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To face the challenge of climate change and achieve the decarbonization target set by the European Union, the 
current trend is to electrify building services, replacing the use of fossil fuels for renewable energy sources. 
The installation of grid-connected photovoltaic (PV) systems is becoming a popular strategy. However, the 
widespread application of PV solutions carries certain concerns about grid-network security and stability, since 
intermittent renewable energy excess pouring into the grid may exceed voltage limits. Therefore, an optimization 
of the consumption of a building’s own PV production (self-consumption) to reduce the excess output is vital. The 
following paper performs a demand side optimization strategy of the building’s thermostatic controllable loads 
(heating and cooling), which represent at least 50% of the total energy consumed by the building. The process is 
applied in a previously calibrated building energy model (BEM) that describes a fully operational building under 
a typical Mediterranean climate (Greece). The site contains a PV plant and a multi-split Variable Refrigerant Flow 
(VRF) system dedicated to maintain indoor comfort conditions. The technology used is simple, able to perform 
15 minute time-step yearly optimizations while saving a large amount of computational time. It performs a bi-
dimensional optimization of both: indoor thermal-zone set-points and ventilation air supply temperature. The 
optimization process performed is based on 2019 data gathered from European Project SABINA, resulting in a 
self-consumption improvement of 11.6% for summer scenario (reaching 69.16%) and 78.7% for winter (reaching 
57.47%) in comparison to a non-optimized “business as usual” base model.
1. Introduction

The European Union’s commitment to achieve decarbonization and 
to reduce greenhouse gas emissions, in order to transition to a carbon-
neutral economy, has led to a growing interest in the use of renewable 
energies and the reduction of fossil fuel dependency.

With the energy strategy established by the European Union (EU) for 
the coming years and contained in the “Clean Energy for All Europeans” 
package [1], the aim is to achieve climate neutrality by 2050. To this 
end, a series of targets are proposed to be achieved by 2030. Among 
them, it can be highlighted: a commitment to reduce greenhouse gas 
emissions by at least 55% compared to 1990 levels, ensuring that at 
least 40% of energy consumption comes from renewable sources, and 
achieving a minimum energy efficiency improvement of 32.5% [2,3].

* Corresponding author.

Within these objectives, special emphasis is placed on improving 
the energy performance of the building sector, since it is the largest 
consumer of energy: buildings account for 36% of greenhouse gas emis-
sions and 40% of final energy consumption in Europe [2], making this 
sector a critical factor in the decarbonization transition.

The role of photovoltaic energy is crucial in this scenario of carbon 
dioxide (CO2) emissions reduction, increase of renewable energies and 
the growing electrification of several sectors, such as transport, indus-
try or heating and cooling [4]. The aim of this paper is, in line with 
the route established by the EU, to delve into the possibility of improv-
ing the energy performance of a building by optimizing the use of the 
electrical energy produced in a photovoltaic (PV) plant.

Precisely, matching the local production of renewable energy to the 
energy demanded by the building is one of the challenges that needs to 
be met in order to achieve the targets set by the EU. According to Di-
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rective 2010/31/EU [5], amended by Directive (EU) 2018/844 [6], by 
2020 all new buildings should be nearly zero-energy buildings (nZEB), 
that is, buildings with very high energy performance and whose energy 
needs come from renewable sources.

A net zero energy building (NZEB) connected to the grid uses energy 
sources such as electricity or natural gas when the on-site generation 
cannot meet the demand needs. Instead, it exports the excess of renew-
able energy generation to the grid when that demand is surpassed [7,8]. 
In other words, the traditional NZEB model uses the grid as an energy 
excess storage. However, this energy excess is not always an advantage. 
The intermittent, fluctuating and weather-dependent nature of renew-
able energies limits the penetration of them in distribution systems [9]. 
The rapid growth of renewable energy generation capacity can create 
operational challenges for utilities [10]. In the case of PV generation, 
it could affect the stability of the electrical system, cause power qual-
ity issues, or protection problems. One of the major problems limiting 
this penetration of PV energy into the grid is the voltage rise caused 
by the mismatch between production and demand, when the number of 
connected PV systems is high, and the voltage limit is exceeded in low 
demand situations [11]. All these reasons make it necessary to establish 
strategies in order to control these variables and correctly integrate PV 
systems into the power grid without compromising security and quality 
of supply [12]. It is necessary the development of different strategies in 
order to move from the traditional unidirectional to fluctuating bidirec-
tional power flows in the distribution grid.

One of the ways to continue developing PV generation units, a 
key element in the decarbonization process, is the electrical self-
consumption (SC) model, that is, promoting the instantaneous con-
sumption of the energy produced [12]. This solution has started to be 
used in many countries, such as Germany, Spain and Italy, to prevent 
an excess of energy overloading the distribution grid [11,13].

Photovoltaic self-consumption has many benefits such as the im-
provement in the efficiency of the energy system by avoiding transport 
losses, the reduction of the stress on the electricity distribution grid, a 
possible reduction of energy prices in the wholesale market, or a reduc-
tion in the volume of CO2 emissions [14–17].

In order to promote self-consumption in residential buildings, there 
are two different approaches: Demand Side Management (DSM) strate-
gies or energy storage in batteries. There is a lot of literature about 
the optimization of the batteries, which can present a lot of advantages 
for the residential PV microgrid systems, but whose costs are currently 
higher that their benefits [18].

Therefore, this paper is focused on the demand side management 
approach as a strategy to increase self-consumption. This strategy aims 
to achieve the energy flexibility, which can be defined as:

The ability to manage its demand and generation according to local 
climate conditions, user needs, and energy network requirements. Energy 
Flexibility of buildings will thus allow for demand side management / load 
control and thereby demand response based on the requirements of the sur-

rounding energy networks [19].
Among the DSM strategies, there are two principal categories: Model 

Predictive Control (MPC) and rule-based control (RB). The first require 
more sophisticated algorithms and, particularly, a long run-time for 
computational simulation. In the present study, a RB strategy to in-
crease self-consumption through the building mass thermal activation 
is proposed and applied to a real case study through the use of a cali-
brated building energy model.

MPC strategies are more often present in the literature than RB tech-
niques [20,21]. Some examples of the application of rule-based control 
strategies can be found in [22], where the authors presented a rule-
based strategy for managing the energy resources of a building in the 
south of France, equipped with a PV plant, a wind turbine and batteries. 
The strategy is based on the prediction of the grid load, the renewables 
production and the occupation of the building. Pinamonit et al. [23]
developed a simple RB control strategy to manage heating and cool-
2

ing in a residential building equipped with a heat pump. The strategy 
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consisted of storing the PV surplus in the thermal mass of the building 
and in two water tanks. They concluded that the thermal capacitance 
activation was favorable for both winter and summer seasons, and it 
can increase SC rate in a range from 33% to 40%. In [24] the authors 
proposed a rule-based control strategy that uses the building thermal 
capacitance as an energy storage by running the heat pump to its limit 
when there is a PV production surplus. Thus, the strategy increased 
the set-point of a water tank and the ambient air temperature. The re-
sults showed a significant reduction in the energy exchange between 
the grid and the building. In the study [25], the building was equipped 
with a heat pump, which was started by the RB controller when the 
PV production exceeded the non-heating loads. Results showed that 
self-consumption could be improved by almost 40%, and the energy 
bills could be reduced by 19%. However, the price-based control and 
the self-consumption control display diametrically opposed behaviors to 
each other. Schibuola et al. [26] studied three different RB heat-pump 
control strategies, based on the cost of electricity and on the electricity 
production from the PV plant. The controller was simple: the heat pump 
(HP) was forced to switch on when prices are low or when the PV pan-
els were generating electricity. Several RB strategies were investigated 
in [27], applied in the production of domestic hot water for dwellings 
equipped with heat pumps, and based on voltage measurement.

None of the aforementioned papers applied their proposed strategy 
to a calibrated model, but to a detailed simulation environment. Also, 
as it can be appreciated, the most frequent heating, ventilation and 
air conditioning (HVAC) system optimized in the literature are heat 
pumps, and it is frequent to find the activation of the thermal mass of 
the building together with the thermal storage in water tanks.

1.1. Contribution and originality of the research

The original contribution of this research can be summarized in four 
points, which will be described in detail below:

• The optimization strategy is applied to a calibrated Building En-
ergy Model which fully represents the real thermal behavior of the 
building.

• The proposed methodology uses a rule-based control strategy, 
which allows obtaining one year of 15-minute time-step set-points 
for each thermal zone in a very short computational time.

• Optimization is applied to both the temperature of the thermal zone 
and the air-supply temperature. Additionally, an analysis of the 
optimal distribution of the energy surplus was conducted.

• The strategy is executed in multiple HVAC system that provides 
heating or cooling and ventilation.

This paper presents the application of a novel RB strategy to a 
real case study, through the use of a calibrated building energy model 
(BEM). The test site is a two-story building located in Lavrion, Greece. 
The construction is a living lab from the National Technical University 
of Athens (NTUA). Unlike most studies that apply demand side manage-
ment strategies, in this case real data has been used: the BEM has been 
created, through the calibration of a model using the weather, the PV 
plant and the HVAC system data collected throughout 2019. All the in-
formation about the building was gathered within the framework of the 
H2020 project “SmArt BI-directional multi eNergy gAteway” (SABINA), 
funded by the European Commission [28,29]. The main objective of 
that project was the design of strategies to inject and take advantage 
of energy excess produced on-site in the building, avoiding exporting it 
to the grid. The present paper develops one strategy aimed to increase 
self-consumption for this real building. Therefore, the base model from 
which the optimization is generated corresponds to the actual opera-
tion of the building, respecting the set-points established in the Building 
Management System (BMS).

The energy consumption has been corrected through the use of a cal-

ibrated model: the techniques employed in order to establish the error 
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of the BEM can be consulted in [30–32]. In [33] and [34] the methodol-
ogy applied for the calibration of the building envelope was developed. 
Finally, for the calibration of the HVAC system, the methodology de-
scribed in [35] and [36] was used.

The DSM strategy was previously successfully tested using synthetic 
data based on a Building Energy Model (BEM) performed in Energy-
Plus. Contrary to the present study, a non-calibrated base model was 
used, where a perfect knowledge about the PV production, energy con-
sumption and the weather forecast data was assumed [37].

The research applies a rule-based control strategy. These kind of 
methods work based on algorithms that operate depending on a set of 
predefined rules to control the system. They are widely used in HVAC 
systems for temperature control, and they are simple to set up [38]. 
In this study, the RB technique was used to define, for each room or 
thermal zone, a set of optimal set-point curves with a fifteen-minute 
time interval.

Additionally, as it was mentioned before, three issues are analyzed 
at the same time:

(i) the optimization of the set-point curves of each thermal zone, (ii) 
the optimization of the set-point curves of the air-supply temperature 
and (iii) the most appropriate energy distribution in order to achieve 
that maximum indoor set-points optimization: an energy distribution 
based on the demand of each thermal zone, a uniform distribution or a 
distribution based on the air volume.

This evaluation of different practical cases of distributing the energy 
from the PV and delivering it into the various HVAC systems, establishes 
new guidelines and shows which is the best way to perform future op-
timization processes.

After selecting the best energy distribution, the optimization of the 
set-points resulted in an average increase in self-consumption of 78.7% 
(from 32.16 to 57.47) in winter and 11.6% (from 61.96 to 69.16) in 
summer. The increase in self-sufficiency reached 66.5% (from 9.55 to 
15.90) in winter and 6.9% (from 36.44 to 38.95) in summer.

It is important to note that the previous research conducted with 
simulated data [37] delivered more favorable results, with a greater 
increase in self-consumption. However, the present test makes use of 
real data from an actual test site gathered during the execution of 
SABINA project (“SmArt BI-directional multi eNergy gAteway”, [28]) 
and demonstrates that the methodology works, even when applied to 
multiple HVAC systems, signalling that the impact of its results may be 
influenced by the physical characteristics of the building and the capa-
bilities of the PV plant as well.

Finally, the novelties of this paper include the optimization of mul-
tiple HVAC systems at the same time. This is performed in a single run 
for each of the seasons under analysis (winter and summer) which saves 
abundant computational resources. The main objective of the developed 
methodology is the reduction of the amount of energy exported to the 
grid by using the instantaneous production from the PVs, that is, the 
improvement of self-consumption; and at the same time, avoiding the 
increase of energy demanded to the grid.

The implementation of the algorithm presented in this study allows 
the building’s HVAC system to consume excess energy, storing it in-
side the building spaces as heating or cooling energy while maintaining 
comfort and indoor health conditions. The technology optimizes the be-
havior of preexisting equipment, requires minimal sensor deployment, 
and avoids the need for battery installations, resulting in reduced in-
stallation and implementation costs. By developing this optimization 
algorithm, the PV plant’s performance is enhanced, excess energy de-
ployment into the grid is minimized, and the building’s self-sufficiency 
is improved with minimal intervention.

The structure of the present paper is established as follows: Section 2
presents the description of the weather, the building and the Heating, 
Ventilation, and Air Conditioning system, the calibration methodology 
and the control strategy applied to the current test site. Section 3 dis-
cuss the results obtained for this case study, through the comparison 
3

between the base and the optimized model. The optimal distribution 
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of the supplied PV production into the building is analyzed, as well as 
the optimal set-point curves for the air-supply temperature of the air 
handling unit and for the thermal zones. Finally, Section 4 lists the con-
clusions obtained from this real test analysis

2. Methodology

As an alternative storage system to batteries, the demand side man-
agement strategies could be classified in two groups: hot water tanks 
and the activation of the building thermal mass. In this research this 
latter option is explored, using the surplus of PV production. The final 
goal is to maximize the match between instantaneous local PV produc-
tion (P) and the building energy demand (L). In order to achieve that, 
the surplus of the PV production is stored in the thermal mass of the 
building, by a bi-dimensional modulation of the set-points in each ther-
mal zone and the one regarding the temperature of neutral air supply 
belonging to the building’s Air Handling Unit (AHU).

For winter scenario, the reference indoor set-point temperature used 
is 21 °C, which is the lowest allowable value for indoor comfort during 
heating operation based on SABINA project parameters. The optimiza-
tion methodology used during this season allows for the room heating 
set-point to range between its comfort allowable values of 21 °C to 25 °C. 
For the summer scenario the reference indoor set-point used is 27 °C, 
the optimization process allows this value to range between its comfort 
allowable values o 23.5 °C and 27 °C.

Additionally, the reference set-point for the neutral air supply of the 
AHU dedicated to provide ventilation into the spaces is set to 17 °C for 
Winter and 30 °C for summer season. The optimization methodology 
allows the range of this set-points to vary between 17 °C and 24.5 °C 
during heating operation, and between 23 °C and 30 °C during cooling 
operation respectively. Since this provides neutral air into the thermal 
zones that will be further treated by the main VRF system, the main 
condition of maintaining indoor temperature within comfort values is 
always observed.

The methodology is applied in a building located in Lavrion, Greece, 
equipped with a PV system of 15.1 kWp with a 16% efficiency, a PV 
plant that according to the data used was able to supply a total yearly 
energy rate of 6575.42 kWh (3783.64 kWh in summer and 2791.78 
kWh in winter) under 2019 weather conditions. Additionally, the se-
lected test site building HVAC is comprised of a variable refrigerant flow 
(VRF) system with a nominal cooling capacity of 71 kW, and 80 kW for 
Heating.

Next, the characteristics of the weather, the building and the HVAC 
system are described.

2.1. Weather information

As it was mentioned before, previous work with synthetic data from 
a dwelling in Pamplona (Spain) was performed [37]. In this case, the 
proposed algorithm is tested using one year of real data from a PV plant 
located in Lavrion, Greece. The site is located in a “typical Mediter-
ranean climate”, according to Köppen Climate Classification. It belongs 
to the category of Hot-Summer Mediterranean Climate (Csa), which is 
characterized by sunny and dry hot summers with eventual thunder-
storms and shower rains and mild winters with a surplus in rain, yet 
rarely any snow [39].

The present study attempts to perform a 10 minute time-step op-
timization of the PV plant using the building as a thermal battery for 
storing the surplus of PV production. The summer operation set up of 
the equipment involved in this process runs in cooling mode from May 
2019 to October 2019, with temperature ranges from 10 °C (Minimum 
in May) up to 36.6 °C (Maximum in July) and a monthly average hori-
zontal radiation of 441.9 W/m2, as Table 1 shows.

For its winter operation set up, running from January to April 2019 
and from November to December 2019, the HVAC system is shifted 

and locked into heating mode. Table 2 shows that the site temperatures 
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Table 1

On-Site summer 2019 operation weather details.

Description Units Summer Optimization Period

2019 Average

May Jun Jul Aug Sep Oct

COOLING

Outdoor Average °C 19.536 26.208 27.545 28.185 24.243 21.137 24.476
DryBulb Maximum °C 30.600 34.400 36.600 35.900 30.800 29.400 32.950
Temperature Minimum °C 10.000 16.600 19.100 20.400 14.400 13.700 15.700
Global Horizontal

Average W/m2 430.879 488.231 490.833 490.507 424.419 326.207 441.846
Radiation
Diffuse Radiation Average W/m2 285.090 305.600 294.535 285.452 216.690 141.005 254.729

Table 2

On-Site winter 2019 operation weather details.

Description Units Winter Optimization Period

2019 Average

Jan Feb Mar Apr Nov Dec

HEATING

Outdoor Average °C 9.923 10.656 13.575 15.176 18.290 13.087 13.451
DryBulb Maximum °C 17.400 18.100 22.300 25.900 26.900 19.800 21.733
Temperature Minimum °C -0.100 4.300 5.300 6.900 11.200 5.700 5.550
Global Horizontal

Average W/m2 118.928 84.686 139.145 205.342 62.785 51.602 110.415
Radiation
Diffuse Radiation Average W/m2 62.785 51.602 120.787 162.467 214.802 271.270 147.286

Table 3

Sensors and accuracy values of the weather station.

Sensor Units Range Resolution Accuracy

Temperature °C -40° to +65° ±0.1 ±0.5
Humidity % 0 to 100 ±1.0 ±3.0% (0-90) ±4.0% (90-100)
Global Solar Radiation W/m2 0 to 1500 1 ≤10
Diffuse Solar Radiation W/m2 0 to 1500 1 ≤20
Wind Speed m/s 1 to 67 0.44 ±1/±5%
Wind Direction ° 1 to 360 1.0 ±4%
Precipitation mm — 0.2 ±4%/0.25 (≤50 mm) ±5%/0.25 (≥50 mm)
Atmospheric Pressure mbar 880 to 1080 ±0.1 ±1
range from -0.10 °C (Minimum in January) to 26.90 °C (Maximum in 
April) with a monthly average horizontal radiation of 110.415 W/m2.

Since weather directly influences the building’s energy demand, 
stressing its envelope and affecting the performance of HVAC produc-
tion systems [32,40], it is one of the main aspects to carefully observe in 
order to perform any building energy strategy [41]. This is particularly 
evident when analyzing cooling/heating performance of outdoor pro-
duction units like heat pumps and variable refrigerant flow units. The 
thermal performance and energy consumption of these equipments are
usually directly correlated to weather parameters. For these reasons, a 
weather station has been allocated on the test site to collect data every 
fifteen minute time-step. Table 3 displays the station sensors and their 
accuracy.

2.2. Building description

The test site labeled as H2SusBuild, includes a building that aims 
to achieve a Net Zero Energy Building (NZEB) status. This building op-
erates as a living lab for the National Technical University of Athens 
(NTUA), Greece. The building is located inside Lavrion Technological 
and Cultural Park (LTCP) at an altitude of 26 meters above sea level. As 
displayed in Fig. 1, the building used for this study is a two-story light 
construction industrial unit refitted for energy studies purposes. The 
site is characterized by its little thermal mass, with an envelope con-
sisting of 10 cm expanded polystyrene (EPS) insulation between two 
4

layers of lightweight concrete blocks (U value = 0.25 W/m2K). Its roof 
Fig. 1. H2SusBuild Test Site’s main entrance [36].

construction consists of a metallic sandwich panel with a polyurethane 
insulation layer of 2.5 cm (U value = 0.75 W/m2K) [42].

In order to condition the air volume of the different areas in the 
building, maintaining their indoor climate and satisfying their com-
fort constrains, the building employs two Heating, Ventilation, and Air 
Conditioning (HVAC) systems that operate independently. The first one 
is a two-way pipe multi-split Variable Refrigerant Flow (VRF) system 
dedicated to provide both heating or cooling, and ventilation, to the 

southern side of the structure. The second one, which is outside the 
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Fig. 2. Building thermal zone: Ground Floor Plan (Top). First Floor Plan (Bottom) [36].

Table 4

Conditioned thermal zone’s effective floor area and indoor air volume.

TZ02 TZ03 TZ04 TZ08 TZ09 TZ10 TZ11 TOTAL

Area (m2) 13.72 98.39 25.38 50.43 54.44 23.85 23.82 290.03
Volume (m3) 42.52 305.00 78.66 182.27 160.50 58.39 113.64 940.98
scope of this study, is a Heat Pump (HP) system dedicated to provide 
heating or cooling, as well as ventilation, to the atrium located on the 
northern side of the building.

Based on the building technical information, of the total building’s 
air volume of 2475.93 m3, 420.33 m3 are set as unconditioned spaces 
such as storage areas and toilets. Of the remaining conditioned air vol-
ume, 1114.62 m3 are outside the scope of this study since they are part 
of the atrium served by the HP system. That leaves a total of the 940.98 
m3 of air to be conditioned by the VRF system. The architectural lay-
out displayed on Fig. 2 shows the Thermal Zones (TZ) that are bound to 
this system and therefore part of this study. Table 4 lists the areas and 
volumes of each of the following spaces: kitchen (TZ02), main entrance 
(TZ03), control/server room (TZ04), meeting room (TZ08), living room 
(TZ-09), and offices (TZ10-11).

In order to minimize the introduction of uncertainty from thermal 
effects of adjacent TZ that are either unconditioned or outside the scope 
of this study their indoor behavior is fixed. In the case of unconditioned 
spaces the indoor temperature values are fixed to the actual room tem-
perature values obtained by sensors deployed in the building; while 
in the case of the atrium, its indoor temperature values are fixed on 
the operating set-point schedule requested by the BMS. Thus, the heat 
transference effects that the atrium and any unconditioned zone has 
5

over their adjacent conditioned zones is taken into account inside the 
model, so the uncertainty that this system may introduce into the BEM 
is reduced.

2.3. HVAC description

The present study focuses on the variable refrigerant flow HVAC sys-
tem. The installed equipment is composed of a direct expansion circuit 
that allows the rate of refrigerant flow to vary depending on the opera-
tion of the multiple Electronic Expansion Valves (EEV) inside the room 
indoor units and the speed of its outdoor unit compressor [43].

As displayed on Fig. 3, the equipment configuration has a tandem 
outdoor unit with a cooling capacity of 71 kW and a heating capacity 
of 80 kW designed to operate with an outdoor temperature range from 
-5 to 43 °C (cooling) and from -20 to 15.5 °C (heating). The outdoor 
unit is connected to 13 wall mounted VRF Fan Coil Units (FCU) located 
inside the different TZ and classified based on their cooling/heating 
capacity as: Type-28 (C 2800 W/ H 3200 W), Type-45 (C 4500 W/ H 
5000 W), Type-56 (C 5600 W/ H 6300 W), and Type-71 (C 7100 W/ 
H 8000 W). Additionally, the outdoor unit is also connected to a direct 
expansion coil (C 15000 W/ H 10000 W) located inside the auxiliary 
Air Handling Unit (AHU) that is dedicated to provide ventilation into 

the aforementioned TZ.
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Fig. 3. H2SUS HVAC VRF Installation diagram [36].

Fig. 4. Overview of H2Sus HVAC VRF Installation diagram [36].
The previously described VRF system operational behavior and elec-
tric consumption has a strong relationship between: indoor tempera-
tures and outdoor climate. It functions as a thermal-electric transformer 
whose operation performance is constrained by the relationship be-
tween the building indoor climate and its outside weather conditions. 
As previously stated in multiple papers by the authors [44,36], the 
effects produced by the building’s internal loads (occupancy, lighting 
and equipment) are represented in the actual indoor temperatures of 
the multiple thermal zones within the building. The BEM calibration 
process is performed in two steps, where its envelope calibration is ex-
ecuted during free oscillation periods and thus there is no effect from 
the buildings internal loads. However, it is to be noted that during the 
building’s HVAC system calibration, the BEM’s resulting indoor temper-
atures are continuously benchmark against actual readings by the use 
of uncertainty indexes. Therefore the effects produced by these inter-
nal loads are introduced into the obtained HVAC calibrated parameter 
6

values.
2.4. Calibrated building energy model description

The building and its HVAC installation is modelled in detail in De-
signBuilderV6 software, generating a baseline model that is exported 
into EnergyPlus simulation environment. The main criteria used to gen-
erate this model are to simulate the building and its components in 
a way that they resemble real conditions as closely as possible, intro-
ducing into the model as much information for the constructions and 
equipment as available in the technical documentation. As Fig. 4 shows, 
it is here that the building TZ are geometrically set, the nodes for the 
HVAC equipment are introduced and their loops described, setting all 
parameters to technical specifications.

After the baseline model has been generated, its envelope under-
goes calibration using the methodology stated by Ramos et al. [33], 
and validated by Gutierrez et al. [45], and its HVAC system parameter 

values and performance curves have been calibrated and validated by 
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Fig. 5. Performance results for electric consumption of the calibrated BEM for Heating (left) and Cooling (right). (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Table 5

Electric Consumption hourly uncertainty index for the BEM Calibration period.

International Standard Electric Consumption Results

INDEX ASHRAE IMPVP Heating Calibration Cooling Calibration

NMBE ±10% ±5% 10.234% 7.139%
Cv(RMSE) 30% 20% 27.180% 25.681%
R2a 75% 75% 59.473% 75.300%

a Although there is no universal standard for a minimum acceptable R2 threshold, values above 75% are 
often considered a sign of a good causal relationship amongst the energy and independent variables [46].
Pachano et al. [36]. Therefore, the current study is performed on a fully 
calibrated Building Energy Model (BEM).

2.5. Calibrated building energy model results

The calibrated parameter values and curves obtained allowed the 
BEM to capture the building thermal behavior and match its energy 
consumption. As Fig. 5 shows, the simulated values for electric energy 
cluster around the ideal 45° line for both Heating and Cooling.

In regard of the quality of the performed calibration, Table 5 dis-
plays the electric consumption uncertainty indexes obtained after the 
calibration process has ended. The resulting calibrated BEM model 
seems to comply with ASHRAE’s standard.

In terms of indoor temperatures, the calibrated BEM capture the 
thermal behavior of the different spaces with a good correlation. Keep-
ing all temperature uncertainty indexes below the requirements sug-
gested by Chartered Institution of Building Services Engineers (CIBSE) 
on its publication Operation Performance TM-63. Moreover, not one of 
such temperature errors is above 1 °C. Table 6 shows the indoor tem-
perature indexes for Heating calibration, while Table 7 displays those 
for Cooling calibration.

The results obtained from these calibrated BEM models show that 
the energy model has truly captured the indoor climate behavior of the 
building, and the consumption of its equipment. Therefore, the cali-
brated BEM models faithfully represent the working conditions of the 
building and can now be used for the following PV optimization pro-
7

cess.
2.6. Control strategy

Fig. 6 describes the process used in order to obtain the optimal set-
points curves. For the base case, real data was collected during one 
year, 2019. The simulation of the base scenario was performed with 
fixed temperatures using the reference set-points in the thermal zones 
of: 27 °C in summer and 21 °C in winter. As it was mentioned before, in 
addition to the Fan Coil Units, the VRF outdoor unit is connected to an 
auxiliary AHU. Its air supply temperature set-point was fixed at 30 °C in 
summer and 17 °C in winter.

This first simulation allows to obtain the Coefficient of Performance 
(COP) of each step-time and the distribution of the energy excess within 
the different thermal zones.

The second step consisted of obtaining the optimal set-points, based 
on the files collected in the first stage. When the demand of the build-
ing was higher than the energy produced by the PV plant, the standard 
set-points were applied. By contrast, when there was an excess PV 
production, the optimal temperature subroutine was executed in En-
ergyPlus Runtime Language (Erl).

Nine different optimized models were simulated, obtained by the 
combination of two factors. On the one hand, the defined algorithm 
distributed the excess of energy into the TZ according to three different 
approaches: the distribution results obtained in the first simulation, that 
is, the calibrated distribution; a distribution based on the floor area of 
each TZ, and a distribution based on the air volume of each TZ. On the 
other hand, three different priority approaches were tested: first, the ex-
cess of energy was distributed to the VRF and the AHU simultaneously, 

secondly the excess of energy was prioritized to be distributed to the 
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Table 6

Indoor thermal zone temperature hourly uncertainty index for the Heating Calibration period.

Indoor Temperature by TZ Building

INDEX Tz-02 Tz-03 Tz-04 Tz-08 Tz-09 Tz-10 Tz-11 Average

MAE (°C) 0.170 0.056 0.036 0.375 0.256 0.262 0.397 0.194
RMSE (°C) 0.705 0.198 0.099 0.931 0.763 0.688 0.966 0.462
NMBE (%) 0.699 -0.087 -0.030 1.462 0.980 0.827 1.558 0.712
Cv(RMSE) (%) 3.150 0.968 0.410 4.109 3.171 3.084 4.413 2.086
R2 (%) 89.474 99.056 99.715 86.797 91.013 82.361 73.875 93.966

Table 7

Indoor thermal zone temperature hourly uncertainty index for the Cooling Calibration period.

Indoor Temperature by TZ Building

INDEX Tz-02 Tz-03 Tz-04 Tz-08 Tz-09 Tz-10 Tz-11 Average

MAE (°C) 0.235 0.054 0.024 0.057 0.138 0.221 0.328 0.100
RMSE (°C) 0.389 0.195 0.046 0.173 0.394 0.619 0.654 0.194
NMBE (%) -0.584 0.000 -0.004 0.153 0.538 -0.410 -0.810 -0.014
Cv(RMSE) (%) 1.825 0.934 0.189 0.723 1.626 2.844 3.030 0.863
R2 (%) 93.253 95.819 99.803 98.762 95.021 83.565 73.754 96.759

Fig. 6. Control Strategy used in the optimization process, describing the different scenarios under which the study was performed.
AHU, and finally the excess of energy was prioritized to be delivered to 
the VRF.

The EnergyPlus’ object called “OtherEquipment” was run for the 
nine energy distributions within the different TZ. This object is used 
in order to introduce sensible heating or cooling into a thermal zone 
without defining an HVAC system. At this point, the VRF system was 
OFF. The excess energy for the AHU, which is kept on, is calculated 
using the Equation (1):

𝐸 =𝑚 ∗ 𝐶𝑝 ∗ 𝛿𝑇 , (1)

When the excess of energy introduced caused the room temperature 
to be outside the minimum or maximum comfort allowable limits pre-
viously mentioned in Section 2, the algorithm set the thermostat at its 
minimum or maximum allowable limit values of 21 °C or 25 °C respec-
tively for heating and 23,5 °C or 27 °C respectively for cooling.

In a similar way, when the excess energy provided into the AHU 
caused its supply air temperature to be outside the limits previously 
set by the project, the algorithm set the supply air thermostat at its 
minimum or maximum range. In this case, the limits used are 17 °C or 
24.5 °C for heating and 23 °C or 30 °C respectively for cooling operation.

The results of the nine optimized models were analyzed in order to 
8

find out which was the optimal energy distribution.
Finally, the third step allowed to check the results. The methodology 
works correctly when the following items are met:

• The set-points of each thermal zone vary between 21 and 25 de-
grees in winter and between 23,5 and 27 degrees in summer when 
there is photovoltaic production. Therefore, the PV energy con-
sumption should be higher in the optimized model than in the base 
case, and the amount of energy exported to the grid is reduced.

• The AHU supply air set-points vary between 17 and 24,5 degrees 
in winter and between 23 and 30 degrees in summer when there is 
photovoltaic production. The fact that this air is further treated by 
the VRF system deployed in each thermal zone allows to maintain 
indoor comfort conditions at all times.

• Self-sufficiency (SS) and Self-Consumption (SC) should be higher 
in the optimized scenario since the methodology aims to maximize 
the consumption of instantaneous PV energy produced.

• The energy consumed from the grid does not vary more than ±
0,5%. If the optimized model consumes more than 0,5% than the 
base model, the results are discarded.

The reason behind choosing such a restrictive limit value for the 
difference of energy consumption (± 0,5%) is based on three main con-

siderations:
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First, this limit value is intended to keep all of the models within the 
same grid consumption range, which allows for a fair assessment of the 
implications of the optimization methodology currently applied. More-
over, keeping the optimized models within the same grid consumption 
range allows the evaluation of multiple optimization strategies and at 
the same time improves the understanding of the building characteris-
tics and behavior under such dynamic scenarios.

Second, by keeping the grid consumption of the optimized model 
as closely as possible to the obtained in the baseline scenario, the op-
timization process main focus is set to maximize the consumption of 
excess PV energy while avoiding an increment on grid consumption. 
Thus, the results obtained minimize any possible economic affectation 
regarding the overuse of energy that may be subject to tariffs or bills.

Finally, by keeping this strict margin of comparison we expect the 
models to minimize any error in the prediction of results obtained after 
the optimization process has finalized. The margin of 0,5% is expected 
to be restrictive enough in order to minimize the deviation that would 
be produced when the methodology is implemented in a future practical 
approach.

2.7. Energy matching chart

Two grid indicators are used along this paper. They are self-
consumption and self-sufficiency, represented in the following equa-
tions:

𝛾𝑠𝑐 =
∫ 𝑡2
𝑡1

𝑀 (𝑡)𝑑𝑡

∫ 𝑡2
𝑡1

𝑃 (𝑡)𝑑𝑡
(2)

𝛾𝑠𝑠 =
∫ 𝑡2
𝑡1

𝑀 (𝑡)𝑑𝑡

∫ 𝑡2
𝑡1

𝐿 (𝑡)𝑑𝑡
(3)

where:
𝑃 (𝑡) = Instantaneous on site PV generation;
𝐿 (𝑡) = Instantaneous building power consumption;
𝑀 (𝑡) = Instantaneous overlapping of generation and load profile;
𝑀 (𝑡) = min{𝐿 (𝑡) , 𝑃 (𝑡)};
𝛾𝑠𝑐 = Self-Consumption; and
𝛾𝑠𝑠 = Self-Sufficiency.

Self-consumption could be defined as the ratio of the amount of 
PV production used in the building to the total PV production. Self-
sufficiency is defined as the ratio of locally used PV to the total energy 
consumption of the building.

In order to evaluate the changes that the proposed algorithm pro-
duces in self-consumption, the energy matching chart is used. It was 
firstly developed by Luthander et al. [47], and previous work of the 
authors added extra information, the color bubbles [37].

As it is shown in Fig. 7 self-consumption and self-sufficiency are 
represented in a coordinate axis.

The relation between these two concepts is explained in equation 
(4):

𝛾𝑠𝑠

𝛾𝑠𝑐
= 𝑃

𝐿
(4)

In the diagram, the red dotted line divides the space in two: net 
producers above, when self-consumption is lower than self-sufficiency. 
That means, according to equation (4), that PV production is higher 
than demand. On the other hand, net consumers are represented below 
the line, self-consumption is higher than self-sufficiency. Or, in other 
words, the energy demand of the building is higher than its PV produc-
tion.

When self-consumption and self-sufficiency are the same, the bubble 
is positioned in the green dotted line. That is the case of NZEB buildings, 
when PV production and demand are coincident, P/L = 1. When there 
is a perfect match between both, the bubble is positioned in the upper 
9

corner (SC = 100, SS = 100).
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Fig. 7. Color bubbles in the energy matching chart, methodology developed in 
[37].

With regard to color bubbles, they are a great source of information. 
Firstly, the size of the bubble is related to L. In addition, the area of the 
concentric circles is the same, yellow represents demand and blue rep-
resents PV production. For net consumers, yellow is represented inside 
and blue in the ring, and the opposite for net producers. The match be-
tween both is the green area inside the circle. In the ring appears the 
percentage of demand that is not matching the PV production (for net 
producers), or the percentage of PV production that is not matching the 
energy demand (for net consumers). More details can be consulted in 
[37].

3. Results

As it was explained in Section 2.6, nine optimized models were sim-
ulated, with different energy distribution approaches. The first letter 
that labels the optimization cases refers to the process performed; Case 
I is defined as the simultaneous optimization of both systems (AHU and 
VRF), Case II refers to the one where the AHU is prioritized, and Case 
III is based on VRF prioritization over the AHU. The second set of let-
ters that defines the cases (A, B and C) refers to the energy distribution 
scheme used, these being: a distribution based on calibrated results, by 
building floor area or by air volume respectively.

The comparison between these models allows to choose the optimal 
one for both heating and cooling. As it is shown in Table 8, the selected 
option for cooling was the one based on the calibrated distribution of 
the energy excess, that feeds simultaneously the AHU and the FCUs. 
However, in the heating case (Table 9), the model whose excess of en-
ergy is distributed based on the calibration results and that feeds first 
the AHU produced slightly better results.

Those models that produced a grid energy consumption higher than 
0,5% with respect to the base model were discarded. Among the re-
maining, the optimal was the model that had the highest increase in 
Self-Sufficiency and Self-Consumption, and therefore, a higher percent-
age of PV energy used.

A general overview of the optimal models’ results can be observed 
in Tables 10 and 11. From May to October, the model is working in 
the cooling scenario, and the rest of the year, that is from November to 

April, it is working in the heating scenario.
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Table 8

Results Obtained from the multiple optimization cases performed for the yearly cooling scenario (May to October). Any case which 
does not produce a grid energy consumption similar (±0.50% on Grid Energy Savings) to the baseline model is discarded.

Opt. CASE PV Produced
(kWh)

Energy 
Consumption
[kWh]

PV Used
[kWh]

PV Excess
[kWh]

Grid Energy 
Consumption
[kWh]

PV Self 
Sufficiency
[%]

PV Self 
Consumption
[%]

Grid Energy 
Savings
[%]

Baseline 3783.64 6433.51 2344.37 1439.27 4089.14 36.44% 61.96% 0.00%
I - A 3783.64 6718.99 2616.96 1166.69 4102.03 38.95% 69.16% -0.32%
I - B 3783.64 6699.69 2583.72 1199.92 4115.97 38.56% 68.29% -0.66%
I - C 3783.64 6696.51 2594.32 1189.32 4102.19 38.74% 68.57% -0.32%
II - A 3783.64 6699.75 2591.27 1192.38 4108.48 38.68% 68.49% -0.47%
II - B 3783.64 6698.32 2588.28 1195.36 4110.04 38.64% 68.41% -0.51%
II - C 3783.64 6716.59 2609.78 1173.86 4106.81 38.86% 68.98% -0.43%
III - A 3783.64 6720.44 2611.46 1172.18 4108.98 38.86% 69.02% -0.49%
III - B 3783.64 6713.88 2588.94 1194.70 4124.94 38.56% 68.42% -0.88%
III - C 3783.64 6736.57 2619.53 1164.11 4117.03 38.89% 69.23% -0.68%

Table 9

Results Obtained from the multiple optimization cases performed for the yearly heating scenario (January to April, and November 
and December). It is to be noted that any case which does not produce a grid energy consumption similar (±0.50% on Grid Energy 
Savings) to the baseline model is discarded.

Opt. CASE PV Produced
(kWh)

Energy 
Consumption
[kWh]

PV Used
[kWh]

PV Excess
[kWh]

Grid Energy 
Consumption
[kWh]

PV Self 
Sufficiency
[%]

PV Self 
Consumption
[%]

Grid Energy 
Savings
[%]

Baseline 2791.78 9399.19 897.91 1893.87 8501.28 9.55% 32.16% 0.00%
I - A 2791.78 10025.54 1524.05 1267.73 8501.50 15.20% 54.59% 0.00%
I - B 2791.78 9942.17 1461.29 1330.49 8480.89 14.70% 52.34% 0.24%
I - C 2791.78 9978.38 1499.09 1292.69 8479.28 15.02% 53.70% 0.26%
II - A 2791.78 10092.02 1604.36 1187.42 8487.66 15.90% 57.47% 0.16%
II - B 2791.78 10071.57 1580.05 1211.73 8491.52 15.69% 56.60% 0.11%
II - C 2791.78 10080.40 1589.42 1202.36 8490.98 15.77% 56.93% 0.12%
III - A 2791.78 10017.99 1317.66 1474.12 8700.33 13.15% 47.20% -2.34%
III - B 2791.78 9983.79 1302.03 1489.75 8681.76 13.04% 46.64% -2.12%
III - C 2791.78 10035.45 1349.45 1442.33 8686.00 13.45% 48.34% -2.17%

Table 10

Monthly evaluation of PV Used and Self-Consumption of the PV plant for both the baseline model and 
the best optimization case for the yearly heating and cooling scenarios.

Month PV Produced
(kWh)

PV Used
(kWh)

PV Used Opt.
(kWh)

Increase PV used
(%)

SC Base
(%)

SC Opt.
(%)

January 246.03 182.51 209.52 14.80% 74.18% 85.16%
February 434.91 266.28 359.57 35.03% 61.23% 82.68%
March 900.74 230.93 517.35 124.03% 25.64% 57.44%
April 745.18 108.65 323.51 197.74% 14.58% 43.41%
November 241.91 6.76 41.85 519.36% 2.79% 17.30%
December 223.02 102.78 152.56 48.44% 46.08% 68.41%
Total Heating 2791.78 897.91 1604.36 78.68% 32.16% 57.47%

May 697.80 228.60 368.73 61.30% 32.76% 52.84%
June 595.22 458.80 465.85 1.54% 77.08% 78.26%
July 732.13 595.46 597.53 0.35% 81.33% 81.61%
August 795.19 634.61 637.38 0.44% 79.81% 80.15%
September 452.03 280.37 295.91 5.54% 62.02% 65.46%
October 511.27 146.53 251.57 71.68% 28.66% 49.20%
Total Cooling 3783.64 2344.37 2616.96 11.63% 61.96% 69.16%
Tables 10 and 11 show that better results were obtained for the 
winter months than for the summer ones, with the exception of May 
and October, for both SC and SS. The PV use increased in an average of 
78.7% in winter and of 11.6% in summer. The self-sufficiency increased 
an average of 66.5% in winter and an average of 6.9% in summer. The 
self-consumption increase was 78.7% for heating and 11.6% for cooling.

It is interesting to note that, as it happened when this methodol-
ogy was applied to synthetic data in an apartment building in the north 
of Spain [37], the increase obtained for self-consumption can be com-
pared with results obtained by using batteries. In [47], the authors 
compiled several studies that addressed different strategies to increase 
SC. Although it is not possible to make direct comparisons, since each 
case depends on various factors such as the climate, the type of build-
10

ing, its constructive characteristics, difference in internal loads due to 
occupancy and equipment, the energy consumption or the PV produc-
tion, the results obtained with this methodology demonstrate higher 
increases than other DSM strategies, which usually increased SC and SS 
less than 10% [47].

The energy matching chart of every month of 2019 is represented 
in Fig. 8. In this image is easy to perceive the different behavior that 
the strategy demonstrates along the year. During the warmest summer 
months, June, July and August, the methodology only provoke slightly 
increases in both self-sufficiency and self-consumption. The reason be-
hind this situation is that in all these months the demand is much higher 
than the production of photovoltaic energy, and already the base model 
has self-consumption levels above 75%. The optimization of the set-

points cannot improve this level of self-consumption much more.
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Table 11

Monthly evaluation of Grid Energy Used and Self-Sufficiency of the Building for both the baseline model and the 
best optimization case for the yearly heating and cooling scenarios.

Month Demand
(kWh)

Demand Opt.
(kWh)

Energy Grid
(kWh)

Energy Grid Opt.
(kWh)

Grid Saving
(%)

SS Base
(%)

SS Opt.
(%)

January 3146.14 3171.45 2963.63 2961.93 -0.06% 5.80% 6.61%
February 2582.28 2671.01 2316.00 2311.44 -0.20% 10.31% 13.46%
March 1281.18 1554.88 1050.25 1037.53 -1.21% 18.03% 33.27%
April 563.26 780.11 454.61 456.61 0.44% 19.29% 41.47%
November 192.07 233.42 185.32 191.57 3.37% 3.52% 17.93%
December 1634.25 1681.14 1531.47 1528.59 -0.19% 6.29% 9.07%
Total Heating 9399.19 10092.02 8501.28 8487.66 -0.16% 9.55% 15.90%

May 342.55 483.01 113.95 114.28 0.29% 66.73% 76.34%
June 1427.45 1437.33 968.65 971.48 0.29% 32.14% 32.41%
July 1748.58 1752.44 1153.12 1154.92 0.16% 34.05% 34.10%
August 1801.71 1804.96 1167.11 1167.59 0.04% 35.22% 35.31%
September 793.50 816.05 513.13 520.14 1.37% 35.33% 36.26%
October 319.72 425.19 173.19 173.63 0.25% 45.83% 59.17%
Total Cooling 6433.51 6718.99 4089.14 4102.03 0.32% 36.44% 38.95%
Fig. 8. Monthly baseline versus optimization results in terms of Self-
Consumption and Self-Sufficiency.

Fig. 9 and Fig. 10 show the energy matching chart for the aver-
age results of the base and optimized model for cooling and heating 
respectively. The color bubbles add some extra information, as it was 
explained before. The size of the circles is related to the total energy 
consumed by the building, while the colors represent the matching be-
tween PV production and PV used.

In winter, the energy demand is higher, therefore the bubbles are 
larger than the summer ones. Also, in both cases, the size of the opti-
mized bubbles is slightly larger than the base one. This is due to the 
over-consumption produced by the strategy when extra PV energy is 
available. However, this has no impact in the total amount of energy 
consumed from the grid.

Fig. 11 collects the bubbles for the base and optimized models of 
every month of 2019. The size of the circles corresponding to April, 
May, November and October was enlarged 4 times, in order to make 
them easier to visualize. The reason for this is that, as explained above, 
the size of the bubbles is proportional to the building energy demand. 
During these four months the power consumption was very low, so the 
bubbles were too small and they have been modified to improve their 
11

readability.
Fig. 9. Summer baseline versus optimization results energy matching chart. 
(Cooling).

The green area of these figures graphically represents the matching 
capacity of each scenario. For those cases that are net-consumers, the 
green area corresponds to self-sufficiency, the relation between the PV 
energy used and the demand. On the contrary, when the building is be-
having as net-producer (May, October and the base model of April), the 
green area represents self-consumption. The yellow area is the demand 
that is not covered by the PVs while the blue area represents the PV pro-
duction that is not being used. The optimization strategy increases the 
green area in summer and in winter, as it can be appreciated in Figs. 9
and 10.

3.1. Temperature modulation

As it was mentioned before, the main objective of the developed 
methodology is the reduction of the amount of energy exported to the 
grid, by using the instantaneous production from the PVs. At the same 
time, one requirement of the strategy was to increase self-consumption 
without increasing the energy demanded to the grid. The way to achieve 

this is through the modulation of the set-points of each thermal zone 
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Fig. 10. Winter baseline versus optimization results energy matching chart. 
(Heating).

within its comfort allowable limits, from 21 °C to 25 °C in winter and 
from 23,5 °C to 27 °C in summer. To show the impact of the optimiza-
tion regarding the indoor climate of the building, thermal zone 3 was 
selected. This TZ corresponds to one of the main areas of the build-
ing. Figs. 12 and 13 show the comparison between the baseline fixed 
set-point and the ones obtained from the optimization process in winter 
(March 04 to 17) and summer (July 15 to 28) scenarios respectively.

As it can be observed, the fifteen-minute average temperature is 
represented for each day of the month in both figures. In both cases 
the obtained indoor temperatures are set between comfort temperature 
ranges during the operation hours of the building.

For the winter scenario, in the base model the set-point is fixed at 
21 °C when the building is operative, while in the optimized model, 
the set-points varies between the established range of temperatures, 
reaching the optimal one according to the instantaneous photovoltaic 
production. When there is an excess of this production, the set-point is 
fixed at the maximum of 25 °C.

Fig. 13 shows the temperature’s behavior in TZ03 during a summer 
month: August. In this case, when extra energy from the PV panels is 
available, the set-points of the thermal zone are modified from the fixed 
27 °C, to the optimal one within the range from 23,5 °C to 27 °C.

It is important to highlight that in both figures, only the temperature 
of one specific TZ is represented. However, the fifteen-minute optimal 
temperature was obtained with the RB strategy for each thermal zone 
and the optimization was performed for the whole year on a 15 minute 
time-step, that means a remarkable number of points calculated in a 
short period of time.

Additionally to the modulation of the TZ set-points, the strategy al-
lows the BMS to modify the air-supply temperature in the AHU. In the 
base model, this set-point was fixed at 30 °C for summer and 17 °C for 
winter. In the heating optimized model, as it is shown in Fig. 14, this 
temperature ranges between 17 and 24,5 °C. For the cooling scenario 
(Fig. 15), the optimal temperature varies between 23 and 30 °C.

4. Conclusions

Improving the self-consumption of photovoltaic plants is a key ele-
12

ment in the transition to a decarbonized world, as it would allow a more 
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Fig. 11. Monthly baseline versus optimization results using energy matching 
charts. Note: * indicates that the bubble size was enlarged to improve its read-
ability.

extensive and efficient use of renewable energies. The present research 
analyzes the behavior of a Demand Side Management strategy in order 
to increase PV self-consumption and, therefore, to reduce the energy 
dispatched to the grid, which causes important operational problems.

The methodology was applied to a real case, through the use of a 
calibrated Building Energy Model of a living-lab building located in 
Greece, using data collected during 2019, within the framework of the 
European Project SABINA.

The Rule-Based control strategy allows to obtain the optimal set-
point for seven thermal zones during one year at each fifteen-minute 
time-step. Additionally, the optimal option to distribute the excess of 
PV production into the thermal zones is analyzed. For this reason, nine 
optimized models were simulated. It was demonstrated that the energy 

distribution based on the calibration results provided the best optimiza-
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Fig. 12. Thermal zone 3 Indoor Temperature Set-Point comparison between baseline and optimization for March (winter scenario).

Fig. 13. Thermal zone 3 Indoor Temperature Set-Point comparison between baseline and optimization for August (summer scenario).
tion for both heating and cooling scenarios, being closely followed by 
the air volume distribution case. Attending to the HVAC systems, the 
best result in summer was obtained when the AHU and the VRF systems 
were fed with the extra-energy simultaneously. On the other hand, in 
winter the optimal model was the one that fed the AHU primarily.

Even though the constructive characteristics of the building are not 
the most favorable to be used as a thermal inertia storage, the strat-
egy produced quite remarkable results. The average increase of self-
consumption during summer reached 11.6 percentage points, while in 
winter the optimization of the set-points the self-consumption was en-
hanced by 78.7%. With regard to self-sufficiency, this parameter was 
increased by 66.5% in winter and by 6.9% in summer.

This approach signifies a promising step toward sustainable energy 
practices. While larger industrial scenarios may benefit from advanced 
control algorithms to optimize energy utilization and efficiency, sim-
pler control strategies are sufficient for smaller-scale applications like 
the residential sector, bolstering future electrification processes while 
13

optimizing energy consumption.
The results were explained through the colored bubbles in the en-

ergy matching chart, a very useful tool in order to present a lot of 
outputs at the same time: Self-consumption and self-sufficiency, the 
matched and unmatched energy produced and used, as well as the 
amount of energy demanded. When the results are compared with simi-

lar studies, it can be appreciated that the present methodology provided 
better results that similar DSM strategies.

Future works on this study would encompass possible changes in 
the indoor areas of the building (i.e. increasing the thermal mass of 
the thermal zones). Additionally, the application of this optimization 
methodology will be studied in the sizing of the PV plant for both 
summer and winter scenarios. Last but not least, this process could 
be applied using weather forecasts and its results introduced into the 
building, obtaining a comparison between simulated results and the real 

impact in the building.
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Fig. 14. AHU Supply Air Temperature Set-Point comparison between baseline and optimization for March (winter scenario).

Fig. 15. AHU Supply Air Temperature Set-Point comparison between baseline and optimization for August (summer scenario).
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CO2 Carbon dioxide
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MAE Mean Absolute Error
MPC Model Predictive Control
𝑀 (𝑡) Instantaneous overlapping of generation and load profile

NMBE Normalized Mean Bias Error
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𝑃 (𝑡) Instantaneous on site PV generation
PV Photovoltaic
R2 Spearman’s Rank Correlation Coefficient Square
RB Rule Based
RMSE Root Mean Square Error
SABINA SmArt BI-directional multi eNergy gAteway
SC Self-Consumption
SS Self-Sufficiency
Temp. Temperature
TZ Thermal Zone
VRF Variable Refrigerant Flow
𝛾𝑠𝑐 Self-Consumption
𝛾𝑠𝑠 Self-Sufficiency
ΔΘ Temperature Differential Range
°C Celsius degrees
cm Centimeters
kW Kilowatt
kWh Kilowatt per hour
kWp Kilowatt peak
mm Millimeters
m2 Square meters
m/s Meters per second
m3/h Cubic meters per hour
Pa Pascals
W Watts
% Percentage
° or deg Decimal degrees

CRediT authorship contribution statement

Conceptualization, J.P., M.F.I. and C.F.B.; Methodology, J.P. and 
C.F.B.; Software, J.P. and M.F.I.; Validation, J.P. and C.F.B.; Investi-
gation, J.P., M.F.I. and C.F.B.; Resources, C.F.B.; Data Provider: A.P.; 
Writing–original draft preparation, J.P. and M.F.I.; Writing–review and 
editing, J.P., M.F.I., A.P. and C.F.B.; Supervision, C.F.B.; Project Admin-
istration, C.F.B.; Funding Acquisition, C.F.B. All authors have read and 
agreed to the published version of the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgements

We would like to thank National Technical University of Athens 
(Greece), for providing us with both the building documentation and 
the sensor data to perform the necessary tests for this paper. Data col-
lection was gathered from the European Project “SABINA”.

References

[1] European Commission and Directorate-General for Energy, Clean energy for all Eu-
ropeans, Technical Report, 2019.

[2] European Commission, COM(2020) 562 final: Stepping up Europe’s 2030 climate 
ambition. Investing in a climate-neutral future for the benefit of our people, Tech-
nical Report, Brussels, 2020.

[3] European Parliament, Council of the European Union, European green deal: fit 
for 55, https://www .consilium .europa .eu /en /policies /green -deal /fit -for -55 -the -eu -
15

plan -for -a -green -transition/, 2023. (Last access: 19-07-2023).
Energy & Buildings 298 (2023) 113576

[4] I. Kougias, N. Taylor, G. Kakoulaki, A. Jäger-Waldau, The role of photovoltaics for 
the European green deal and the recovery plan, Renew. Sustain. Energy Rev. 144 
(2021) 111017, https://doi .org /10 .1016 /j .rser .2021 .111017.

[5] European Parliament, Council of the European Union, Directive 2010/31/eu of the 
European Parliament and of the council of 19 may 2010 on the energy performance 
of buildings, http://data .europa .eu /eli /dir /2010 /31 /oj, 2010. (Last access: 07-12-
2022).

[6] European Parliament, Council of the European Union, Directive (EU) 2018/844 of 
the European Parliament and of the Council of 30 May 2018 amending Directive 
2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on 
energy efficiency, https://eur -lex .europa .eu /legal -content /EN /TXT /HTML /?uri =
CELEX :32018L0844, 2018. (Last access: 19-07-2023).

[7] S. Pless, P. Torcellini, Net-zero energy buildings: a classification system based on 
renewable energy supply options, Technical Report, National Renewable Energy 
Lab. (NREL), Golden, CO (United States), 2010.

[8] K. Voss, I. Sartori, R. Lollini, Nearly-zero, net zero and plus energy buildings, REHVA 
J. (Dec 2012) 23–27, https://task40 .iea -shc .org /Data /Sites /1 /publications /Task40 -
A -Nearly -zero -Net -zero -and -Plus -Energy -Buildings .pdf, (Last access: 28-08-2023).

[9] Y. Luo, Y. Shi, Y. Zheng, Z. Gan, N. Cai, Strategy for renewable energy storage 
in a dynamic distributed generation system, Energy Proc. 105 (2017) 4458–4463, 
https://doi .org /10 .1016 /j .egypro .2017 .03 .946.

[10] N.K. Meena, A. Swarnkar, N. Gupta, K.R. Niazi, Optimal accommodation and man-
agement of high renewable penetration in distribution systems, J. Eng. 2017 (2017) 
1890–1895, https://doi .org /10 .1049 /joe .2017 .0659.

[11] J. Widén, E. Wäckelgård, P.D. Lund, Options for improving the load matching ca-
pability of distributed photovoltaics: methodology and application to high-latitude 
data, Sol. Energy 83 (2009) 1953–1966, https://doi .org /10 .1016 /j .solener .2009 .07 .
007.

[12] A. Colmenar-Santos, A.-R. Linares-Mena, E.-L. Molina-Ibáñez, E. Rosales-Asensio, 
D. Borge-Diez, Technical challenges for the optimum penetration of grid-connected 
photovoltaic systems: Spain as a case study, Renew. Energy 145 (2020) 2296–2305, 
https://doi .org /10 .1016 /j .renene .2019 .07 .118.

[13] J. Widén, Improved photovoltaic self-consumption with appliance scheduling in 
200 single-family buildings, Appl. Energy 126 (2014) 199–212, https://doi .org /10 .
1016 /j .apenergy .2014 .04 .008.

[14] J.M. Roldán Fernández, M. Burgos Payán, J.M. Riquelme Santos, Profitability of 
household photovoltaic self-consumption in Spain, J. Clean. Prod. 279 (2021) 
123439, https://doi .org /10 .1016 /j .jclepro .2020 .123439.

[15] J.M. Roldan-Fernandez, M. Burgos-Payan, J.M. Riquelme-Santos, Assessing the de-
carbonisation effect of household photovoltaic self-consumption, J. Clean. Prod. 318 
(2021) 128501, https://doi .org /10 .1016 /j .jclepro .2021 .128501.

[16] D. Talavera, F. Muñoz-Rodriguez, G. Jimenez-Castillo, C. Rus-Casas, A new approach 
to sizing the photovoltaic generator in self-consumption systems based on cost–
competitiveness, maximizing direct self-consumption, Renew. Energy 130 (2019) 
1021–1035, https://doi .org /10 .1016 /j .renene .2018 .06 .088.

[17] D. Chiaroni, V. Chiesa, L. Colasanti, F. Cucchiella, I. D’Adamo, F. Frattini, Evaluating 
solar energy profitability: a focus on the role of self-consumption, Energy Convers. 
Manag. 88 (2014) 317–331, https://doi .org /10 .1016 /j .enconman .2014 .08 .044.

[18] I. Saviuc, H. Peremans, S. Van Passel, K. Milis, Economic performance of using bat-
teries in European residential microgrids under the net-metering scheme, Energies 
12 (2019) 165, https://doi .org /10 .3390 /en12010165.

[19] S.Ø. Jensen, A. Marszal-Pomianowska, R. Lollini, W. Pasut, A. Knotzer, P. Engel-
mann, A. Stafford, G. Reynders, IEA EBC Annex 67 energy flexible buildings, Energy 
Build. 155 (2017) 25–34, https://doi .org /10 .1016 /j .enbuild .2017 .08 .044.

[20] H. Li, Z. Wang, T. Hong, M.A. Piette, Energy flexibility of residential buildings: 
a systematic review of characterization and quantification methods and applica-
tions, Adv. Appl. Energy 3 (2021) 100054, https://doi .org /10 .1016 /j .adapen .2021 .
100054.

[21] T.Q. Péan, J. Salom, R. Costa-Castelló, Review of control strategies for improving 
the energy flexibility provided by heat pump systems in buildings, J. Process Control 
74 (2019) 35–49, https://doi .org /10 .1016 /j .jprocont .2018 .03 .006.

[22] A. Chabaud, J. Eynard, S. Grieu, A rule-based strategy to the predictive management 
of a grid-connected residential building in southern France, Sustain. Cities Soc. 30 
(2017) 18–36, https://doi .org /10 .1016 /j .scs .2016 .12 .016.

[23] M. Pinamonti, A. Prada, P. Baggio, Rule-based control strategy to increase pho-
tovoltaic self-consumption of a modulating heat pump using water storages and 
building mass activation, Energies 13 (2020) 6282, https://doi .org /10 .3390 /
en13236282.

[24] E. Bee, A. Prada, P. Baggio, Demand-side management of air-source heat pump and 
photovoltaic systems for heating applications in the Italian context, Environments 5 
(2018) 132, https://doi .org /10 .3390 /environments5120132.

[25] U.I. Dar, I. Sartori, L. Georges, V. Novakovic, Advanced control of heat pumps for 
improved flexibility of net-zeb towards the grid, Energy Build. 69 (2014) 74–84, 
https://doi .org /10 .1016 /j .enbuild .2013 .10 .019.

[26] L. Schibuola, M. Scarpa, C. Tambani, Demand response management by means of 
heat pumps controlled via real time pricing, Energy Build. 90 (2015) 15–28, https://
doi .org /10 .1016 /j .enbuild .2014 .12 .047.

[27] R. De Coninck, R. Baetens, D. Saelens, A. Woyte, L. Helsen, Rule-based demand-
side management of domestic hot water production with heat pumps in zero energy 
neighbourhoods, J. Build. Perform. Simul. 7 (2014) 271–288, https://doi .org /10 .

1080 /19401493 .2013 .801518.

http://refhub.elsevier.com/S0378-7788(23)00806-X/bibB75F6D0AEAA1670A5D715132961D3F0Fs1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bibB75F6D0AEAA1670A5D715132961D3F0Fs1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib99A1B228311B3D5679450C98DAD317D5s1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib99A1B228311B3D5679450C98DAD317D5s1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib99A1B228311B3D5679450C98DAD317D5s1
https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
https://doi.org/10.1016/j.rser.2021.111017
http://data.europa.eu/eli/dir/2010/31/oj
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L0844
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L0844
http://refhub.elsevier.com/S0378-7788(23)00806-X/bibBFCA5DDE01FCF8E6B14DF86C5068495Fs1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bibBFCA5DDE01FCF8E6B14DF86C5068495Fs1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bibBFCA5DDE01FCF8E6B14DF86C5068495Fs1
https://task40.iea-shc.org/Data/Sites/1/publications/Task40-A-Nearly-zero-Net-zero-and-Plus-Energy-Buildings.pdf
https://task40.iea-shc.org/Data/Sites/1/publications/Task40-A-Nearly-zero-Net-zero-and-Plus-Energy-Buildings.pdf
https://doi.org/10.1016/j.egypro.2017.03.946
https://doi.org/10.1049/joe.2017.0659
https://doi.org/10.1016/j.solener.2009.07.007
https://doi.org/10.1016/j.solener.2009.07.007
https://doi.org/10.1016/j.renene.2019.07.118
https://doi.org/10.1016/j.apenergy.2014.04.008
https://doi.org/10.1016/j.apenergy.2014.04.008
https://doi.org/10.1016/j.jclepro.2020.123439
https://doi.org/10.1016/j.jclepro.2021.128501
https://doi.org/10.1016/j.renene.2018.06.088
https://doi.org/10.1016/j.enconman.2014.08.044
https://doi.org/10.3390/en12010165
https://doi.org/10.1016/j.enbuild.2017.08.044
https://doi.org/10.1016/j.adapen.2021.100054
https://doi.org/10.1016/j.adapen.2021.100054
https://doi.org/10.1016/j.jprocont.2018.03.006
https://doi.org/10.1016/j.scs.2016.12.016
https://doi.org/10.3390/en13236282
https://doi.org/10.3390/en13236282
https://doi.org/10.3390/environments5120132
https://doi.org/10.1016/j.enbuild.2013.10.019
https://doi.org/10.1016/j.enbuild.2014.12.047
https://doi.org/10.1016/j.enbuild.2014.12.047
https://doi.org/10.1080/19401493.2013.801518
https://doi.org/10.1080/19401493.2013.801518


Energy & Buildings 298 (2023) 113576J.E. Pachano, M. Fernández-Vigil Iglesias, A. Peppas et al.

[28] SABINA H2020 EU program, https://cordis .europa .eu /project /id /731211 /es, 2016-
2020. (Accessed 21 February 2023).

[29] SmArt BI-directional multi eNergy gAteway: SABINA project, https://sabina -project .
eu/, 2016-2020. (Accessed 20 July 2023).

[30] G. Ramos Ruiz, C. Fernandez Bandera, Validation of calibrated energy models: com-
mon errors, Energies 10 (2017) 1587, https://doi .org /10 .3390 /en10101587.

[31] G. Ramos Ruiz, C. Fernández Bandera, Analysis of uncertainty indices used for build-
ing envelope calibration, Appl. Energy 185 (2017) 82–94, https://doi .org /10 .1016 /
j .apenergy .2016 .10 .054.

[32] G. Ramos Ruiz, E. Lucas Segarra, C. Fernández Bandera, et al., Model predictive 
control optimization via genetic algorithm using a detailed building energy model, 
Energies 12 (2018) 1–18, https://doi .org /10 .3390 /en12010034.

[33] G.R. Ruiz, C.F. Bandera, T.G.-A. Temes, A.S.-O. Gutierrez, Genetic algorithm for 
building envelope calibration, Appl. Energy 168 (2016) 691–705, https://doi .org /
10 .1016 /j .apenergy .2016 .01 .075.

[34] C. Fernández Bandera, G. Ramos Ruiz, Towards a new generation of building enve-
lope calibration, Energies 10 (2017) 2102, https://doi .org /10 .3390 /en10122102.

[35] J.E. Pachano, C. Fernández Bandera, Multi-step building energy model calibration 
process based on measured data, Energy Build. 252 (2021) 111380, https://doi .org /
10 .1016 /j .enbuild .2021 .111380.

[36] J.E. Pachano, A. Peppas, C. Fernández Bandera, Seasonal adaptation of vrf hvac 
model calibration process to a Mediterranean climate, Energy Build. 261 (2022) 
111941, https://doi .org /10 .1016 /j .enbuild .2022 .111941.

[37] C. Fernández Bandera, G. Bastos Porsani, M. Fernández-Vigil Iglesias, A demand 
side management approach to increase self-consumption in buildings, Build. Simul. 
16 (2022) 317–335, https://doi .org /10 .1007 /s12273 -022 -0933 -9.

[38] M. Casini, Chapter 10 - building automation systems, in: Construction 4.0: Advanced 
Technology, Tools and Materials for the Digital Transformation of the Construction 
Industry, in: Woodhead Publishing Series in Civil and Structural Engineering, Wood-
head Publishing, 2022, pp. 525–581.

[39] C. Beck, J. Grieser, M. Kottek, F. Rubel, B. Rudolf, Characterizing global climate 
change by means of Köppen climate classification, Technical Report, Deutscher Wet-
terdienst, Offenbach, Germany, 2005.

[40] E. Lucas Segarra, G. Ramos Ruiz, C. Fernández Bandera, Probabilistic load forecast-
ing for building energy models, Sensors 20 (2020) 6525, https://doi .org /10 .3390 /
s20226525.

[41] E. Lucas Segarra, H. Du, G. Ramos Ruiz, C. Fernández Bandera, Methodology for the 
quantification of the impact of weather forecasts in predictive simulation models, 
Energies 12 (2019) 1309, https://doi .org /10 .3390 /en12071309.

[42] E. Lucas Segarra, G. Ramos Ruiz, V. Gutiérrez González, A. Peppas, C. Fernández 
Bandera, Impact assessment for building energy models using observed vs. third-
party weather data sets, Sustainability 12 (2020) 6788, https://doi .org /10 .3390 /
su12176788.

[43] T.N. Aynur, Variable refrigerant flow systems: a review, Energy Build. 42 (2010) 
1106–1112, https://doi .org /10 .1016 /j .enbuild .2010 .01 .024.

[44] J.E. Pachano, M. Fernández-Vigil Iglesias, J.C. Saiz, C. Fernández Bandera, Two-
stage multi-step energy model calibration of the cooling systems of a large-space 
commercial building, Appl. Therm. Eng. 230 (2023) 120638.

[45] V. Gutiérrez González, G. Ramos Ruiz, C. Fernández Bandera, Empirical and com-
parative validation for a building energy model calibration methodology, Sensors 
20 (2020) 5003, https://doi .org /10 .3390 /s20175003.

[46] IPMVP Committee, et al., International Performance Measurement and Verification 
Protocol: Concepts and options for determining energy and water savings, Volume I, 
Technical Report, National Renewable Energy Lab., Golden, CO (US), 2001, https://
www .nrel .gov /docs /fy02osti /31505 .pdf. (Last access: 20-07-2023).

[47] R. Luthander, A.M. Nilsson, J. Widén, M. Åberg, Graphical analysis of photo-
voltaic generation and load matching in buildings: a novel way of studying 
self-consumption and self-sufficiency, Appl. Energy 250 (2019) 748–759, https://
doi .org /10 .1016 /j .apenergy .2019 .05 .058.
16

https://cordis.europa.eu/project/id/731211/es
https://sabina-project.eu/
https://sabina-project.eu/
https://doi.org/10.3390/en10101587
https://doi.org/10.1016/j.apenergy.2016.10.054
https://doi.org/10.1016/j.apenergy.2016.10.054
https://doi.org/10.3390/en12010034
https://doi.org/10.1016/j.apenergy.2016.01.075
https://doi.org/10.1016/j.apenergy.2016.01.075
https://doi.org/10.3390/en10122102
https://doi.org/10.1016/j.enbuild.2021.111380
https://doi.org/10.1016/j.enbuild.2021.111380
https://doi.org/10.1016/j.enbuild.2022.111941
https://doi.org/10.1007/s12273-022-0933-9
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib2C655D1963295447E2E877D195ED3D93s1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib2C655D1963295447E2E877D195ED3D93s1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib2C655D1963295447E2E877D195ED3D93s1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib2C655D1963295447E2E877D195ED3D93s1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib8902CD5CF58C09D8B750A8A5FF59109Bs1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib8902CD5CF58C09D8B750A8A5FF59109Bs1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bib8902CD5CF58C09D8B750A8A5FF59109Bs1
https://doi.org/10.3390/s20226525
https://doi.org/10.3390/s20226525
https://doi.org/10.3390/en12071309
https://doi.org/10.3390/su12176788
https://doi.org/10.3390/su12176788
https://doi.org/10.1016/j.enbuild.2010.01.024
http://refhub.elsevier.com/S0378-7788(23)00806-X/bibBC1491072055E60615A1693181A68968s1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bibBC1491072055E60615A1693181A68968s1
http://refhub.elsevier.com/S0378-7788(23)00806-X/bibBC1491072055E60615A1693181A68968s1
https://doi.org/10.3390/s20175003
https://www.nrel.gov/docs/fy02osti/31505.pdf
https://www.nrel.gov/docs/fy02osti/31505.pdf
https://doi.org/10.1016/j.apenergy.2019.05.058
https://doi.org/10.1016/j.apenergy.2019.05.058

	Enhancing self-consumption for decarbonization: An optimization strategy based on a calibrated building energy model
	1 Introduction
	1.1 Contribution and originality of the research

	2 Methodology
	2.1 Weather information
	2.2 Building description
	2.3 HVAC description
	2.4 Calibrated building energy model description
	2.5 Calibrated building energy model results
	2.6 Control strategy
	2.7 Energy matching chart

	3 Results
	3.1 Temperature modulation

	4 Conclusions
	Funding
	Abbreviations
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


