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Abstract

Motivation: Literature on complex diseases is abundant but not always quantitative. Many molecu-

lar pathways are qualitatively well described but this information cannot be used in traditional

quantitative mathematical models employed in drug development. Tools for analysis of discrete

networks are useful to capture the available information in the literature but have not been effi-

ciently integrated by the pharmaceutical industry. We propose an expansion of the usual analysis

of discrete networks that facilitates the identification/validation of therapeutic targets.

Results: In this article, we propose a methodology to perform Boolean modeling of Systems

Biology/Pharmacology networks by using SPIDDOR (Systems Pharmacology for effIcient Drug

Development On R) R package. The resulting models can be used to analyze the dynamics of sig-

naling networks associated to diseases to predict the pathogenesis mechanisms and identify po-

tential therapeutic targets.

Availability and Implementation: The source code is available at https://github.com/SPIDDOR/

SPIDDOR.

Contact: itzirurzun@alumni.unav.es, itroconiz@unav.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational models are frequently used in the area of biomedi-

cine to interpret, describe or predict dynamic profiles associated to

disease progression or drug effects. Among them, the so called popu-

lation pharmacokinetic/pharmacodynamics (popPK/PD) models in-

tegrate different type of information, mainly, dosing paradigms and

drug exposure, response data and patient characteristics to account

for the time course of drug effects. PopPK/PD models are well estab-

lished in clinical practice and drug development to individualize dos-

ing, identify covariates responsible of inter-patient variability, and

dose selection (Admiraal et al., 2014; Borrat et al., 2013; Buil-Bruna

et al., 2016). However, there are several pending challenges in the

application of computational models to drug development such as

early target identification, choice of best promising drug

combinations, understanding resistance development and highlight-

ing patient sub-population sensitive and non-sensitive to a particular

therapeutic strategy.

To achieve these goals, popPK/PD models would require a

greater mechanistic structure. Nonetheless, mechanistic models re-

quire large number of kinetic/dynamic parameters and the task of

identifying these parameters is not always possible due to the lack of

longitudinal and quantitative data available.

The emergent field of Systems Pharmacology (SP) has the role of

bridging System Biology with popPKPD models and it is expected to

help in overcoming the bottlenecks highlighted before (Bai et al.,

2014; Geerts et al., 2015; Goryanin and Goryachev, 2011; Iyengar

et al., 2012; Lu et al., 2014; Palmér et al., 2014; van der Graaf and

Benson, 2011; Wang et al., 2015). SP models can be viewed as net-

works, which are simplified representations of biological systems in
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which the components of the system such as genes, proteins or me-

tabolites are represented by nodes and the interactions between

them by edges (Berger and Iyengar, 2009; Zhao and Iyengar, 2012).

In general, two different approaches can be used to analyze this type

of models: continuous dynamic methods, where the concentrations/

amounts of the components are based on differential equations, or

discrete dynamic strategies, in which each node can be characterized

by only a few discrete states, indicated in contexts where quantita-

tive and longitudinal data are scarce or even not available.

Boolean network models, originally introduced by Kauffman

(Kauffman, 1993, 1969), represent the simplest discrete dynamic

models. Very briefly, they only assume two discrete states for the

nodes of a network, ON or OFF, corresponding to the logic values 1

(active) or 0 (not active, but not necessarily absent). That is why

they are known as Boolean or logic models.

A well-designed logic model would be able to generate predictive

outcomes given a set of initial conditions. In terms of applications, it

would be possible to test how the elimination or overexpression of

one or more components of the system affects the final state of the

model, which may be useful in the design of combinatorial therapies

for a disease or identification of essential components that could be

tested as therapeutic targets. It could be also important to detect

critical nodes whose perturbation leads to significant functional

changes in the system in order to reduce the size of the network by

removing the redundant components. This could be a starting point

to try a more quantitative approach.

Currently the application of Boolean analysis to SP is still very

limited, contrary to the case of applying dynamic models to continu-

ous or non-continuous data, where there is a battery of tools to help

the scientist for model implementation, fitting and evaluation

(NONMEM, PsN, Pirana, etc.). Consequently, integration of dis-

crete analysis tools in drug development has not been accomplished

yet despite its great potential.

Based on these considerations we have developed a framework

for an efficient Boolean analysis facilitating (i) model implementa-

tion and visualization, (ii) simulation of activation profiles

associated with corresponding confidence intervals, (iii) attractor

analysis and (IV) a system perturbation and sensitivity analysis. The

tools presented in this manuscript consist on a set of comprehensive

R scripts to perform discrete dynamic analysis in the context of de-

velopment therapies for complex diseases.

From a methodological point of view the Boolean analysis pre-

sented in this work involves certain novelties. Common Boolean

modeling approaches only define direct activation-inhibition rela-

tionships between the components of the network. In our models,

new types of regulatory interactions have been introduced, the posi-

tive and negative modulations, which lead to richer dynamics be-

tween the nodes. We also propose a new option to perturb a

component of the network emulating a ‘polymorphism’ of a node.

Finally, novel approaches were developed for the exploratory ana-

lysis of the output of the simulations computed on these models: (i)

we incorporate new visualization techniques to evaluate the attrac-

tors of the system and the effects of perturbations and (ii) a cluster-

ing method is used to group the nodes that lead to similar

alterations within the network.

This article guides the reader through the tools developed in our

laboratory for an example metabolic network (Fig. 1) based on a

model for immune response to autoantigens (Ruiz-Cerd�a et al.,

2016) and gives a feel of what can be done with its use. The package

is called Systems Pharmacology for effIcient Drug Development On

R (SPIDDOR). R scripts, help files and vignettes are available in

https://github.com/SPIDDOR/SPIDDOR.

2 Methods

Our approach for Boolean modeling biological/pharmacological

networks entails the workflow seen in Figure 2.

Fig. 1. Boolean network example with 12 nodes and 19 regulatory edges

made with yEd Graph Editor software. Conceptual nodes (APC-Ag) are pre-

sented by a gray rectangle, whereas the molecules of the network are indi-

cated with ellipses. Node colors reflect the nature of the molecules: APC

molecules are shown in orange, T cell molecules are in green and interleukins

appear in yellow (colored figure online). Arrowheads represent activation,

red blunt edges indicate inhibition, black dashed lines imply positive modula-

tions and red dashed lines are negative modulations. The description of the

nodes and the Boolean functions is given in Table 1

Fig. 2. Workflow of the methodology employed by SPIDDOR to perform

Boolean modeling of biological networks and the most relevant outputs of

each section. First, the model structure is defined in a text file or downloaded

from The Cell Collective repository. Second, SPIDDOR reads the BFs from the

input files and creates a simulation algorithm in R or Cþþ. Then, the package

is able to perform an attractor analysis and introduce perturbations into the

model to analyze the output of these networks. Finally, the Boolean networks

can be exported to SBML qual format to share models or use other platforms

from the CoLoMoTo community
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The first step in turning the concepts from literature into a dis-

crete dynamic model is to represent the conceptual model as a dir-

ected graph showing the different nodes and the interactions

between them. Such networks involve the coordinated interaction of

many molecules and stimulus that include genes, proteins, metabol-

ites, cellular states or other conceptual nodes as in Figure 1. After

defining the components and interactions of the network, the next

step is to implement the Boolean transfer functions based on an ex-

haustive literature research and introduce them in the R

environment.

2.1 Boolean functions
The state of each node is determined by the state of its regulator

nodes (nodes that control its activation/inhibition) based on transi-

tion rules known as the Boolean functions (BFs). Depending on the

output of the BF, the state of a node can transit from one value to

another as the simulation algorithm moves from an iteration to the

next. Here, an iteration finishes when all the nodes in the network

are updated according to their BFs (in many research works these it-

erations of the algorithm are referred as time steps but we prefer the

term iteration to emphasize that a time step is not necessarily

equivalent to a time length). BFs consist on a set of rules specifying

how the nodes’ states change over time, as a function of the current

or past values of its regulator nodes. The main operators of Boolean

dynamics are the conjunction AND, the disjunction OR and the neg-

ation NOT. Additionally, some convenience operators have been

defined. For example, some nodes may need longer activation times

of its regulator nodes to be activated. We represent this feature with

the \ notation that can be seen in the BFs of Table 1 (Thakar et al.,

2007), and we called it threshold operator. The threshold operator

requires a duration argument which indicates the number of previ-

ous iteration that must be evaluated for a regulator node. In the case

of 1, it is used to represent that CTLA-4 molecule is active only if

the T cell activation node (T0_ACT) is ON for a defined number of

iterations indicated by the parameter T0_ACTmax

(T0_ACTmax¼3 in our simulations).

Generally, Boolean functions represent simple dynamics of acti-

vation and inhibition between nodes. In this work, we present two

new possible combinations of Boolean operators that allow us to

characterize more precisely some typical processes of biological sys-

tems. There are many cases in the literature in which a node A is not

able to activate another node B, but A can increase or prolong B ex-

pression if B is activated by other signals. We considered this rela-

tionship as a positive modulation of node B by node A and we

expressed it with the following combination of Boolean operators:

B*¼Activators OR (B AND A). As can be seen, this regulatory

function introduces a self-regulation of the target node. Similarly, if

node A cannot directly inhibit node B but it can decrease or shorten

its expression it was considered as a negative modulation and we ex-

pressed it like B*¼Activators AND NOT (B AND A). Furthermore,

we have designed these modulatory interactions between nodes to

last only a few iterations: B*¼Activators OR ((B AND A) AND

NOT (\MOD
i¼1 Bt�1AND \MOD

i¼1 At�1)), with MOD argument specify-

ing the maximum number of iterations that the positive modulation

will last. All BFs corresponding to the example network are listed in

Table 1.

BFs are introduced in SPIDDOR by a simple text file written

with the appropriate equation semantics and the system transforms

this file into R or Cþþ code. Another possibility is to load Boolean

expressions from a pre-built network from The Cell Collective

repository(Helikar et al., 2012), a web-based platform included in

the CoLoMoTo (Consortium for Logical Models and Tools) consor-

tium (Naldi et al., 2015).

2.2 Nodes updating
The outcome of a Boolean model is also influenced by the chosen

updating method, which could be synchronous or asynchronous

(Harvey and Bossomaier, 1997; Saadatpour et al., 2010; Thakar

et al., 2007; Wang et al., 2012). The updating method refers to the

process of computing the BF of a node to activate or deactivate it in

a particular iteration. In a synchronous updating method, the state

of the network at each step is determined by the state of the nodes in

the prior iteration of the algorithm. In such models, the dynamic tra-

jectory of the network is deterministic, that is, the network will al-

ways reach the same state after the same number of iterations. This

scheme assumes that all biological processes of the system have simi-

lar timescales, which seems quite unrealistic because molecular

events are not coordinated in time. A more complex but realistic

Table 1. Boolean functions of the nodes of the network of Figure 1

Node Description Boolean Function Text file

APC-Ag Antigen presentation APC-Ag* ¼ APC-Ag APC-Ag ¼ APC-Ag

B71 CD80 molecule B71* ¼ APC-Ag B71 ¼ APC-Ag

ICOS Inducible T-cell co-stimulator ICOS* ¼ APC-Ag ICOS ¼ APC-Ag

CD40 CD40 molecule CD40* ¼ APC-Ag CD40 ¼ APC-Ag

B7H2 ICOS ligand B7H2* ¼ ICOS B7H2 ¼ ICOS

CD28 CD28 molecule CD28* ¼ NOT CTLA4 CD28 ¼! CTLA4

CTLA4 Cytotoxic T-lymphocite-

associated protein 4

CTLA4*¼ \T0 ACTmax
i¼1 T0_ACTt�i CTLA4¼ THR_T0_ACT[3]

CD40L CD40 ligand CD40L* ¼ ICOS AND B7H2 CD40L ¼ ICOS & B7H2 &! (CD40 & CD40L)

AND NOT (CD40 AND CD40L)

T0_ACT Activated T cell T0_ACT*¼ (CD28 AND B71) OR

(T0_ACT AND B7H2)

T0_ACT¼ ((CD28 & B71) j (T0_ACT & B7H2)

AND NOT (\MOD
i¼1 T0_ACTt�i & \MOD

i¼1 B7H2t�i) &! (MOD_T0_ACT & MOD_B7H2))) &!

AND NOT (CTLA4 AND B71) (CTLA4 & B71)

IL2 Interleukin 2 IL2* ¼ T0_ACT IL2 ¼ T0_ACT

IL6 Interleukin 6 IL6* ¼ CD28 IL6 ¼ CD28

IL12 Interleukin 12 IL12*¼ (CD40 AND CD40L) OR (IL12 AND ICOS) IL12¼ (CD40 & CD40L) j (IL12 & ICOS) &!

AND NOT (\MOD
i¼1 IL12t�i & \MOD

i¼1 ICOSt�i) (MOD_IL12 & MOD_ICOS)

The *denotes the future state of a node.
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strategy is the random asynchronous method, where the nodes of

the system are updated according to the last update of their regula-

tor nodes, which could be either in the previous or current iteration.

In this method, the order in which the nodes update their states is se-

lected randomly during each iteration. This introduces variability

into the model, because the same initial conditions can lead to differ-

ent final states of the network and with different time courses. Once

the BFs are determined, they are implemented in the R environment.

A function is written for each BF of the Boolean model, using both

the synchronous and asynchronous updating methods. The R script

containing the BFs for the example network of Figure 1 can be

found in the Supplementary Material.

2.3 Network evolution in time
We developed a simulation algorithm to calculate the evolution of

the network states taking into account the synchronous and asyn-

chronous updating methods, although we recommend the use of the

latter as it constitutes a more realistic approach as discussed above.

The output of the algorithm is a matrix called pattern.m which rep-

resents the states of the nodes (ON/OFF) in each step (Fig. 3A). It

must be stressed that, due to the stochasticity involved in the asyn-

chronous updating scheme, the simulations must be computed re-

peated times in order to estimate an average of the dynamic

trajectory of the network. This allows the calculation of the activa-

tion profiles of the nodes for any set of initial conditions. A sche-

matic representation of this process is shown in Figure 3B.

To estimate 95% Confidence Intervals (CIs) for the activation

profiles of the nodes, we used a method to calculate CIs for

proportions by using a binomial distribution described by

(Newcombe, 1998). For a more detailed description of this method

see Supplementary Methods.

2.4 Attractor analysis
Starting from an initial condition, Boolean models eventually evolve

into a limited set of stable states known as attractors (Hopfensitz

et al., 2012). Once the model has settled onto an attractor, it will re-

main there for the rest of the simulation. Attractors fall into three

groups:

• Fixed-points, which consist of a single attractor state. They are

the same for both synchronous and asynchronous update meth-

ods because of their time-independence property (Saadatpour

et al., 2010).
• Simple or limit cycles are set of states in which the system regu-

larly oscillates. These are typical of the synchronous method

where each state has only one possible successor state. In our

models, however, the states of the nodes in the current iteration

not only depend on the states of the nodes in the previous step,

but also on prior steps due to the temporal predicates imple-

mented with the threshold operator and the modulators intro-

duced in the system. This produces regular cycles with

duplicated states that we called ‘complex cycles’.
• Complex attractors are set of states in which the system irregu-

larly oscillates due to the randomness involved in asynchronous

networks. In these models there is usually more than one possible

successor state for each state, so the system does not oscillate in

cycles.

Generally, large-scale or highly interconnected networks con-

verge into a complex attractor when an asynchronous updating

scheme is used. This oscillatory behavior in Boolean models is due

to the presence of negative feedback loops in the network

(Saadatpour and Albert, 2013; Thomas and D’ari, 1990; Thomas

et al., 1995). Attractors in moderate size networks are often linked

to cellular steady states, cell cycles, circadian rhythms or to pheno-

types (Akman et al., 2012; Bilsland et al., 2014; Li et al., 2004; Sun

et al., 2014). However, it is difficult to make biological inferences

from complex attractors as they normally include a high number of

stable states that do not oscillate in single cycles.

Our algorithm to identify attractors with the synchronous updat-

ing method starts from an initial state and repeatedly performs state

transitions until an already visited state is reached. When the syn-

chronous attractors are found (a fixed-point, a simple cycle or a

complex cycle) they can be visualized as transition tables where the

color inside the table represents the ON/OFF states of the nodes

(Supplementary Fig. S1). Asynchronous attractor search is more

complex as it computes the attractor via exhaustive repetitions of

the simulation algorithm. The states in asynchronous attractors do

not oscillate cyclically, so they cannot be visualized using transition

tables as in the previous case. For this reason, we decided to sum-

marize the information about all the stable states in the attractor by

generating the probability that a given node is ON inside the com-

plex attractor. Finally, we visualize these probabilities using bar

graphs (Fig. 3C).

Identification of all the attractors in large-scale asynchronous

models is an arduous task due to the computational time required,

especially if the attractors are complex because some of their states

rarely occur. Moreover, these steady states can change when initial

conditions are modified or perturbations are included in the system.

We found that the activation probabilities of the nodes in complex

Fig. 3. Schematic representation of the steps performed by the asynchronous

algorithm. The rows in the matrices correspond to the nodes of the network

in Figure 1 and the columns to the iterations performed by the algorithm, 25

in this case. (A) The output of the simulation algorithm, the pattern.m matrix.

(B) Average of the simulation algorithm results. The average was computed

under 2000 (N) simulations in order to calculate the activation profiles of the

nodes. (C) Probability of being ON of IL6 and IL12 nodes in the complex at-

tractor found with the asynchronous attractor search algorithm
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attractors almost did not change if the ‘unusual’ states were ignored,

suggesting that we could estimate an approximation of the attractor

by excluding those rare states from the analysis. This approximation

decreases the number of repetitions needed for the asynchronous at-

tractor search algorithm. In addition, for large-scale networks, we

recommend coding the simulation algorithm on Cþþ to increase

speed up to 60-fold. We used the Rcpp R package to communicate

R to the Cþþ algorithm and get the result back to the R environ-

ment, allowing its use by normal R users not skilled in Cþþ.

Our main attractor search algorithm is coded to identify the at-

tractor for a given initial condition. We introduced this simplifica-

tion because we were not interested in testing all the possible initial

states, as we typically defined a few possible initial conditions for

our networks. However, in some cases there is not enough informa-

tion to specify the initial condition of a system and sampling of a

multitude of initial conditions is necessary. For those interested in

this feature, SPIDDOR includes an attractor search algorithm that

searches the attractors for networks with less than 20 nodes, as the

number of initial conditions to test grow exponentially with the

number of nodes. For larger networks, we allow the specification of

a subset of nodes (always less than 20) in which all the combinations

are to be tested, or the specification of a number of starting states to

test (the restriction of maximum 20 nodes limits the initial condi-

tions to test in less than 100 000).

Since the hypothetical network used in this article is moderated

in size, there is no need of using a parallelized algorithm to reduce

the computing time for attractor searching. Even so, this feature is

contemplated in our framework and the code for the parallelization

using the snowfall library (Knaus, 2009) is included in the github

repository.

2.5 Perturbation analysis
A system perturbation analysis can be performed in order to evalu-

ate which node knockouts or overexpressions lead to significant

variations of the network dynamics. A knockout implies the deacti-

vation of a component during all the simulation, whereas an overex-

pression generates a persistent activation of a node. Another

possibility is to overexpress a node but only after its first activation

or to activate/deactivate a node for some time. This analysis allows

the researcher to model the effects of pharmacological blockades or

simulate targeted therapies such as monoclonal antibodies (mAbs).

Our modeling approach also allows the emulation of ‘poly-

morphism like’ alterations on the components of the network that

can result in modifications of their activation patterns. In biology,

genetic polymorphisms cause decreased, increased, or absent gene

expression or molecular activity by multiple mechanisms. We

included these ‘mutation like’ perturbations in which the activity of

a node is associated with a probability dependent on the ‘poly-

morphism like’ conditions. In other words, when a polymorphism

was included, we decreased the activity of a node to a lower extent

(75%, 50%, 25%. . .). In this way, when a polymorphism of 50%

activity was introduced in a node, this node was activated only 50%

of the times in which its regulator nodes were activated.

The activation level of the nodes in normal conditions and when

a node was knocked-out or overexpressed were compared in order

to analyze how the perturbation of single nodes affected the stable

patterns of the rest of the nodes in the network. If the probability of

being ON for a node was decreased due to the inclusion of a per-

turbation, it means that the perturbation caused a lower activation

of the component compared to the unperturbed condition.

Conversely, if the probability was increased due to a perturbation, it

indicates that the perturbation caused a higher activation of the

component.

We developed a perturbation analysis algorithm that performs

combined synchronous–asynchronous simulations for faster identifi-

cation of attractors with or without perturbations. First, the pro-

gram initiates a synchronous attractor search in order to detect

whether the network reaches a fixed-point, as this type of attractor

is the same in both synchronous and asynchronous algorithms. If

this is not the case, we run the asynchronous attractor search to find

the complex attractor and the frequency of being ON of each node

in these attractors that represent its activation level.

The result of the perturbation analysis is a square matrix in

which the number of rows and columns is equal to the number of

nodes in the network. It indicates how the knockout/overexpression

of the ‘column node’ affected each ‘row node’ (Fig. 4A). The value

in each cell of the matrix corresponds to the probability ratio be-

tween the perturbed and the normal conditions. We call to this ratio

the Perturbation Index(PI) of the nodes. The equation for a given

node i under a perturbation in J is the following: PI_Ji

¼ ProbðiÞPerturbationJ
=ProbðiÞNormal, where Prob is the probability of

being ON of the node in a given attractor state. Values close to 1

mean that the activity of a node in normal and altered conditions

was very similar, and therefore the perturbation had a minor effect

on the component.

In order to improve the visualization of this analysis, we trans-

formed the resulting matrix to store only 3 possible values, -1, 0 and

1, as shown in Figure 4B. The -1 substitutes the positions where

there is a lower activation of a component (value < 0.8), the 0 indi-

cates no significant variation between the perturbed and unper-

turbed conditions, and the 1 represents the locations where there is a

higher activation of a node (value > 1.25). If a more complex net-

work is being modeled, it is preferable to use more than 3 values to

take into account different levels of regulations. The rescaled matrix

can be represented using the corrplot package in R in order to

Fig. 4. Results arising from a knockout analysis of the network in Figure 1 and

the subsequent steps to improve its visualization. (A) Numeric matrix with

the corresponding Perturbation indexes in each cell; (B) Ranking of the values

from matrix A; (C) Heatmap of matrix B in which the color indicates if the

node knockout entails a lower (blue) or higher (orange) activation of a compo-

nent compared to an unperturbed simulation (colored figure online)
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visualize the individual values contained in the matrix as colors

(Fig. 4C). In this work, we only performed single node disruptions,

altering one-by-one each node from the network, but double or tri-

ple perturbations can also be induced in the simulations.

2.6 Clustering
Hierarchical clustering methods (Hartigan, 1975) determine clusters

of similar data points based on their distance and build a hierarch-

ical structure on top of them. We applied this method on the results

of the perturbation analysis, under the assumption that node alter-

ations that provoke similar effects on the rest of the nodes of the sys-

tem will cluster together. Here, we employed the Euclidean metric

to determine the distances between each node Perturbation Index

and, as merging approach, we used the average-linkage strategy. For

example, the distance between a knockout in node A and a knock-

out in node B would be calculated as follows:

dðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðPI Bi � PI AiÞ2
s

where n is the number of nodes in the network and PI A and PI B

are the Perturbation indexes of the nodes under the knockout in A

and B respectively. The results of this exercise are summarized as

heatmaps complemented by dendrograms that illustrate the similar-

ity between the perturbations of the system (see Results and

Discussion).

2.7 Model interoperability
Over the years, different software supporting logical models have

been developed, generating different formats to store these models.

To address this problem, a novel model exchange format, called

SBML qual (Systems Biology Markup Language Qualitative

Models) (Chaouiya et al., 2013), was developed by the CoLoMoTo

community (Naldi et al., 2015). SBML qual is designed for the rep-

resentation of multivalued qualitative models of biological net-

works, thus, enabling models to be shared and used with other

platforms and tools without the need of rewriting them in a different

format.

We developed a function to export the networks evaluated with

SPIDDOR to SBML qual format. We note that SBML does not sup-

port networks with temporal operators, so the converter removes

these patterns from the nomenclature to store them adequately. In

such cases, the output of the simulations performed with SPIDDOR

will differ from the results obtained with other platforms because

the temporal operators notably change the dynamic evolution of the

network.

Models encoded in SBML qual can be submitted to the

BioModels database (Le Novere et al., 2006) and to The Cell

Collective and GINsim (Gonzalez et al., 2006) software

repositories.

3 Results and discussion

In the current work we present the SPIDDOR package which is spe-

cifically tailored to the design and analysis of Boolean network mod-

els in the area of SP. There are already several software tools and

packages available for Boolean modeling of biological systems like

BooleanNet (Albert et al., 2008), BoolNet (Müssel et al., 2010),

SimBoolNet Zheng et al. (2010), ChemChains Helikar and Rogers

(2009), or GINsim (Gonzalez et al., 2006). We note that SPIDDOR

differs from other existing methodologies in the following

characteristics:

a. Positive and negative modulations: Apart from the basic

activation-inhibition interactions, two new regulatory connec-

tions have been introduced in the Boolean models, the positive

and negative modulations. In the BFs of Table 1, IL12 cytokine

is positively modulated by the ICOS molecule, meaning that

ICOS only activates IL12 if IL12 has already been activated by

another regulator node. ICOS does not work as a complete acti-

vator because it cannot activate IL12 by itself but it can intensify

another activating signal, therefore working as a ‘sustainer’.

Similarly, the concept of negative modulator is applied to the

CD40 node which does not prevent the activation of node

CD40-L by itself but can lessen its expression. Figure 5 shows

how the activation probabilities of nodes IL12 and CD40L

changed when their corresponding logic functions were modi-

fied. Both graphs changed when modulation interactions were

included compared to simple activations or inhibitions, reflect-

ing the importance of choosing the proper BF for a component.

The advantage of incorporating these relationships is that they

provide a more semi-quantitative representation of the activity

between components, allowing the inclusion of more biologic-

ally realistic interactions.

b. Polymorphisms: SP models could be employed to test multiple

scenarios as for example the different disease evolution or re-

sponse to treatment among subject with diverse polymorphisms

in a single or various nodes. This perturbation varies a node ac-

tivity from 0 to 1 and checks the effect of these variations on a

desired outcome. In Figure 6 it is shown how polymorphisms

acting on the activity of B71 node decreased the activation levels

of T0_ACT and increased the expression of IL6 compared to

normal response. This type of analysis can be used to evaluate

gene mutations that are linked to a particular disease, and test

which polymorphisms could trigger similar molecular alterations

as the ones reported for the disease. This perturbation analysis is

complementary to the introduction of node knockouts or over-

expressions which are not realistic representations of human

physiopathology. Furthermore, the introduction of a node

knockout could provoke a total blockage of one or several path-

ways hindering the analysis of less severe perturbation or com-

plementary perturbations in other nodes. A similar analysis

could be used to explore the effect of target engagement on drug

treatment. For example, in Supplementary Figure S2, when a

Fig. 5. Activation probability of IL12 (left) and CD40L (right) nodes with differ-

ent Boolean functions. The probability of being ON for IL12 varies when ICOS

makes a positive modulation (BF of Table 1), a complete activation

(IL12¼ (CD40 & CD40L) j ICOS) or has no effect on IL12 (IL12¼CD40 &

CD40L). On the other hand, the output of CD40L changes when we introduce

a negative modulation by CD40 node (CD40L¼ ICOS & B7H2 &! (CD40 &

CD40L)), a complete inhibition by CD40 (CD40L¼ ICOS & B7H2 &! CD40L) or

when CD40 has no effect on CD40L (CD40L¼ ICOS & B7H2)
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mAb is used as a therapeutic agent, it can be studied what is the

required level of target inhibition for an anti-Icos mAb to

achieve a reduction of 50% on IL12 expression. Similarly, if a

polymorphism is introduced on an input node by setting it to a

specific average level of activation, it is possible to explore differ-

ent background noise levels on the system and evaluate the im-

pact of environmental fluctuations (Domedel-Puig et al., 2011).

c. Visualization of attractor states: Some of the mentioned discrete

modeling tools like Boolnet have functions to visualize the com-

plex attractors as interconnected graphs representing state tran-

sitions inside the attractor. However, when the number of nodes

in the network is high, these graphs are extremely difficult to

analyze and may not provide meaningful information for the sci-

entists who are not familiar with such discrete outputs. For this

reason, we improved their visualization by representing the acti-

vation probability of the nodes using bar graphs. For the attrac-

tor analysis of the example network we simulated the evolution

of the system under a continuous antigen presentation (APC-Ag

¼ 1) in synchronous and asynchronous mode. Under the syn-

chronous updating method, we found a ‘complex cycle’ com-

posed of 28 states (Supplementary Fig. S1). The asynchronous

attractor search algorithm with 1000 simulation steps and re-

peated 16 times found a complex attractor composed of 84

states whose activation probabilities are summarized in

Supplementary Table S1. In Figure 7, we simulated network per-

turbations by introducing a knockout on CD28 molecule and an

overexpression of CD40L and analyze how these alterations af-

fect to IL2 and IL12 activation probabilities.

d. Visualization of perturbation analysis: Several tools were de-

veloped for the exploratory analysis of the network output to

evaluate many nodes perturbations at the same time on the at-

tractors of the system and to cluster them according to the

effects that they provoke. In Figure 8A it is shown how a knock-

out on APC-Ag node modifies the activation probability of all

the nodes in the network (shown in orange and blue) as it is the

input node of the system, while a knockout on ICOS molecule

only downregulates B7H2, CD40L and IL12 components

(shown in blue). This is quite easy to infer by observing the

structure of the network in Figure 1, but in larger systems the ef-

fects of the manipulations are not so easily deduced. The result of

the hierarchical clustering calculation is displayed as a dendro-

gram in the top of these heatmaps (Fig. 8). For example, the ef-

fects of ICOS and B7H2 knockouts in the system are very

similar, so they are clustered together in the dendrogram of

Figure 8A.

The dynamic perturbation analysis is a technique used to identify

critical nodes and facilitate network validation. In this type of mod-

eling frameworks, it is possible to emulate a disease on the biological

network under study by changing the initial conditions of the com-

puter simulations. Thanks to the dynamic perturbation method it is

possible to test which perturbations can revert the disease condition

(Saadatpour et al., 2011). Such results could be used to prioritize

which of the knockouts or constitutive activations should be studied

first in wet bench experiments.

Another practical use of the visualization technique explained

above is the possibility of performing a sensitivity analysis of the

network to discover which nodes have a higher impact on other

components of the system. In the matrices of Figure 4, nodes ICOS,

CD40, CD40L and B7H2 have a higher influence on IL12 interleu-

kin, as their perturbation lead to a significant downregulation of the

molecule. If the interest lies mainly in the response of this compo-

nent, a network reduction could be applied by removing the compo-

nents that do not regulate IL12. This ability is important to reduce

the size of complex SP networks. This sensitivity analysis can be

complemented by the use of the polymorphism tool introduced be-

fore to identify sources of interindividual variability by highlighting

the nodes which polymorphisms are more likely to provoke large

changes in specific outputs.

The immune network presented in this work is an illustrative ex-

ample used to describe the new methodologies which application we

consider useful in the SP field. The results obtained from our simula-

tions should not be considered as a full representation of the im-

mune response because many immunological components have been

left apart for simplification purposes.

Fig. 6. Relative expression profiles of B71, IL6 and T0_ACT with different lev-

els of polymorphisms acting on B71. A polymorphism was simulated on B71

node to reduce a 25% and a 50% its activity. This perturbation increased the

levels of IL6 expression and decreased the activation of T cell T0_ACT node

Fig. 7. Activation levels of IL2 and IL12 with different perturbations of the sys-

tem. Two different perturbations were introduced in the model, knock-out of

node CD28 (KO:CD28) and over-expression of node CD40L (OE:CD40L), in

order to see how the probability of being ON of IL2 and IL12 change

Fig. 8. Hierarchical clustering of the perturbations induced on the nodes of

the network in Figure 1. Heatmaps indicate the effect of single perturbations

(knockouts on the left and overexpressions on the right) on the nodes of the

network. The perturbations that lead to a higher activation of the nodes com-

pared to an unperturbed situation are represented in orange while a lower ac-

tivation of the nodes is indicated in blue
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Despite the advantages of Boolean networks and the methodolo-

gies presented in this work, some limitations need to be considered.

First, it is important to realize that manually building a biological

network may be time-consuming and (inevitably) subjective as BFs

are established following the researcher criteria. Some tools exist to

infer networks automatically from experimental data (Scutari,

2010) but different algorithms lead to different networks while dif-

ferent networks are generally deduced from different datasets, there-

fore, it is also subjective which algorithm and dataset to use.

A main limitation lies in the reliability of these models. In this

project, we tried to reproduce the experimental observations dis-

cussed on the research articles used to build the network. The heat-

maps created with our framework are useful for this task. For

example, in the heatmap of Figure 8A, we can see how a knockout

in CD28 leads to a lower activation of IL2, which is consistent with

the results found in the literature (Howland et al., 2000). However,

this could be a complex task when there is a lack of information

about the nodes under study. We are currently working on new pos-

sible validation methods based on microarray or RNA-seq analysis,

but further work needs to be done.

4 Conclusion

Computational models have been increasingly used to support drug

development and are widely accepted by scientific community and

even for regulatory purposes. A key challenge when using these

powerful approaches is to match the right model with the right ques-

tions in a particular research context. Although Boolean networks

cannot be used for precise estimations such as drug dosing in pediat-

ric or renal impairment population, they are useful to gain insight

into the qualitative behavior of a system under study. This is espe-

cially relevant for large scale systems in which a detailed kinetic

characterization of the system is not feasible due to data restrictions

or limited knowledge. More precise quantitative models require ex-

ponentially more complex and quality data, and sometimes, acquisi-

tion of such data could be restricted by technical constraints, as is

the case of immunology in which there are not available techniques

for the continuous in-vivo measurement of cells subpopulations and

cytokines in different tissues. Therefore, it is mandatory to get the

best use of the available knowledge in each stage of development,

for which it is essential to explore the full potential of tools like

Boolean networks. We consider that the methodologies presented in

this work can potentiate the use of Boolean networks in SP by intro-

ducing versatile tools to enrich the analysis of these systems.
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