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Abstract: Obesity is defined as an abnormal or excessive fat accumulation that may impair health.
Dual-energy X-ray absorptiometry (DEXA) has been suggested as the gold standard to define obesity,
but because its use is complex and expensive, anthropometric measures such as body mass index
(BMI) or the waist-to-height ratio (WtHr) have been used as alternatives. The aim of this study was
to review the published literature and investigate the correlation of BMI and WtHr with body fat
(BF) measured by DEXA in pediatric populations. References were sought in PubMed/Medline and
Embase datasets. Five original articles, published between 2013 and 2015, were finally included in
this review. Their sample size ranged from 83 to 5355, and the age of participants ranged from 4.9 to
19 years old. The most frequently reported association measurements were the coefficients of
determination (R2), followed by correlation coefficients and least-squares regression coefficients.
BF measured by DEXA was strongly correlated with both BMI (R2 ranging from 0.32 to 0.91) and
WtHr (R2 ranging from 0.49 to 0.73). Thus, either BMI or WtHr may be useful to define obesity when
more sophisticated techniques are not available. Our systematic review of the available literature
found that neither index demonstrated superiority in assessing obesity in children.
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1. Introduction

Overweight and obesity are defined as abnormal or excessive fat accumulation that may impair
health [1]. Worldwide obesity has more than doubled since 1980, and in 2013, 42 million children
under the age of five were overweight or obese [1]. Obesity has been related to several chronic diseases
in adulthood such as cardiovascular disease, type 2 diabetes mellitus (T2DM) and metabolic syndrome.
Obese children are more likely to become obese adults [2], and the biological changes that lead to
obesity-related cardio-metabolic disease start to develop in childhood [3–7]. In addition, hypertension,
left ventricle hypertrophy, and high serum lipids have already been described in children with
obesity [4–8]. Other obesity related disorders such as T2DM, depression, sleep disorders, and asthma
have been observed in children as well [3,4,6–9].

Body composition can be assessed by techniques such as air displacement plethysmography,
bioelectrical impedance analysis, and dual-energy X-ray absorptiometry (DEXA). While DEXA is
frequently used as the reference standard to assess body composition in children [10], and it has been
suggested as the gold standard [11], its complexity and cost limit its use in daily clinical practice and
epidemiological research.
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On the other hand, anthropometric measures such as body mass index (BMI), waist circumference
(WC), and waist-to-height ratio (WtHr) can be easily-obtained and can serve as inexpensive tools to
identify general obesity [12]. BMI has been largely used for the definition of obesity in children because
it correlates well with body fat (BF) [13] and cardiovascular risk factors [14,15]. This index, however,
has some notable limitations: it does not differentiate between fat mass and fat-free mass [16], it does
not take into account fat distribution, and its correlation with BF depends on nutritional status, being
stronger in overweight and obese children compared to that in lean ones [17]. Several studies have
suggested that WC and WtHr may be convenient to assess obesity because they correlate better than
other indices with visceral abdominal fat [18], which is considered as the most dyslipidemic and most
atherogenic manifestation of adiposity [19], and with metabolic risk factors in children [20,21].

Whether WtHr is superior to BMI for the assessment of general obesity is still unclear. The aim of
this study was to review studies that assessed the correlation of both BMI and WtHr with BF measured
by DEXA in pediatric populations.

2. Materials and Methods

The studies in this systematic review where chosen according to the protocol described in [22]
that defines the search strategy, the inclusion criteria, the information extraction methods, and the
statistical analyses used in our quantitative synthesis of the literature.

References were sought in PubMed/Medline and Embase datasets using specific keywords related
to the topic of interest. The parameters of the search included the following filters: language (English)
and age (up to 18 years old). The search was performed in February 2016. No time period limit was
established. The strategy used in this search is shown in Figure 1.
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We identified 839 potentially relevant records. After removing duplicates and excluding
abstracts to conferences, we obtained a list of 506 articles. Martin-Calvo N., and Moreno-Galarraga
L. independently screened titles and abstracts and decided upon the eligibility of studies based
on the features of interest. In order to be included, the article must have reported data about
the measurements of both BMI and WtHr, and must have used DEXA as the reference standard.
We excluded reviews, editorials, letters, and meeting abstracts. We also excluded studies reporting
only one of the anthropometric measures of interest, studies that did not use DEXA as the reference
method, and studies reporting only data for trunk fat or abdominal fat. Discrepancies were solved
by consensus and by asking Martinez-Gonzalez M.A. Finally, Martin-Calvo N. assessed in detail
11 full-text articles for eligibility. After following the selection strategy shown in Figure 2, we selected
five articles in total.

We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines to conduct this review [23]. The methodological quality and risk of bias were assessed
by reading the articles and using QUADAS (Quality Assessment of Diagnostic Accuracy Studies),
a tool for quality assessment of studies of diagnostic accuracy included in systematic reviews [24].
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The tool is structured as a list of 14 questions such as “were selection criteria clearly described?” and
“is the reference standard likely to correctly classify the target condition?” Each question had to be
answered “yes”, “no”, or “unclear”. The QUADAS tool is simple and quick to complete, and does not
incorporate a score.
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We extracted from the five identified articles the data concerning the purpose of the study:
authors, study design, sample size, sample characteristics (age, sex, and ethnicity-race), sample mean
body fat percentage (%BF), variable used to report the BF, and statistical results (R2, coefficients
of regression and the area under the receiver operating characteristic (ROC) curve). When studies
reported several models with different degrees of adjustment, we extracted all of them in order
to get further information. Analyses that exceeded or did not fit the purpose of this review were
not considered.

When the correlation coefficient (r), but not the R2, was given, the latter was calculated as the
square of the r [25]. We also calculated the 95% confidence interval for the R2 in all the studies using
Fisher’s z’ transformation of the correlation coefficient (z’ = 0.5[ln(1 + r) − ln(1 − r)]). We performed
a quantitative meta-analysis to obtain a pooled R2 for each anthropometric measure with DEXA,
and we compared those pooled estimates using as standard error for the comparison of both z’ and the
standard error for the comparison of two z according to the Fisher’s transformation. We performed
a sensitivity analysis by repeating the same analyses after excluding one study that only reported
results for longitudinal changes in BMI and WHtR, but not their baseline values.

3. Results

3.1. Characteristics of the Studies

The main characteristics and results of the selected studies are shown in Table 1.
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We found five original articles assessing the correlation of BMI and WtHr with BF measured by
DEXA. Two of the studies were conducted with European participants [25,26]: with children born
in Sweden in the study by Karlsson et al., and with Spanish children, or children educated in Spain,
in the study by De Miguel Etayo et al. The remaining three studies were conducted in the US [27–29]:
Barreira et al. recruited local participants in Louisiana, whereas Brambilla et al. and Tuan et al. used
the data from children enrolled in the US National Health and Nutrition Surveys (US-NHANES).

The QUADAS tool used to assess the quality of the studies showed that the most remarkable
limitation within the studies was the use of not representative samples, which may limit the
generalizability of their results. In addition, none of the studies clearly reported whether the authors
had made a blind interpretation of the results.

All the articles included in this systematic review were published between 2013 and 2015.
The sample sizes ranged from 83 to 5355, and the age of participants ranged from 4.9 to 19 years old.

Most of the studies were cross sectional, only one was a longitudinal study and calculated the
correlation between changes in several anthropometric measures in a subsample of children enrolled
in the EVASYON study [26], a non-controlled intervention trial for weight loss in overweight and
obese adolescents [30]. Since that study was restricted to overweight and obese participants, higher
mean BF values were expected compared to other studies.

The BF was reported in kg or as %BF. One of the studies reported the z-score of the %BF [29] and
another one, the fat mass index (FMI), which is the ratio of the fat mass (kg) and the height squared
(m2) [26]. Even though all the studies assessed both BMI and WtHr, the correlation was calculated
with z-score in one study [29], and with changes in the indices (instead of only one-time point values)
in another study [26].

Four out of the five studies [13,27–29] calculated the R2 to assess the variability of BF determined
by DEXA that could be explained by the variability in anthropometric measures (BMI and WtHr).
Other commonly used statistical analyses were correlation coefficients [25,26,29] and beta regression
coefficients [26,27,29].

Significant correlations were found between BF measured by DEXA and both BMI and WtHr.
In boys, the R2 ranged from 0.62 to 0.77 for the BMI and from 0.50 to 0.73 for the WtHr [26,29]. In girls,
the R2 ranged from 0.67 to 0.90 for BMI and from 0.49 to 0.70 for the WtHr [26,29]. When boys and
girls were studied together, the R2 ranged from 0.32 to 0.91 for the BMI and from 0.55 to 0.69 for the
WtHr [25,27,28].

Only one study [29] calculated the area under the curve (AUC) of BMI and WtHr for the diagnosis
of obesity, and the kappa index between those anthropometric measures and DEXA. In that study, the
authors had defined obesity as %BF (measured by DEXA) above the sex-age-specific 75th percentile of
the reference population (26%–33% in boys and 36%–38% in girls) [31]. In boys, the reported AUC
was 0.91 for the BMI and 0.97 for the WtHr, which shows a high capacity of both anthropometric
measures to discriminate between obese and non-obese children. Similar results were reported in
girls, with an AUC of 0.90 for the BMI and 0.94 for the WtHr. Along with these results, both BMI
and WtHr showed high agreement indexes, expressed as weighted kappa for the agreement between
quartiles [29].

The main adjusting factor was the age of participants. Only one of the studies adjusted for
Tanner stage of pubertal development [26]. Two of the studies stratified their results by sex [26,29],
and three out of the five considered ethnicity-race [27–29]. One of the studies found a significant
interaction with race for the WtHr, but not for the BMI [27]. Another study reported small racial-ethnic
variations [29], whereas a third study observed no improvement in their model by adding ethnic group
as an additional predictor [28].

Small sample sizes [25–27], and the fact that they were not representative were the most important
sources of potential bias identified within the studies [25–29]. On the other hand, the fact that one of
the studies used FMI to express BF [26] may have increased the risk of bias across studies.
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Table 1. Characteristics of the five studies that assessed the correlation of both body mass index (BMI) and waist-to-height ratio (WtHr) with body fat (BF) measured
by dual-energy X-ray absorptiometry (DEXA).

Authors (Year) Design Simple Characteristics Age
(Years) Mean %BF (SD) Fat Mass

Assessment
BMI or
WtHr

Results *
Other Findings

R2 (95%CI) Beta Coefficient AUC

Barreira, T.V., et al.
(2014) [27] Cross-sectional

N = 382; 180 boys (84 African
Americans (AA) & 96 Whites) and

202 girls (118 AA & 84 Whites).
5–18

Boys:
Whites: 24.0 (9.1)

AA: 24.0 (10.0)
Girls:

Whites: 31.1 (8.4)
AA: 31.8 (9.6)

Total fat mass (kg)

BMI 0.91 (0.89–0.93) Significant linear
relationship

No significant
interaction with

race or sex.

WtHr 0.69 (0.64–0.74) Significant linear
relationship

Significant
interaction race

and sex.

Brambilla, P., et al.
(2013) [28]

Cross-sectional
(US-NHANES

2003–2004)

N= 2339; 1221 boys (326 Whites,
453 Blacks, 373 Mexicans, 69 other

races) & 1118 girls (321 Whites,
387 Blacks, 348 Mexicans,

62 other races).

8–18

Whites: 29.0 (7.7)
Blacks: 26.0 (8.3)

Mexicans: 29.8 (7.7)
Others: 28.3 (7.8)

%BF

BMI
0.32 (0.29–0.35) (unadjusted)

0.68 (age & sex)
0.70 (age, sex & race)

Found no practical
advantage to add

the ethnic group as
further predictor in

the model.WtHr
0.64 (0.62–0.66) (unadjusted)

0.80 (age & sex)
0.80 (age, sex & race)

Karlsson, A.-K., et al.
(2013) [25] Cross-sectional

N = 100; 55 boys and 45 girls,
moderately preterm at birth. 4.9–5.2

Boys: 17 (6)
Girls: 21 (6)

Total fat mass (kg)
BMI 0.76 (0.66–0.83)

WtHr 0.55 (0.41–0.67)

De Miguel-Etayo, P.,
et al. (2015) φ [26]

Longitudinal
(EVASYON
treatment

program) [30]

N = 83; 43 boys and 40 girls,
overweight or obese [32] 13–16

Boys: 33.3 (31.5–35.1)
Girls: 39.9 (37.9–41.9)

Changes in FMI.

Changes in
BMI

Boys: 0.77 (0.61–0.87)
Girls: 0.90 (0.82–0.95)

Boys: 0.68, Girls:
0.66 (unadjusted)
Boys: 0.68, Girls:

0.66 (age)
Boys: 0.68, Girls: 0.65

(age and Tanner)

Changes in
WtHr

Boys: 0.50 (0.27–0.70)
Girls: 0.49 (0.24–0.69)

Boys: 33.91, Girls:
19.04 (crude model)
Boys: 33.57, Girls:

18.37 (age)
Boys: 33.61, Girls:

18.53 (age and Tanner)

Tuan, N.T., et al.
(2014) [29]

Cross-sectional
(US-NHANES

2001–2004)

N= 5355; 2792 boys (796 Whites,
962 Blacks, 818 Mexicans, 216 other

races) & 2563 girls (742 Whites,
809 Blacks, 809 Mexicans,

203 other races).

8–19

Boys:
Whites: 25.7 (0.5)
Blacks: 22.8 (0.2)

Mexican: 27.3 (0.3)
Girls:

Whites: 32.5 (0.4)
Blacks: 31.5 (0.3)

Mexican: 33.7 (0.3)

z-score of the %BF
Obesity was

defined as %BF by
DEXA > 75th age

& sex specific
percentile

(26%–33% in boys
& 36%–38% in

girls) [31].

z-score of
the BMI

Boys: 0.62 (0.60–0.64)
Girls: 0.67 (0.65-0.69)

Boys: 0.79
Girls: 0.82

(z-BMI)
(all races)

Boys: 0.91
Girls: 0.90
(all races)

Kappa +

Boys: 0.59
Girls: 0.60

(all races) Sex and
ethnicity-race

variations.

z-score of
the WtHr

Boys: 0.73 (0.71–0.75)
Girls: 0.70 (0.68–0.72)

Boys: 0.86
Girls: 0.84
(z-WtHr)
(all races)

Boys: 0.97
Girls: 0.94
(all races)

Kappa +

Boys: 0.71
Girls: 0.64

(all races) Sex and
ethnicity-race

variations.

* Adjusting factors appear in brackets; + Weighted Kappa for the agreement between quartiles; φ This study reported Pseudo-R2 instead of R2; and %BF was reported as median
(interquartile range); SD: standard deviation; SE: standard error; BMI: body mass index; WtHr: waist-to-height ratio; R2: coefficient of determination; AUC: Area under the curve;
DEXA: dual-energy X-ray absorptiometry; %BF: body fat percentage; FMI: Fat mass index; NHANES: National Health and Nutrition Examination Survey.
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3.2. Quantitative Meta-Analysis

The quantitative meta-analysis showed a significant between-studies heterogeneity (Figures 3
and 4). The calculated pooled R2 were 0.74 (95%CI 0.60–0.84) for BMI and 0.66 (95%CI 0.61–0.70) for
WtHr. The comparison of these pooled estimates showed no significant differences (z = 1.19; p = 0.23).
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4. Discussion

This systematic review showed that both BMI and WtHr were able to explain a high percentage of
the variability in BF as measured by DEXA in children, which suggests that they can offer a reasonably
good clinical proxy to general obesity. Along with that, we agree with a recent systematic review [12]
that concluded that, because BMI and WtHr are easy to obtain, harmless, and affordable, they are good
techniques for clinical practice and epidemiological research.

Skinfold measurement has been suggested to be the best anthropometric measure for BF [33,34].
Nevertheless, since weighing and measuring height and body circumferences are easier than
measuring skinfolds, other anthropometric measures have been preferred in clinical practice and
epidemiological research.

Because body composition changes with age, sex, and ethnicity, the assessment of obesity in
children requires sex and age-specific reference tables [35]. Of all anthropometric measurements,
BMI is the most commonly used to define obesity. In pediatric populations, an important limitation
that affects the comparability among studies is the use of different tables of reference and the lack
of a universally accepted cut-off point. Two different systematic reviews found that BMI had high
specificity but moderate sensitivity for the diagnosis of obesity during childhood [36,37]. Furthermore,
the ability of BMI to identify obesity seems to be modified by nutritional status [38,39].

On the other hand, WtHr is increasingly used because it correlates well not only with BF, but also
with visceral abdominal fat and other metabolic risk factors in children [20,40]. The message “keep your
waist circumference to less than half your height” applies to all ages [41,42]. A universally accepted
single cut-off point would represent an important advantage of the WtHr over other anthropometric
measures [43,44]. However, further research is needed in order to assess whether WtHr remains stable
during growth [45,46].

Two out of five of the studies included in this systematic review [28,29] concluded that WtHr is
better than BMI in predicting total adiposity in children. Those studies were conducted with data
from the US-NHANES in 2003–2004 and 2001–2004 respectively, and thus they had an overlap of data
that could explain their agreement. Both studies had several strengths, such as large sample sizes
(N = 2239 and N = 5355 respectively), wide age ranges of participants (8–18 and 8–19 respectively),
and multi-ethnicity. Brambilla et al. (2013) reported a multivariable adjusted model including age, sex,
and race [28], and Tuan et al. (2014) stratified the results by sex and ethnicity-race [29]. Nevertheless,
their results may be limited due to a suboptimal adjustment for potential confounders (Tanner stage)
and a lack of tests for interaction.

On the other hand, Barreira et al. (2014) [27] found that BMI explained a greater percentage of the
BF than the WtHr in a similar multiracial and wide age-range sample. No significant interactions were
observed. Similar results were reported by Karlsson et al. [25] and by De Miguel-Etayo et al. [26]. As to
the later, it must be considered whether the reported correlation for BMI increased due to the use of
FMI to express BF, since, like BMI, it is calculated with height squared (m2) in the denominator [26,28].

The quantitative meta-analysis of those studies showed that both BMI and WtHr explained a large
percentage of BF measured by DEXA. Although the pooled estimate calculated for the BMI was slightly
larger, no significant differences were found.

To test our results, we considered it of interest to repeat the analysis after the exclusion of the
study by De Miguel-Etayo et al. [26] because (1) it reported the correlation between the change in
the indices and (2) it reported BF as FMI. The correlation between two indices can be fairly assessed
by focusing on the correlation between their respective changes in time. Furthermore, changes in
time need the use of repeated measurements of each index, and thus they use more information.
The sensitivity analysis after the exclusion of that study showed a significantly greater pooled estimate
for WtHr (R2 = 0.72) compared to BMI (R2 = 0.65) (z = −6.82. p < 0.01). De Miguel-Etayo et al. reported
very high correlations for BMI and very low correlations for WtHr. As discussed above, the use of FMI
to express BF could be related to these findings. Besides, since BMI shows stronger correlations with
BF in overweight and obese children [17], all participants being overweight or obese adolescents may
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have influenced their findings. Whether the nutritional status affects the accuracy of the WtHr for the
classification of obesity needs further research.

It is important to highlight that the correlation coefficient shows relation but not agreement.
The significant p values reported in the studies included in this review only reinforce that two methods
designed to measure the same variable are related [12,47]. In order to synthesize the results, the
confidence intervals would have been more informative. On the other hand, the assessment of the
agreement between two measuring techniques represents an important statistical tool, since it helps
identify the optimal cut-off points to maximize sensitivity and specificity. Agreement can be tested by
the intraclass correlation coefficient and the Bland and Altman method for quantitative variables, and
by the Kappa statistics and the AUC for qualitative variables. Only one of the studies included in this
review assessed the agreement between DEXA and anthropometric measures (BMI and WtHr) [29].
Taking the standard reference for obesity as a %BF above the 75th age and sex-specific percentile [31],
authors found higher agreement and higher AUC for the z-score of the WtHr.

This systematic review contributes to previous literature because we calculated a pooled estimate
for the correlation between both BMI and WtHr with BF measured by DEXA, and we compared
these pooled estimates obtaining no significant differences. Nevertheless, some limitations may be
pointed out in this review. The potential bias within and across the studies has already been discussed.
Additionally, even though we conducted our research in two important data bases (PubMed/Medline
and Embase), the possibility of a selection bias must also be taken into account. Finally, in this review
only a total of five studies were finally included, which may suggest we established very narrow
inclusion criteria, but there may also be a risk of publication bias.

5. Conclusions

We found that both BMI and WtHr were strongly correlated with BF measured by DEXA; thus,
both can be used to diagnose obesity in pediatric populations when more sophisticated techniques
are not available. The reviewed literature did not provide a conclusive answer about whether WtHr
is superior to BMI to assess general obesity, since no significant differences were found when we
compared the pooled R2.
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