

W-C-Fe  1289-1142  
(M6C-Free C) 

1265-1139 
(M6C-Free C) 

W-C-Ni 1434-1335 
(M6C-Free C) 

1438-1369 
(M6C-Free C) 

W-C-Co-Fe 
(Co-Fe = 85:15) 

1353-1277 
(M6C-Free C) 

1347-1269 
(M6C-Free C) 

W-C-Co-Fe 
(Co-Fe = 50:50) 

1321-1223 
(M6C-Free C) 

1305-1190 
(M6C-Free C) 

W-C-Co-Fe 
 (Co-Fe = 15:85) 

1298-1163 
  (M6C-Free C)  

1273-1142 
 (M6C-Free C) 

W-C-Co-Ni 
(Co-Ni = 85:15) 

1378-1304 
(M6C-Free C) 

1373-1301 
(M6C-Free C) 

W-C-Co-Ni 
(Co-Ni = 50:50) 

1403-1319 
(M6C-Free C) 

1380-1304 
(M6C-Free C) 

W-C-Co-Ni 
(Co-Ni = 15:85) 

1425-1329 
(M6C-Free C) 

1390-1310 
(M6C-Free C) 

W-C-Fe-Ni 
(Fe-Ni = 85:15) 

1317-1180 
(M6C-Free C) 

1270-1151 
(M6C-Free C) 

W-C-Fe-Ni 
(Fe-Ni = 50:50) 

1367-1266 
(M6C-Free C) 

1317-1236 
(M6C-Free C) 

W-C-Fe-Ni 
(Fe-Ni = 15:85) 

1414-1330 
(M6C-Free C) 

1385-1327 
(M6C-Free C) 
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Table 7. C-window prediction and melting onset, using Lengauer data [8] and the thermodynamic 

description in the present work, of W-C-Fe-Ni-Co system at 20 wt.% binder and different 

Fe/Co/Ni ratios. 

 

 

 
 
 
 

Ref. 
 

 
Lengauer et al. [8] 

 
Our database 

C-window 
prediction 

(wt.%) 

Melting onset 
experimental data 

(ºC) 

C-window 
prediction 

(wt.%)  

Melting onset 
prediction 

(ºC) 

Fe:Co:Ni = 62:20:18 
20 wt.% binder 

4.99-5.11 
(ΔC = 0.12) 

1339-1220 
(M6C-Free C) 

4.99-5.11 
(ΔC = 0.12) 

1310-1192 
(M6C-Free C) 

Fe:Co:Ni = 54:20:26 
20 wt.% binder 

4.94-5.07 
( ΔC = 0.13) 

 1352-1241  
(M6C-Free C) 

4.94-5.07 
(ΔC = 0.13) 

1329-1215 
(M6C-Free C) 

Fe:Co:Ni = 40:20:40 
20 wt.% binder 

4.85-5.00 
( ΔC = 0.15) 

1373-1275 
(M6C-Free C) 

4.85-5.00 
(ΔC = 0.15) 

1366-1262 
(M6C-Free C) 

Fe:Co:Ni = 51:40:9 
20 wt.% binder 

4.96-5.10 
(ΔC = 0.14) 

1337-1230 
(M6C-Free C) 

4.96-5.10 
(ΔC = 0.14) 

1327-1205 
(M6C-Free C) 

Fe:Co:Ni = 30:40:30 
20 wt.% binder 

4.86-4.97 
(ΔC = 0.11) 

1371-1283 
(M6C-Free C) 

4.86-4.97 
(ΔC = 0.11) 

1421-1290 
(M6C-Free C) 
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Table S1. Summary of the thermodynamic parameters in the C-Co-Fe-Ni-W systema. 

Liquid: (C,Co,Fe,Ni,W)1 

𝐿𝐶,𝐶𝑜,𝐹𝑒
𝑙𝑖𝑞𝑢𝑖𝑑

= 11,646 −  5.657 ∗  T  

𝐿𝐶,𝐶𝑜,𝑁𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

= 50,462 −  27.562 ∗  T 

𝐿𝐶,𝐶𝑜,𝑊
𝑙𝑖𝑞𝑢𝑖𝑑

= (12,770 − 22.9 ∗ 𝑇)𝑋𝐶 

𝐿𝐶,𝐹𝑒,𝑁𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

= (122,200 − 58.8 ∗ 𝑇)𝑋𝐶 + (92,200 − 58.8 ∗ 𝑇)𝑋𝐹𝑒 + (152,200 − 58.8 ∗ 𝑇)𝑋𝑊 

𝐿𝐶,𝐹𝑒,𝑊
𝑙𝑖𝑞𝑢𝑖𝑑

= (−60,600 − 71 ∗ 𝑇)𝑋𝐶 + (6,400 − 71 ∗ 𝑇)𝑋𝐹𝑒 + (73,400 − 71 ∗ 𝑇)𝑋𝑊 

𝐿𝐶,𝑁𝑖,𝑤
𝑙𝑖𝑞𝑢𝑖𝑑

= (1100000 − 300 ∗ 𝑇)𝑋𝐶 − 235,500𝑋𝑁𝑖 + (480,000 − 150 ∗ 𝑇)𝑋𝑊 

𝐿𝐶𝑜,𝐹𝑒,𝑊
𝑙𝑖𝑞𝑢𝑖𝑑

= 11,287𝑋𝐹𝑒 

𝐿𝐶𝑜,𝑁𝑖,𝑊
𝑙𝑖𝑞𝑢𝑖𝑑

= 24,655𝑋𝑁𝑖 

𝐿𝐹𝑒,𝑁𝑖,𝑊
𝑙𝑖𝑞𝑢𝑖𝑑

= 14,621𝑋𝐹𝑒 + 64,236𝑋𝑁𝑖 − 84,842𝑋𝑊 

𝐿𝐶,𝐶𝑜,𝑁𝑖,𝑊
𝑙𝑖𝑞𝑢𝑖𝑑

= 532,157 

𝐿𝐶,𝐹𝑒,𝑁𝑖,𝑊
𝑙𝑖𝑞𝑢𝑖𝑑

= −400,825 

fcc: (Co,Fe,Ni,W)1(C, Va)1 

𝐿𝐶𝑜,𝐹𝑒:𝐶
𝑓𝑐𝑐

= 313 − 1063 (𝑦𝐶𝑜
′ − 𝑦𝐹𝑒

′ ) 

𝐿𝐶𝑜,𝑁𝑖:𝐶
𝑓𝑐𝑐

= 18,289 − 9924 (𝑦𝐶𝑜
′ − 𝑦𝑁𝑖

′ ) 

𝐿𝐶𝑜,𝑊:𝐶
𝑓𝑐𝑐

= 87,040 

𝐿𝐹𝑒,𝑁𝑖:𝐶
𝑓𝑐𝑐

= 49,074 − 7.32 ∗ 𝑇 − 25,800 (𝑦𝐹𝑒
′ − 𝑦𝑁𝑖

′ ) 

𝐿𝐹𝑒,𝑊:𝐶
𝑓𝑐𝑐

= −116,756 + 100 ∗ 𝑇 

𝐿𝐹𝑒,𝑁𝑖,𝑤
𝑓𝑐𝑐

= −35,044 𝑦𝐹𝑒
′ + 50,436𝑦𝑁𝑖

′ ) 

𝐿𝐶𝑜,𝐹𝑒,𝑁𝑖:𝐶
𝑓𝑐𝑐

= −61,862 

 

bcc: (Co,Fe,Ni,W)1(C, Va)3 

𝐿𝐶𝑜,𝑁𝑖:𝐶
𝑏𝑐𝑐 = 6000 

𝐿𝐶𝑜,𝑊:𝐶
𝑏𝑐𝑐 = −100,000 

𝐿𝐹𝑒,𝑁𝑖:𝐶
𝑏𝑐𝑐 = −956.63 − 1.28726 ∗ 𝑇 + (1789.03 − 1.92912 ∗ 𝑇)(𝑦𝐹𝑒

′ − 𝑦𝑁𝑖
′ ) 

𝐿𝐹𝑒,𝑊:𝐶
𝑏𝑐𝑐 = −140,000 



hcp: (Co,Fe,Ni,W)1(C, Va)0.5 

𝐿𝐶𝑜,𝐹𝑒:𝐶
ℎ𝑐𝑝

= 8000 

𝐿𝐶𝑜,𝑁𝑖:𝐶
ℎ𝑐𝑝

= 6000 

𝐿𝐶𝑜,𝑊:𝐶
ℎ𝑐𝑝

= 117,000 

𝐿𝐹𝑒,𝑁𝑖:𝐶
ℎ𝑐𝑝

= 49,074 − 7.32 ∗ 𝑇 − 25,800(𝑦𝐹𝑒
′ − 𝑦𝑁𝑖

′ ) 

𝐿𝐹𝑒,𝑊:𝐶
ℎ𝑐𝑝

= −116,755 + 100 ∗ 𝑇 

𝐿𝑁𝑖,𝑊:𝐶
ℎ𝑐𝑝

= 2,556 + 11.6 ∗ 𝑇 − 52,900(𝑦𝑁𝑖
′ − 𝑦𝑤

′ ) 

 

M6C: (Co,Fe,Ni)2 W2(Co,Fe,Ni,W)2C1 

𝐺𝐶𝑜:𝑊:𝐶𝑜:𝐶
𝑀6𝐶 − 4𝐺𝐶𝑜

ℎ𝑐𝑝
− 2𝐺𝑊

𝑏𝑐𝑐 − 𝐺𝐶
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

= 2,216 − 29.48 ∗ 𝑇 

𝐺𝐶𝑜:𝑊:𝑊:𝐶
𝑀6𝐶 − 2𝐺𝐶𝑜

ℎ𝑐𝑝
− 4𝐺𝑊

𝑏𝑐𝑐 − 𝐺𝐶
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

= −27,554 − 29.48 ∗ 𝑇 

𝐺𝐹𝑒:𝑊:𝐹𝑒:𝐶
𝑀6𝐶 − 4𝐺𝐹𝑒

𝑏𝑐𝑐 − 2𝐺𝑊
𝑏𝑐𝑐 − 𝐺𝐶

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
= −63,120 + 20.14 ∗ 𝑇 

𝐺𝐹𝑒:𝑊:𝑊:𝐶
𝑀6𝐶 − 2𝐺𝐹𝑒

𝑏𝑐𝑐 − 4𝐺𝑊
𝑏𝑐𝑐 − 𝐺𝐶

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
= −69,540 + 20.14 ∗ 𝑇 

𝐺𝑁𝑖:𝑊:𝑁𝑖:𝐶
𝑀6𝐶 − 4𝐺𝑁𝑖

𝑓𝑐𝑐
− 2𝐺𝑊

𝑏𝑐𝑐 − 𝐺𝐶
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

= −8,700 − 4.7 ∗ 𝑇 

𝐺𝑁𝑖:𝑊:𝑊:𝐶
𝑀6𝐶 − 2𝐺𝑁𝑖

𝑓𝑐𝑐
− 4𝐺𝑊

𝑏𝑐𝑐 − 𝐺𝐶
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

= −55,500 − 4.7 ∗ 𝑇 

𝐺𝐶𝑜:𝑊:𝐹𝑒:𝐶
𝑀6𝐶 − 2𝐺𝐶𝑜

ℎ𝑐𝑝
− 2𝐺𝑊

𝑏𝑐𝑐 − 2𝐺𝐹𝑒
𝑏𝑐𝑐 − 𝐺𝐶

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
= 2,216 − 29.48 ∗ 𝑇 

𝐺𝐹𝑒:𝑊:𝐶𝑜:𝐶
𝑀6𝐶 − 2𝐺𝐹𝑒

𝑏𝑐𝑐 − 2𝐺𝑊
𝑏𝑐𝑐 − 2𝐺𝐶𝑜

ℎ𝑐𝑝
− 𝐺𝐶

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
= −72,000 + 20 ∗ 𝑇 

𝐺𝐶𝑜:𝑊:𝑁𝑖:𝐶
𝑀6𝐶 − 2𝐺𝐶𝑜

ℎ𝑐𝑝
− 2𝐺𝑊

𝑏𝑐𝑐 − 2𝐺𝑁𝑖
𝑓𝑐𝑐

− 𝐺𝐶
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

= 2,216 − 29.48 ∗ 𝑇 

𝐺𝑁𝑖:𝑊:𝐶𝑜:𝐶
𝑀6𝐶 − 2𝐺𝑁𝑖

𝑓𝑐𝑐
− 2𝐺𝑊

𝑏𝑐𝑐 − 2𝐺𝐶𝑜
ℎ𝑐𝑝

− 𝐺𝐶
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

= −8,265 − 29.48 ∗ 𝑇 

𝐺𝐹𝑒:𝑊:𝑁𝑖:𝐶
𝑀6𝐶 − 2𝐺𝐹𝑒

𝑏𝑐𝑐 − 2𝐺𝑊
𝑏𝑐𝑐 − 2𝐺𝑁𝑖

𝑓𝑐𝑐
− 𝐺𝐶

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
= −81,460 + 20 ∗ 𝑇 

𝐺𝑁𝑖:𝑊:𝐹𝑒:𝐶
𝑀6𝐶 − 2𝐺𝑁𝑖

𝑓𝑐𝑐
− 2𝐺𝑊

𝑏𝑐𝑐 − 2𝐺𝐹𝑒
𝑏𝑐𝑐 − 𝐺𝐶

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
= −55,460 + 20 ∗ 𝑇 

𝐿𝐹𝑒:𝑊:𝐹𝑒,𝑊:𝐶
𝑀6𝐶 = −43,700 

 

M12C: (Co,Ni)6W6C1 

𝐺𝐶𝑜:𝑊:𝐶
𝑀12𝐶 − 6𝐺𝐶𝑜

ℎ𝑐𝑝
− 6𝐺𝑊

𝑏𝑐𝑐 − 𝐺𝐶
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

= −82,698 − 28.232 ∗ 𝑇 

 

 

 



Cementite: (Co,Fe,Ni,W)3C1 

𝐺𝐶𝑜:𝐶
𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑒 − 3𝐺𝐶𝑜

ℎ𝑐𝑝
− 𝐺𝐶

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
= −1567 + 3.963 ∗ 𝑇 

𝐺𝐹𝑒:𝐶
𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑒 = −10,745 + 706.04 ∗ 𝑇 − 120.6 ∗ 𝑇 ln (𝑇) 

𝐺𝑁𝑖:𝐶
𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑒 − 3𝐺𝑁𝑖

𝑓𝑐𝑐
− 𝐺𝐶

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
= 34,700 − 20 ∗ 𝑇 

𝐺𝑊:𝐶
𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑒 − 3𝐺𝑊

𝑏𝑐𝑐 − 𝐺𝐶
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

= 54,150 

𝐿𝐹𝑒,𝑁𝑖:𝐶
𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑒 = 29,400 

μ: (Co,Fe,Ni)7W2(Co,Fe,Ni,W)4 

𝐺𝐶𝑜:𝑊:𝐶𝑜
μ

− 7𝐺𝐶𝑜
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝐶𝑜

𝑏𝑐𝑐 = −20,534 + 42.774 ∗ 𝑇 

𝐺𝐶𝑜:𝑊:𝑊
μ

− 7𝐺𝐶𝑜
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝑊

𝑏𝑐𝑐 = −26910 − 21.791 ∗ 𝑇 

𝐺𝐹𝑒:𝑊:𝐹𝑒
μ

− 7𝐺𝐹𝑒
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝐹𝑒

𝑏𝑐𝑐 = 0 

𝐺𝐹𝑒:𝑊:𝑊
μ

− 7𝐺𝐹𝑒
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝑊

𝑏𝑐𝑐 = −53,450 + 19 ∗ 𝑇 

𝐺𝑁𝑖:𝑊:𝑁𝑖
μ

− 7𝐺𝑁𝑖
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝑁𝑖

𝑏𝑐𝑐 = 1,400,000 

𝐺𝑁𝑖:𝑊:𝑊
μ

− 7𝐺𝑁𝑖
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝑊

𝑏𝑐𝑐 = 43,035 

𝐺𝐶𝑜:𝑊:𝐹𝑒
μ

− 7𝐺𝐶𝑜
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝐹𝑒

𝑏𝑐𝑐 = 0 

𝐺𝐹𝑒:𝑊:𝐶𝑜
μ

− 7𝐺𝐹𝑒
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝐶𝑜

𝑏𝑐𝑐 = 0 

𝐺𝐹𝑒:𝑊:𝑁𝑖
μ

− 7𝐺𝐹𝑒
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝑁𝑖

𝑏𝑐𝑐 = 0 

𝐺𝑁𝑖:𝑊:𝐹𝑒
μ

− 7𝐺𝑁𝑖
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝐹𝑒

𝑏𝑐𝑐 = 0 

𝐺𝐶𝑜:𝑊:𝑁𝑖
μ

− 7𝐺𝐶𝑜
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝑁𝑖

𝑏𝑐𝑐 = 0 

𝐺𝑁𝑖:𝑊:𝐶𝑜
μ

− 7𝐺𝑁𝑖
𝑓𝑐𝑐

− 2𝐺𝑊
𝑏𝑐𝑐 − 4𝐺𝐶𝑜

𝑏𝑐𝑐 = 0 

𝐿𝐶𝑜,𝑁𝑖:𝑊:𝑊
μ

= −71,198 

 

a All parameters are given in J/(mol of atoms); Temperature (T) in K. The Gibbs Energies for the 

pure elements are taken from the compilation of Dinsdale [10]. The parameters of subbinary 

systems, which are directly taken from the literature [13-22], and the magnetic contribution to the 

Gibbs energy for the fcc, bcc and hcp phases from [6], are not listed. 


