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Abstract 

In this paper we present a novel method to predict human motion, seeking to combine the 

advantages of both data-based and knowledge-based motion prediction methods. Our method 

relies on a database of captured motions for reference and introduces knowledge in the prediction 

in the form of a motion control law, which is followed while resembling the actually performed 

reference motion. The prediction is carried out by solving an optimization problem in which the 

following conditions are imposed to the motion: must fulfill the goals of the task; resemble the 

reference motion selected from the database; follow a knowledge-based dynamic motion control 

law; and ensure the dynamic equilibrium of the human model, considering its interactions with the 

environment. In this work we apply the proposed method to a database of clutch pedal depression 

motions and we present the results for three predictions. The method is validated by comparing the 

results of the prediction to motions actually performed in similar conditions. The predicted 

motions closely resemble the motions in the validation database and no significant differences 

have been noted either in the motion’s kinematics or in the motion’s dynamics. 
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1 Introduction 

Digital Human Models (DHMs) are more and more frequently employed to test 

virtual products in the early stages of product design [1-4]. To simulate the 

interaction of DHMs, representing different user populations, with a variety of 

environments, human motion prediction is an interesting and useful tool to reduce 

the cost and time-to-market of new designs. 

Motion prediction aims at predicting within a reasonable accuracy the motion that 

a subject would perform to accomplish a specific goal. Due to the redundancy of 

degrees of freedom (DoFs) in the human body, generally there are infinite sets of 

values of the DoFs which fulfill the goals of the motion. Of all these sets of 

values, only some can be defined as realistic, and may be grouped into the various 

strategies and styles adopted by subjects while carrying out the task. 

In contrast with animation [5], which essentially guides a particular subject with a 

specific user-defined motion, motion prediction focuses on representing the 

motions that a generic specimen of a population would perform to accomplish a 

given task. While the requirement for an animated motion is to look realistic, the 

challenge for motion prediction is to generate motions that are realistic, as well as 

representative of the behavior of a population rather than of a specific individual. 

Motion prediction methods can be classified into data-based and knowledge-based 

methods, according to whether they rely or not on a database of captured motions. 

Data-based methods may be divided according to whether they use the data to 

supply a reference motion to the prediction or whether they perform a regression 

analysis of the data. Methods which rely on a reference motion [6-9] consist in 

obtaining, among the motions which compose the database, the most appropriate 

one to be taken as reference and in modifying it in order to fulfill the new motion 

constraints. Defining with the term “scenario” the combination of a subject and an 

environment, the motion in the new scenario (a new subject in a new 

environment) is predicted starting from a real motion carried out in a reference 

scenario (a reference subject in a reference environment). Methods based on a 

regression analysis of the data [10-13] obtain regression functions for the 

variables of the motion and apply them to the new scenario to carry out the 

prediction.  

The main advantage of data-based methods lies in the intrinsic realism of the 

motions in the database, which should be maintained during the modification 
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process. Furthermore, a database of captured motions allows to identify the 

various strategies and styles [6, 8] which the subjects adopt during the fulfillment 

of the considered task. Each identified strategy and style may then be predicted, 

hence representing the variety of behaviors encountered in the population. The 

main drawback of data-based methods is the restriction of being able to 

reasonably predict only tasks which are present in the database: to predict a 

different task, first a corresponding database of motions must be generated. 

On the other hand, knowledge-based methods [4, 14-18] do not rely on a database 

of captured motions and confer realism to the motion through the identification of 

an appropriate performance measure, representing the underlying motion control 

law that drives the motion. Several performance measures have been proposed in 

the literature: some are purely kinematic, taking into account the joint 

displacement with respect to a neutral pose [19, 20], whereas others are dynamic 

and generally are energy-related functions [14, 16, 21]. 

Although knowledge-based methods are theoretically applicable to any task, their 

drawback lies in the difficulty of identifying the most adequate performance 

measure. In fact, some authors [19, 22] have adopted multi-objective 

optimization, in which a combination of several performance measures is 

considered, in order to generate more realistic predictions. It must also be 

mentioned that knowledge-based methods are currently employed to predict 

relatively simple motions, such as lifting or walking; more complex motions (such 

as a vehicle ingress-egress motion) may require different performance measures 

across the motion as the various sub-goals of the motion are accomplished. 

For specific task-driven motions, as those involved in the virtual testing of 

products, data-based methods may be considered the most suitable option. 

However, current data-based motion prediction methods are only kinematic and 

for certain applications, such as ergonomic studies, a dynamic prediction may be 

required. Moreover, while data-based methods may provide sound predictions for 

similar configurations to those present in the database, they may not be able to 

perform realistic extrapolations to more extreme configurations. 

Two different hybrid methods have been proposed in the literature, one by Xiang 

et al. [23] and one by Pasciuto et al. [24-27], seeking to combine the advantages 

of both data-based and knowledge-based methods. The method proposed by 

Xiang et al. modifies the knowledge-based framework of predictive dynamics [4, 
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21, 22] by including the condition that specific DoFs in the model should 

resemble experimental values; on the other hand, the method proposed by 

Pasciuto et al. modifies the data-based framework of kinematic predictions [6-8] 

by including a knowledge-based dynamic performance measure in the prediction. 

The method we present in this paper is an improved method based on the previous 

works of Pasciuto et al. [24-26], and is hereafter described. 

1.1 Approach outline 

The hybrid dynamic motion prediction method that we present on the one hand 

relies on a database of captured motions, and on the other introduces knowledge 

in the prediction, in the form of a performance measure that represents the motion 

control law. Dynamics are included in the prediction both in the definition of the 

performance measure and in the compliance of the dynamic equilibrium equations 

of the DHM. 

The method is composed of three main stages, shown in Figure 1, which are 

outlined hereafter and described in detail in the following sections. First, a 

multibody model of the system is defined, with which captured motions are 

reconstructed in order to generate a database of experimental motions. Among the 

motions in the database, a reference motion is selected to be resembled during the 

prediction. The reference motion is subsequently modified, through velocity-

proportional or acceleration-preserving methods [28], to match the new global 

position of the model and the end-effector trajectory. Finally an optimization 

problem, comprising both data-based and knowledge-based approaches, is defined 

to carry out the prediction. 

The method is applied to the prediction of clutch pedal depression motions. The 

clutch pedal depression presents the advantage of being a relatively simple task (it 

may be regarded as a dynamic reach motion) while containing all the relevant 

features for testing a dynamic motion prediction method: it is task oriented and it 

intrinsically requires interaction between the subject and the environment. 

2 Multibody modeling 

This section presents the multibody models adopted to describe the system, 

composed of the human subject and the environment it interacts with, and the 

equations governing its motion. 
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2.1 Human model description 

The multibody model used to describe the human body is an approximation of its 

skeletal system: the body segments are considered as rigid bodies and the complex 

articulations connecting the segments are represented as lower kinematic pairs 

(revolute, universal or spherical joints). The position and orientation of each link 

in the resulting kinematic chain is described by the relative angles at the joints. 

Moreover, to account for the global position and orientation of the kinematic 

chain, we consider the 6 DoFs of the root element. The vector of the DHM DoFs 

  is composed of nDoFs elements. 

2.2 Equations of motion 

To obtain the equations governing the kinematics and dynamics of the human 

model, a recursive Newton-Euler method is adopted [29]. The method performs 

two iterations across the kinematic chain: the first starts from the root element of 

the chain and, moving outwards, it obtains the bodies’ kinematics; the second 

starts from the distal bodies and, moving inwards, it obtains the forces and 

moments at the joints. Along with the vector of DoFs  , its first and second order 

time derivatives    and    constitute the set of variables which appear in the 

equations of motion and characterize the system. 

2.3 Environment model description 

Often the task to be carried out requires interaction between the subject and the 

environment. This interaction may be purely geometric or dynamic. A purely 

geometric interaction imposes that a point in the human model be located at a 

specific point, curve or surface of the environment; a dynamic interaction 

additionally implies that a force is generated during the contact. 

For what concerns the environment, we distinguish between mobile and fixed 

elements. Mobile elements are modeled as multibody systems and their geometric 

interaction with the human model is defined through constraints: the body in the 

human model which engages with the environmental element is constrained to 

follow the motion imposed by the latter’s geometry. In dynamic interactions, the 

resulting external force acting on the human model is due to the engagement of 

the mobile element, which reacts to the interaction. 
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For what concerns fixed elements, a constraint is imposed to the position of a 

point in the human model in the case of a purely geometric interaction. However, 

if the interaction is dynamic, no constraint is imposed and the interaction is 

modeled exclusively through contact forces. To model a contact between rigid 

bodies, we consider the interference between the geometry representing the 

human model and the environmental element. Depending on the value and the 

velocity of their mutual penetration, a reaction force is evaluated by characterizing 

the contact through stiffness and damping curves. 

3 Obtaining the reference motion 

In order to obtain a reference motion for the prediction, a database of captured 

motions must be first generated and structured. The reference motion is then 

selected among the motions in the database and modified to meet the new targets 

imposed to the motion to be predicted. Each of these steps is hereafter described 

in detail. 

3.1 Structured database generation 

In motion prediction, a structured database is a database which is organized 

according to the relevant features of the considered task, the subjects performing 

the task and the environments it is performed in. Once the captured motions are 

reconstructed (using the same human model later to be used in the prediction), 

they must be analyzed to classify each motion composing the database. 

The first descriptors that may be used for motion classification are related to the 

motion scenario, which is composed of the subject carrying out the task and the 

environment it is carried out in. For what concerns the subjects, descriptors such 

as the gender, age, height and weight may be taken into consideration. The 

relevant characteristics of the environment usually depend on the task, and can be, 

for instance, the position and orientation of the elements with which the subject 

interacts, and the location and dimension of obstacles. 

Other descriptors related to the actual motions may be defined. One of the most 

common features adopted in describing task-oriented motions is the definition of 

key-frames in the motion. Key-frames are frames in which a relevant event occurs 

(e.g. a target is reached), and their identification defines the goals that characterize 

the key events in the motion. Moreover, the structured database should account 
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for the variability with which humans carry out a given task by identifying the 

strategies and styles adopted during the experiments. Strategies are defined when 

the end-effector displacement is mainly due to the action of different DoFs in the 

model [6, 30], whereas styles represent less evident differences in the motion 

which are nevertheless relevant in the classification. 

3.2 Motion selection 

The choice of which motion in the structured database is the most adequate to be 

considered as reference for the prediction, depends on the new scenario (new 

subject in a new environment) to be predicted, called “prediction scenario”. Park 

et al. [8] and Monnier [31] establish thresholds (αi) according to which motions 

are considered similar. Denoting with the subscript Ref quantities evaluated in the 

reference scenario or motion and with the subscript Pred quantities referred to the 

prediction scenario or motion, a motion is adequate to be selected as reference if: 

       
      

      (1) 

where i is the index which loops over the conditions to be set and xi represents 

magnitudes associated to the subject (such as its stature) or to the environment 

(such as the target position). All the motions in the database which satisfy the 

conditions imposed by Equation (1) are retrieved and considered adequate to be 

used as reference. The user must then select among them the one reference to be 

employed in the prediction. 

Wang [9] on the other hand obtains the reference motion with functional 

regression methods applied to the experimental database. The predictions obtained 

with the functional-regression-reference are similar to actually performed 

motions. However, adopting directly a motion from the database as reference 

yields better results, probably due to the fact that the latter has actually been 

performed, whereas the former is an averaged motion, not a real one. 

Pasciuto et al. [24] compare the results of the dynamic predictions obtained using 

as reference a motion in the database or a motion obtained through prior 

kinematic prediction. The prior kinematic prediction is performed using as 

reference a motion in the database and modifying it in order to meet the goals in 

the prediction scenario. No significant differences are noticed when either 

reference is employed, suggesting that a prior kinematic prediction does not 

improve the dynamic prediction results. 



8 

In this work, the motion we consider as reference is an actually performed motion 

belonging to the database, which is selected as the motion which minimizes the 

following weighted squared sum: 

             
      

 
 

  (2) 

The conditions included in Equation (2) are the following: gender, age, stature, 

weight, position of the target with respect to the root element, range of motion 

(RoM) of the environmental elements and their orientation. 

Equation (1) may retrieve one motion, several motions or no motions at all, 

depending on the values of the user defined thresholds (αi). Equation (2) on the 

other hand only retrieves one reference motion: the one performed in the scenario 

which is most similar to the prediction scenario. 

3.3 Motion modification 

Once the reference motion is selected, it is modified to meet the new goals in the 

prediction scenario. 

On account of the similarity between the reference and the prediction scenarios, 

we consider that all temporal features of the reference motion are maintained 

during the prediction: hence both the duration and the key-frames distribution in 

the predicted motion are the same as in the reference motion. 

On the other hand, other features of the reference motion may require 

modification, such as the global position and orientation of the human model or 

the trajectory followed by the end-effectors. 

In this study, the DoFs representing the global position and orientation of the 

human model are modified by adding a constant offset to the reference DoFs 

profiles in order to place the model of the prediction subject in the desired global 

configuration with respect to the prediction environment. 

For what concerns the end-effector, generally the trajectory followed in the 

reference motion does not lead to the accomplishment of the task in the prediction 

scenario. To meet the new goals in the prediction, the end-effector reference 

trajectory must be modified. We distinguish between two types of modification 

depending on whether the motion is free or constrained by the motion of the 

environmental elements with which the end-effector interacts. Both modification 

methods rely on the similarity between the reference and prediction scenarios. 
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3.3.1 Free end-effector 

When the end-effector’s motion is free, the data required to perform the 

modification are the desired initial and final position of the end-effector in the 

predicted motion. Two modification methods are proposed in the literature [28]: 

velocity proportional (VP) and acceleration preserving (AP). In our work, we use 

VP to impose that the velocity profile of the end-effector along the modified 

trajectory       must be proportional to that of the reference motion      : 

                                            (3) 

AP instead imposes that the acceleration profile of the end-effector along the 

modified trajectory must be the same as in the reference motion:  

                                            (4) 

Generally both methods yield very similar results, nonetheless VP is favored in 

this study as it presents the desirable feature of maintaining the zero-velocity 

conditions of the end-effector. However, VP fails to generate a reasonable 

trajectory when the initial and final positions of the end-effector are very close to 

each other, since numerical problems arise. In this case, AP is applied instead. 

3.3.2 Constrained end-effector 

When the end-effector interacts with a mobile element of the environment, its 

trajectory is constrained to follow the motion of the environmental element. 

The motion of the environmental element in the prediction scenario may be 

obtained by modifying its motion in the reference scenario. For this, the initial and 

final values for each DoF θi of the environmental element in both the reference 

and prediction environment must be known. To obtain the new motion of the 

environmental element, we use a similar modification to the one applied to the 

free end-effector (Section 3.3.1), with the difference that in this case the 

modification is applied to the element’s DoFs. 

The formulation for the VP modification is: 

                                            (5) 

If the initial and final values of any of the θi are very close to each other, 

numerical problems may arise in the VP modification. In such cases, the 

following AP modification is used instead:  
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                                            (6) 

Once the new motion of the environmental element is obtained, the new trajectory 

for the end-effector must be calculated. The end-effector must follow the 

trajectory described by the contact point in the environmental element, which is 

obtained by applying forward kinematics to the element with the θMod(t) values of 

its DoFs. 

4 Motion prediction through optimization 

In this study, a constrained nonlinear optimization problem is defined to obtain a 

realistic set of DoFs values which fulfill the task in the prediction scenario. 

Given the high nonlinearity of the problem, the Jacobian and Hessian matrices for 

the objective function and the constraints are evaluated analytically to improve the 

solver’s convergence. Both the first and second order derivatives with respect to 

the variables  ,    and    are obtained combining the derivatives of the equations 

of motion, generated with the creation of the model (Section 2.2). 

4.1 Objective function 

The objective function represents the criterion that is selected to confer realism to 

the predicted motion. In our work we adopt a criterion that comprises more than 

one objective, as several features of the reference motion must be resembled and 

additional dynamic conditions are included. A multi-objective optimization may 

be solved by combining the objectives in a single function to be minimized [32]. 

We choose to combine the objectives in a weighted sum of squares:  

  
 

 
         (7) 

where Ψ is a vector of objectives and W is a diagonal matrix containing the 

weights associated to each objective. 

To combine non-homogeneous objectives, these are normalized using an upper-

lower-bound transformation [33] as shown in Equation (8) below, where the 

superscripts Max and Min refer to the maximum and minimum values respectively 

of the quantity Ψi evaluated in the reference motion:  

  
  

      
   

  
       

    (8) 

Hence the objective function is actually evaluated as:  
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        (9) 

This choice does not guarantee that the normalized objectives are contained in the 

range [0, 1] but ensures that they present the same order of magnitude. 

Normalization not only reduces the numerical problems that may arise solving a 

nonlinear optimization problem, but also allows to use dimensionless weights W
N
 

which reflect the relative importance of each objective. 

4.1.1 DoFs profiles 

The objective considered for the DoFs profiles is that of resemblance to the 

reference, either in terms of DoF values, Eq. (10), or in terms of DoF velocities to 

maintain the same profile shape as the reference motion, Eq. (11):  

                                 (10) 

                                    (11) 

4.1.2 End-effector 

During the time intervals of the motion in which the end-effector trajectory must 

resemble the modified trajectory, rather than match it exactly, the following 

objective is set:  

                                         (12) 

When the orientation of the end-effector body depends on the environment, the 

direction of a vector r belonging to the end-effector body should resemble the 

direction of a vector rEnv belonging to the environment: 

                                           (13) 

4.1.3 Performance measure 

A commonly employed dynamic performance measure [4, 15, 21, 22, 34] seeks to 

minimize the motion’s dynamic effort, defined as the sum of the squared joint 

torques   across the motion. Given the quadratic form of our objective function f 

in Equation (7), this objective is defined as: 

                                   (14) 
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On the other hand, Ren et al. [16] proposed an energy-related performance 

measure that seeks to minimize the mechanical energy expenditure across the 

motion:  

                                                  (15) 

This condition is also included in the performance measure proposed by Kim et al. 

[14] who consider not only the mechanical but the whole metabolic energy, i.e. 

the chemical energy required by the muscles which is transformed into 

mechanical, heat and basal metabolic energy. 

4.2 Constraints 

The predicted motion should minimize the objective function f defined in the 

previous section while fulfilling a set of equality and inequality constraints, Φ
EQ

 

and Φ
IN

 respectively. These constraints are normalized to avoid numerical 

problems using the same upper-lower-bound transformation reported in Equation 

(8) for the vector of objectives. 

4.2.1 End-effector 

The constraints regarding the end-effector trajectory are defined in the same way 

as their analogous objectives, reported in Equations (12) and (13). During the time 

intervals in which the end-effector trajectory or orientation must be constrained, 

the following equations apply: 

                        
                            (16) 

                          
                     (17) 

4.2.2 Joint range of motion 

To ensure that the predicted DoFs do not exceed the natural RoM allowed by the 

human articulations, the values of q are restricted to a range delimited by the 

DoFs lower and upper limits qL and qU:  

                 
          

                                                 
          (18) 
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4.2.3 Obstacle avoidance 

Obstacle avoidance is treated as an inequality constraint set to a specified point in 

the human model x. For spherical obstacles of center xCenter and radius a, the 

condition imposed to the point in the human model is: 

                         
                            (19) 

For planar obstacles, defined with a point x0 and a normal vector nPlane, the 

condition to be met by the point x in the human model is: 

                          
                             (20) 

4.2.4 Dynamic equilibrium 

To balance the forces in the human model with the forces due to the interaction 

between the human model and the environment, the condition of dynamic 

equilibrium is imposed. This condition is defined in terms of both forces and 

torques through inequality constraints: 

                       
                                           

                                          
                          (21) 

                       
                                           

                                        
                          (22) 

where FRoot and MRoot are obtained by summing all forces and torques acting on 

the pelvis, including the seat reactions. 

The tolerances εF and εM according to which the equilibrium is considered 

satisfied depend on the accuracy with which the contact model is defined: the 

unfulfillment of the exact balance is assumed to be due to the approximate nature 

of the contact model, not to an inaccuracy of the resulting predicted motion. 

4.2.5 Initial and final conditions 

Conditions may be set to specify the velocity and acceleration conditions at the 

initial and final frames of the motion, in the form:  

                     
          

                                                   
          (23) 
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4.3 Design variables 

Unlike kinematic prediction, which may consider only   as design variables, a 

dynamic prediction requires that the derivatives    and    be design variables as 

well. What the velocities and accelerations do is relate the values of   at a frame 

with its values at the previous and following frames. Hence, although kinematic 

predictions may be carried out one frame at a time, a dynamic prediction must be 

performed considering the motion as a whole. Instead of using the DoFs in each 

frame as design variables, as in spacetime methods [35-37], in this work we chose 

to parameterize the motion, using a B-Spline representation of the DoFs’ profiles. 

4.3.1 B-spline parameterization 

B-spline curves are defined as a linear combination of independent p
th

 order 

piecewise polynomial functions N, called basis functions, through coefficients 

called control points (CPs). The basis functions only depend on the independent 

variable of the problem (in this case, time t) and are non-zero only in certain 

intervals. The control points instead are defined in the dependent variables space 

(in this case, the DoFs q). Each DoF profile qj is represented in B-spline form as a 

combination of nCPj basis functions, as shown in Equation (24):  

          
         

    

   
 (24) 

The time derivatives of the DoF profiles are easily obtained as:  

           
 
         

    

   
                

           
 
         

    

   
 (25) 

The advantages of using B-spline curves are several: they are a flexible 

parameterization, which fits the most general kind of data; they provide local 

support, given that each basis function is equal to zero during intervals of the 

motions; they ensure smoothness and continuity up to the p-1
th

 derivative; and 

they are able to describe the whole motion with a relatively small number of 

variables. In fact, B-splines are a common motion parameterization employed in 

knowledge-based prediction methods [14, 22, 34, 38]. However, in these 

mentioned works, the number of CPs required to adequately represent the motion 



15 

is decided a priori, considering how many extreme or inflection points the DoF 

profiles are expected to present.  

In this study the assumption is made that the number of CPs which adequately 

describes the DoF profiles in the reference motion is also suitable to describe the 

profiles in the predicted motion. This assumption relies on the expected similarity 

between the reference and predicted motions: not only the reference scenario is 

the closest to the prediction scenario, but resemblance conditions to the reference 

motion are imposed in the prediction. To obtain the number of CPs which yield an 

appropriate representation of the motion, B-splines are adapted to the normalized 

DoF profiles of the reference motion and the smallest set of CPs which 

approximates the profiles to a specified tolerance is selected. This process is 

known as global approximation and is described in [39]. 

Given that dynamics involve up to the second order derivative of the DoFs, to 

guarantee continuity in the accelerations, the basis functions must be at least cubic 

splines. In this study 5
th

 order splines are adopted to ensure smoothness in 

accelerations as well. 

4.3.2 Formulation of the optimization problem  

The variables which define the dynamics of the system,  ,    and   , all depend on 

the vector of control points CP, as shown in Equations (24) and (25). Therefore, 

the control points of the B-splines are chosen as the design variables for which the 

optimization problem is solved. 

Hence, the optimization problem can be formulated as:  

       

              
 

 
              

                                  

 (26) 

The set of control points obtained in the global approximation of the reference 

DoF profiles constitutes the initial approximation for the optimization. 

To obtain the derivatives of the objective function and the constraints with respect 

to the design variables CP, we calculate the derivative of the variables  ,    and    

with respect to the control points: 
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     (27) 

Defining s as the vector of variables s=[ ,   ,   ]T
, the derivative of a generic 

function Ξi, representing either an objective (Ξi=Ψi) or a constraint (Ξi=Φi), with 

respect to the CPs is calculated as:  

   

    
 

   

   

   

    
  (28) 

where the repeated index k implies summation. Denoting with the subscript s or 

CP the derivative with respect to s and CP respectively, the Jacobian of function 

Ξi may be rewritten in matrix form as: 

    
     

       (29) 

where     

  is the i
th

 row of the Jacobian matrix ΞCP whose elements are defined 

by Equation (28). The second derivative is calculated as:  

    

        
 

   

   
 
   

   

   

    
 

   

    
 

    

      

   

    

   

    
  (30) 

Hence, the Hessian of function Ξi may be rewritten in matrix notation as:  

    
 
    

     
 
      (31) 

where the squared subscripts denote the variable with respect to which quantities 

are derived twice. 

The derivatives of the constraints are obtained directly from Equations (29) and 

(31), whereas the derivatives of the objective function are obtained as:  

                                                     

                
 
     

      
     (32) 

The vectors of objectives Ψ and constraints Φ contain the functions defined in 

Sections 4.1 and 4.2 evaluated at several instants in time. At each instant t, the 

length of the vector of variables s which affect the dynamics of the system is 

3×nDoFs. On the other hand, the number of control points of a B-spline must be 

greater than the order of the basis functions: given that accelerations must be at 
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least continuous, this implies p≥3 and nCP≥4 for each DoF. Hence, the length of 

the CP vector must necessarily be greater than 4×nDoFs. This implies that the 

Hessians which appear in Equation (31) have different sizes, being the Hessian 

with respect to CP always larger than the Hessian with respect to s. However, the 

rank of a matrix can never be increased through multiplication, hence the Hessian 

with respect to CP is always rank deficient. An explanation for this characteristic 

is that CP is a vector which represents the totality of the motion, whereas s only 

represents a specific instant in time. Due to the local support of B-splines, only a 

certain number of control points affects the dynamics of a specific instant t of the 

motion: at t, other control points have no influence at all, leading to zero 

derivatives. 

This characteristic has a strong effect on the objective function f, which must 

ensure that all variables (CP) be controlled: a necessary condition for this is that 

the objectives must be evaluated at a minimum number of frames. Given a 

number of frames nFrames (each being represented by a vector of variables s), the 

number of variables which describe all frames is nFrames ×(3×nDoFs). If the size 

of the CP vector were greater than this quantity, the evaluation of the objective 

function at all frames would not be sufficient to provide information for each CP, 

and some CPs would be uncontrolled. Hence we may obtain the minimum number 

of frames at which the objectives must be evaluated as:  

     
   

       
  (33) 

Evaluating the objective function at a number of frames nFrames >nmin however 

does not guarantee that each CP is controlled. For that, the frames must be spaced 

across the period of the motion in order to involve all basis functions in their non-

zero interval. 

4.3.3 Effect of the number of control points 

According to the allowed tolerance with which the reference DoF profiles are 

approximated, the number of control points for each B-spline may range from a 

minimum value, given by p+1, to a maximum value, given by nFrames–1 (if the 

number of control points equals the number of data available the curve no longer 

approximates but interpolates the data). A larger number of control points on the 

one hand entails a finer approximation to the reference profiles, however on the 
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other it increases the size of the problem. However, due to the particular 

construction of the basis functions [39], by increasing the number of control 

points, the intervals during which each basis function is equally zero are longer: 

each basis function controls a smaller portion of the motion. This implies that 

matrices get larger but sparser with the increase of the number of control points. 

Figure 2 shows the effect of the number of CPs on the Hessian matrix of the 

objective function. When the number of control points is close to the minimum, 

the matrix is relatively small but full (Figure 2a corresponds to a case in which the 

minimum number of CPs is adopted); as it increases (Figures 2b and 2c), the size 

of the matrix is larger but it becomes more sparse and with a characteristic multi-

diagonal shape. Moving towards the right or the bottom of the matrix corresponds 

to moving across the motion in time: in Figures 2b and 2c it may be seen how the 

effect of the first control points (associated to the first basis functions) is nullified 

while the following control points start affecting the motion. 

5 Application to clutch pedal depression 

The motion prediction method proposed in this paper has been applied to clutch 

pedal depression motions. The specifics introduced by the particular motion being 

predicted are detailed hereafter. 

5.1 Adopted human model 

A three-dimensional human model has been generated following RAMSIS 

specifications (Human Solutions GmbH). Since the clutch pedal motion hardly 

involves any limbs other than the left leg, the complete human model is simplified 

to a 13 DoF model of the left leg, as shown in Figure 3. The left leg subject-

specific parameters are estimated based on boney palpable markers [40]. 

Additionally the inertial properties of the upper body are estimated using 

regression equations [41] and included in the pelvis. 

5.2 Structured database generation 

The database is constituted by clutch pedal operation motions, recorded at 

IFSTTAR in the framework of the European Project DHErgo following the 

experimental protocol detailed hereafter. The motions have been reconstructed 
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and the constituted database has been analyzed considering the features described 

in Section 3.1. 

5.2.1 Experimental protocol 

Four groups of five healthy subjects (Table 1) were asked to perform the motion 

in an adjustable vehicle mock-up, which could assume the configuration of five 

different commercial vehicles from BMW, Peugeot-Citroën and Renault. The 

subjects were asked to perform a clutch pedal operation in each vehicle, yielding 

an experimental database composed of 100 motions. 

A total of 17 reflective markers were placed on the body parts described by the 

multibody model: 6 on the pelvis, 4 on the left thigh, 3 on the shank and 4 on the 

foot. Additionally, 6 markers were placed on the seat to establish its position and 

orientation and 8 markers were used to describe the motion of the clutch pedal 

during the task. The motion of the markers was recorded with a VICON 

optoelectronic system with 10 cameras. Moreover a 3D force sensor synchronized 

with VICON recorded the force applied by the subject on the clutch pedal. 

5.2.2 Motion reconstruction 

The kinematics of the captured motions was reconstructed using the Optimal 

Tracking Method proposed by Ausejo et al. [42-44]. A recursive Newton-Euler 

method was then applied to the reconstructed motions to solve the Inverse 

Dynamics problem and obtain the forces and torques at the joints. 

5.2.3 Database analysis 

The following key-frames were identified in the pedal depression motion: the 

frame at which the motion starts, called StartMotion; the frame at which the pedal 

is reached by the foot, called StartDepression; the frame at which the pedal is 

fully depressed, called EndDepression. 

Analyzing the DoF profiles, no substantial variability was identified to claim that 

more than one strategy or style was adopted in the motions. 

Hence, each motion in the database was characterized with the following 

descriptors: gender, age, height, weight, seat position, clutch pedal initial position 

and orientation, travel length and travel angle to reach the fully depressed 

position, and key-frames values. 
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5.3 Human-environment interaction characterization 

We consider the interaction of the DHM with two elements: the seat and the 

clutch pedal. The pedal is characterized [27] through: a) a stiffness curve relating 

its normal reaction force Fn, directed as the unit vector n (Figure 4), to its angular 

position θ; and b) through a linear relationship between the normal force Fn and 

the radial force Fr. 

To characterize the human-seat interaction [27], four spring-damper elements 

have been employed to relate the value and velocity of the mutual penetration 

between the pelvis and the seat. Since the clutch pedal depression motion is 

carried out mainly in the sagittal plane, the seat reactions taken into account are 

limited to the above-mentioned plane, assuming that all transversal forces in the 

interaction are negligible. The calculated seat reactions in the sagittal plane are 

included in the prediction to ensure the dynamic equilibrium with the inequalities 

reported in Equations (22) and (23), where the ε coefficients are chosen as:  

                           

             (34) 

where mB indicates the body mass and bhMax is the maximum hip width. 

The coefficient for the torque (εM) is set to reflect the same tolerance associated to 

the force balance (εF) multiplied by a dimension (bhMax) which characterizes the 

contact surfaces. 

Finally, for what concerns the obstacle avoidance conditions, collisions between 

the left foot and a horizontal plane representing the vehicle floor are considered.  

5.4 Reference and prediction scenarios 

Three predictions (referred to hereinafter as “trials”) were carried out to validate 

the proposed method, focusing on the group of young females. Therefore, the 

motion database among which to select the reference motion is a subset of the 

experimental one (Section 5.2.1) and is composed of the 25 motions performed by 

the young females.  

The characteristics of the three subjects considered in the predictions and the three 

subjects used as reference are reported in Table 2. For what concerns the 

environments, the prediction environment was the same in all three trials and the 

most similar environment in the motion database was selected as reference. The 
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environmental characteristics are shown in Figure 4 and their values in both the 

prediction and reference environments are listed in Table 3. 

In order to validate the method, a validation database was employed, composed of 

clutch pedal depressions performed by 5 young females in the prediction 

environment. Each subject performed three repetitions of the motion, yielding a 

validation database composed of 15 motions. Additionally, each prediction 

subject was chosen to match the anthropometry of a validation subject, therefore 

each trial represents the prediction of an actual experimental configuration, in 

which three motion repetitions were captured. Hence, for validation purposes, the 

results of each trial are compared to all the motions in the validation database, 

including these three specific repetitions, hereinafter referred to as “validation 

motions”. 

5.5 Optimization problem definition 

This section describes the characteristics of the optimization problem, presented 

in Section 4, applied to the prediction of clutch pedal depressions. 

The motions selected as reference are approximated with B-splines with a 

tolerance of 2% of the range of values for each DoF (Section 4.3.1): each 

reference motion is characterized by 17 CPs describing the profiles of the 

rotational DoFs and 15 CPs for the translational DoFs. 

The values of the 215 CPs in the predicted motion are obtained by imposing the 

following conditions: 

Objectives: 

 The reference values of the DoFs must be resembled, Eq. (10), throughout 

the motion. The weight assigned to this objective is relatively low (0.01) 

as its aim is to avoid that the predicted values stray from the reference 

values. 

 The shape of the DoF profiles is instead expected to be maintained more 

accurately. Hence a higher weight (0.5) is assigned to the resemblance of 

all the reference DoF velocities, Eq. (11), throughout the motion. 

 The left foot must follow the modified trajectory, Eq. (12): during the first 

part of the motion, in which the foot reaches the pedal, the weight is lower 

(0.1) than in the second part (1), since in the first part the modified 

trajectory must only be resembled whereas in the second the trajectory of 
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the foot must match the pedal trajectory. An equality constraint is also set 

during the pedal depression, as detailed later. 

 The motion control law to be followed is that of minimum mechanical 

energy expenditure, Eq. (15), imposed with a weight of 0.1 as the aim of 

including knowledge in the prediction as a motion control law is that of 

fine-tuning the data-based solution.  

Equality constraints: 

 The left foot starts at a specific point on the vehicle floor at frame 

StartMotion and follows the trajectory of the clutch pedal between frames 

StartDepression and EndDepression, Eq. (16); 

 The predicted motion starts and ends at rest: the initial and final values of 

the DoFs velocities and accelerations must be zero, Eq (23) with     

     . 

Inequality constraints applied throughout the motion: 

 The values of the DoFs must be within the joints’ RoM, Eq. (18); 

 The left heel must be above the vehicle floor, Eq. (20); 

 The forces and the torque acting in the sagittal plane must be balanced, 

Eqs. (21) and (22), within the tolerances specified in Eq. (34). 

A detailed evaluation of the effect of the relative values of the weighting factors 

associated to the objectives can be found in [27]. 

These conditions are not imposed at every frame. With the considered reference 

motions composed of about 150 frames, equality constraints are set every 20 

frames, inequalities every 15 frames and the objective function is evaluated every 

3. Equality constraints reduce the number of free variables, and imposing them 

more often leads to a motion which may no longer adapt to minimize the objective 

function. Note that to avoid significant deviations from the pedal trajectory in 

between the frames at which the foot is constrained, the condition that the foot 

must follow the pedal trajectory is also included in the objective function with a 

high weight, as detailed before. Inequality constraints do not reduce the number of 

free variables but strongly affect the computational cost of the algorithm and 

require greater memory storage. Finally, the objective function must be evaluated 

at a number n of frames so that n≥nmin (Section 4.3.2) and n≤nFrames. Ideally, 

evaluating at every frame leads the CPs to be controlled best; however the 

smoothness ensured by the B-splines parameterization makes a frame-by-frame 
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evaluation unnecessary: we have found that, with the number of control points we 

employ, evaluating the objective function every 3 frames is a good compromise 

between computational cost and accuracy. 

6 Results and validation 

The results obtained for the three trials are presented and discussed in the 

following sections, along with the validation of the proposed method. An interior-

point method has been used to obtain the results shown in Sections 6.1-6.4 and is 

compared in Section 6.5 to a sequential quadratic programming method. 

6.1 End-effector trajectory 

Figure 5 shows the trajectories followed in the sagittal plane by the point in the 

foot which comes into contact with the pedal in the three predictions (Trials 1, 2 

and 3), including the reference, the modified and the predicted trajectories. During 

the first phase of the motion, in which the foot reaches the pedal, the modified 

trajectory is only resembled, whereas in the second phase the two trajectories 

match, since the foot is constrained to the pedal. Additionally, it can be seen that 

the employed motion modification methods (Section 3.3) succeed in generating a 

modified trajectory which resembles the shape of the reference trajectory. 

6.2 Joint angle profiles 

In this section, the results of the flexion-extension (FE) angle profiles of the hip, 

knee and ankle joints are presented (Figure 6), as they are the DoFs which mostly 

contribute to the clutch pedal depression. To validate the prediction method, the 

predicted joint angle profiles are compared to the profiles adopted in the 

validation database, represented through their mean profile μ and their variability 

μ±2σ, where σ represents the standard deviation. Assuming a normal distribution, 

only about 5% of the profiles should fall out of the area delimited by μ±2σ. The 

further the predicted profile is from the mean, the lower is the probability that the 

predicted motion may be considered as an element of the validation database. 

Additionally, each predicted motion is compared to its three validation motions 

through a root mean square error (RMSE) of the predicted and validation profiles 

with respect to the mean profile μ of the validation database (Table 4). The values 

in Table 4 do not aim to identifying the most realistic motions as those presenting 



24 

a lower RMSE. On the contrary, we use Table 4 to compare the RMSE of the 

validation motions to the RMSE of the predictions: if a prediction presents a 

similar RMSE to the validation motions, it may be considered an equally realistic 

motion. 

The values of the predicted DoFs are almost always contained within the μ±2σ 

area (Figure 6). Comparing the RMSEs of the predicted and the validation 

motions, almost all predictions present lower RMSEs than their corresponding 

validation motions. The exceptions are the hip and knee profiles in Trial 2 and the 

ankle profile in Trial 3 (Figure 6d, 6e, 6i respectively). These RMSEs, 

nevertheless, are not larger than some RMSEs associated to the validation motions 

of other trials. For instance, considering the ankle profile of Trial 3 (Figure 6i), 

which seems not to fully extend during the depression, its RMSE is larger with 

respect to its validation motions, but an even larger RMSE is associated to the 

second validation motion in Trial 1 (Figure 6c). This leads to the conclusion that 

such profiles are not the most common but nevertheless are occasionally adopted. 

Finally, it may be noticed that the shapes of the predicted profiles strongly 

resemble the shape of the reference profile, which agrees with the high weight 

associated with this objective, Eq. (11). 

6.3 Joint torque profiles 

The predicted torques closely resemble the values in the validation motions 

(Figure 7), which may suggest that the motion control law that is actually 

followed during clutch pedal depressions is not very different from the condition 

of mechanical energy minimization. It must not be surprising that the reference 

torques are not always included in the μ±2σ area, since the reference motions do 

not belong to the validation database.  

The only case in which the prediction RMSE is larger than the validation motions 

(Table 4) is for the ankle FE torque in Trial 2. However, although the predicted 

torque differs from the mean more than the validation motions do (Figure 7), its 

value is actually smaller, in accordance with the adopted performance measure of 

minimum mechanical energy, Eq. (15). This result may suggest that a different 

criterion may also be followed unconsciously to guide the ankle FE motion during 

pedal depressions. The results in the prediction of the hip and knee FE torques on 
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the other hand seem to suggest that mechanical energy minimization is an 

appropriate control law to guide their motion.  

6.4 External forces profile 

The shapes and values of all predicted pedal reaction forces (Figure 8) resemble 

the measured reaction forces in the corresponding validation motions. 

Additionally, the predicted profiles are contained within the μ±2σ area, suggesting 

that the  contact model employed to represent the human-pedal interaction is 

adequate. 

For what concerns the seat reaction forces (Figure 9), the predicted reactions 

resemble the values in the validation motions, which are obtained through Inverse 

Dynamics. However the natural oscillations encountered in the validation motions 

are amplified in the predictions, which may possibly be due to the simplified 

contact model used to represent the human-seat interaction. 

6.5 Comparison of optimization methods 

Finally, we compare the results obtained with the interior-point method mentioned 

earlier with a sequential quadratic programming (SQP) method. The root mean 

square errors between the results obtained with the two methods are RMSE < 2º in 

the joint angles and RMSE < 1Nm in the joint torques, showing that the results of 

our method are not strongly affected by the employed solver. The main difference 

between the solvers lies in their computational performance: the SQP method, 

which requires a numerical evaluation of the Hessian, presents a CPU time of 

about 40-50 minutes, whereas the interior-point, which employs the user-provided 

analytical Hessian, only requires 10-15 minutes of CPU time. 

7 Discussion 

The aim of human motion prediction is to represent the motions that a generic 

specimen of a population would perform to accomplish a given task. Although the 

prediction scenario matches an actual experimental scenario, the goal of the 

prediction method is not to replicate the motion in the database, but to generate a 

new motion which reasonably may have been performed in such a scenario. 

In Figures 6 and 7 it may be seen that the three validation motions present quite 

dispersed data. This dispersion is a measure of the internal variability with which 
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subjects perform repetitions of the considered task. In such dispersion, the 

predicted motion should fit as an additional motion, not as an exact match of an 

actually performed motion. 

The hybrid prediction method we present may also be adapted in the case in 

which the aim of the prediction were extended. If the prediction should not only 

represent a realistic motion, but also the variability encountered in the database, 

our method offers three paths to be followed. The first option is changing the 

reference motion, and instead of selecting the most similar scenario as reference, 

performing several predictions by using a different reference for each prediction. 

The second possibility is to change the relative weights assigned to the objectives 

in the optimization problem. An appropriate set of weights however is not easily 

obtained, and generally is the result of a trial-and-error procedure. Moreover, their 

effect on the resulting motion is not always known beforehand and is generally 

nonlinear [22,27]: changing the value of a weight may under certain conditions 

hardly affect the resulting motion or modify it significantly.  

The third option to change the predicted motion is to include a different motion 

control law, or combining several [19] to obtain different realistic predictions. 

These three options lead to stating the flexibility of our hybrid method to generate 

different predictions, as the aspects related to both the data and knowledge may be 

modified. 

Our hybrid method also overcomes some of the limitations of current motion 

prediction methods. Data-based methods [6-8] are currently only kinematic, hence 

may not be expected to reasonably predict motions in which dynamics play a 

relevant role. Our method is able to predict a clutch pedal depression operation, in 

which the forces arising from the interaction between the subject and the 

environment are taken into account. Moreover, the capabilities of extrapolation 

from the database are limited in purely data-based methods when the prediction 

scenario differs significantly from the scenarios present in the database. By 

including knowledge in the prediction, our hybrid method overcomes the data-

based limitation and is able to extend the prediction to different scenarios, as 

discussed in [27]. 

On the other hand, the greatest challenge for current knowledge-based methods 

[4, 14-18] is to predict realistic complex motions. An appropriate performance 

measure is not always easily identified and often a combination of motion control 
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laws is required to obtain a more realistic prediction. Recently, Xiang et al. [23] 

presented a hybrid method, which seeks to overcome the limitations of 

knowledge-based methods in terms of the realism of the predicted motion. The 

data included in the method however derived from one experimental motion, 

which may not be representative of the motions performed in similar scenarios. 

The reasons for this limited data contribution are to be found in the origins of this 

hybrid method, which is built on the framework of a purely knowledge-based 

method [4, 21]. The validation of Xiang’s hybrid method is carried out by 

comparing the prediction results to the single experimental motion. It may be 

argued that this one-to-one comparison may not be sufficient to assert that the 

method is valid to predict realistic human motions. 

On the other hand, the validation process carried out to assess the validity of the 

hybrid dynamic method we present in this paper, compares the result of three 

different predictions with a database of actually performed motions, along with 

three repetitions of the motion actually performed in the prediction scenarios. The 

general trends of the joint angle and torque profiles are identified and resembled 

by the predicted motions, which do not deviate with respect to the mean profile 

more than the actually performed motions. 

8 Conclusions 

In this paper we have presented a hybrid dynamic motion prediction method, 

which relies on a database of captured motions and includes knowledge in the 

prediction through the definition of a performance measure, which represents the 

motion control law that drives the motion. The method is dynamic since the 

system’s dynamics are included both in the performance measure and in the 

condition that the dynamic equilibrium of the human model must be ensured. The 

equilibrium is obtained by balancing the internal and external forces acting on the 

human model, the latter being defined through appropriate contact models to 

represent the interaction between the human model and the environment. 

The prediction is carried out by solving a constrained nonlinear optimization 

problem and is applied to the prediction of clutch pedal depression motions to 

demonstrate its validity. Three clutch pedal depression predictions are presented 

and discussed in the paper and the results are validated against actually performed 

motions in a similar scenario. The predicted motions closely resemble real 
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motions in the trajectory followed by the end-effector, as much as in the joint 

angle profiles, the joint torque profiles and the external forces acting on the 

human model across the motion. 

The presented results show that the proposed method is able to generate realistic 

predictions. The application to clutch pedal depression motions serves as example 

and not as a boundary to the applicability of the method. The generality with 

which the proposed method is defined allows it to be easily applied to different 

task-oriented human motions, as the constraints and the objectives remain valid 

and must not be reformulated. For the prediction of longer and more complex 

motions, the motion can be divided into time periods to be predicted separately, 

ensuring the continuity through the initial and final conditions presented in this 

work. 
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Figure Legends 

Fig. 1 Hybrid dynamic motion prediction method outline 

Fig. 2 Objective function Hessian matrix with different numbers of control points. The blue dots 

represent the non-zero elements of the matrices 

Fig. 3 Human model for the clutch pedal depression motions (13 DoFs) 

Fig. 4 Environment characteristics 

Fig. 5 End-effector trajectories in the longitudinal x axis and vertical z axis in the three trials. The 

grey dot-dashed curves represent the trajectories followed in the reference motions; the black 

dotted curves represent the modified trajectories, which must be followed during the prediction; 

and the black solid curves represent the predicted trajectories 

Fig. 6 Flexion-extension angle of hip, knee and ankle joints. Values calculated in accordance to 

Kapandji [45], except for the ankle which presents a +90º offset. The black solid curves represent 

the predicted profiles; the thin black curves represent the database mean profile μ and the 

variability curves μ±2σ; the black dashed curves represent the profiles of the validation motions; 

the grey dot-dashed curves represent the reference profiles 

Fig. 7 Flexion-extension torques of hip, knee and ankle joints. The black solid curves represent the 

predicted profiles; thin black curves represent the database mean profile μ and the variability 

curves μ±2σ; the black dashed curves represent the profiles of the validation motions; the grey dot-

dashed curves represent the reference profiles 

Fig. 8 Pedal reaction forces acting on the left foot along the radial and normal directions in the 

pedal. The black solid curves represent the predicted profiles; thin black curves represent the 
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database mean profile μ and the variability curves μ±2σ; the black dashed curves represent the 

profiles of the validation motions; the grey dot-dashed curves represent the reference profiles 

Fig. 9 Seat reaction forces acting on the pelvis along the longitudinal and vertical directions. The 

black solid curves represent the predicted profiles; thin black curves represent the database mean 

profile μ and the variability curves μ±2σ; the black dashed curves represent the profiles of the 

validation motions; the grey dot-dashed curves represent the reference profiles 

 

Tables 

 Group 1 Group 2 Group 3 Group 4 

Gender Female Male Female Male 

Age 25±5 28±7 69±3 72±6 

Stature [cm] 165±5 176±7 159±6 172±3 

Mass [kg] 61±4 68±13 64±8 82±6 

Table 1: Characteristics of the subject groups for the clutch pedal depression experiment 

 

SUBJECTS Gender Age Stature [cm] Weight [kg] 

Prediction 1 Female 30 168.4 58.6 

Reference 1 Female 21 168.2 57.2 

Prediction 2 Female 23 163.9 63.7 

Reference 2 Female 30 168.4 58.6 

Prediction 3 Female 23 163.9 63.7 

Reference 3 Female 21 168.2 57.2 

Table 2: Characteristics of the subjects to be predicted and the reference subjects 

 

VEHICLES 

Seat 

height 

[m] 

Pedal rest position and orientation 
Travel 

L [m] 

Travel  

α [deg] x [m] y [m] z [m] β0 [deg] 

Prediction 0.272 -0.766 -0.080 -0.130 65 0.157 8 

Reference 0.256 -0.814 -0.060 -0.069 76 0.131 0 

Table 3: Characteristics of the environment to be predicted and the reference environment 

 

  Angles (Flex-Ext) [deg] Torques (Flex-Ext) [Nm] 

  Hip Knee Ankle Hip Knee Ankle 

Trial 1 Pred 3.531 3.439 4.064 4.002 1.246 1.182 
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Val 1 8.182 4.935 7.802 4.615 2.211 0.955 

Val 2 6.290 8.156 12.337 20.121 11.667 3.053 

Val 3 8.272 5.838 9.961 20.973 11.216 3.670 

Trial 2 

Pred 8.306 7.207 5.553 6.627 2.878 2.945 

Val 1 5.447 6.096 3.655 3.389 2.396 1.043 

Val 2 5.061 4.468 7.572 10.738 3.385 1.393 

Val 3 1.363 1.867 2.432 14.041 6.360 1.914 

Trial 3 

Pred 3.632 4.437 11.559 4.833 1.696 1.540 

Val 1 5.447 6.096 3.655 3.389 2.396 1.043 

Val 2 5.061 4.468 7.572 10.738 3.385 1.393 

Val 3 1.363 1.867 2.432 14.041 6.360 1.914 

Table 4: RMSE of the prediction and validation profiles with respect to the mean profiles μ 

 


