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Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a complex etiology. Its incidence is increasing 
globally in parallel with the obesity epidemic, and it is now considered the most common liver disease in Western countries. 
The precise mechanisms underlying the development and progression of NAFLD are complex and still poorly understood. 
The dysregulation of epigenetic and epitranscriptomic mechanisms is increasingly recognized to play pathogenic roles in 
multiple conditions, including chronic liver diseases. Here, we have performed a comprehensive analysis of the expression of 
epigenetic and epitranscriptomic genes in a total of 903 liver tissue samples corresponding to patients with normal liver, obese 
patients, and patients with non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), advancing stages in 
NAFLD progression. We integrated ten transcriptomic datasets in an unbiased manner, enabling their robust analysis and 
comparison. We describe the complete landscape of epigenetic and epitranscriptomic genes’ expression along the course of 
the disease. We identify signatures of genes significantly dysregulated in association with disease progression, particularly 
with liver fibrosis development. Most of these epigenetic and epitranscriptomic effectors have not been previously described 
in human NAFLD, and their altered expression may have pathogenic implications. We also performed a comprehensive 
analysis of the expression of enzymes involved in the metabolism of the substrates and cofactors of epigenetic and epitran-
scriptomic effectors. This study provides novel information on NAFLD pathogenesis and may also guide the identification 
of drug targets to treat this condition and its progression towards hepatocellular carcinoma.
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-New epigenetic and epitranscriptomic effectors may constitute 
drug targets in NAFLD.
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OCM	� One carbon metabolism
TCA​	� Tricarboxylic acid cycle

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a multifac-
torial condition with a complex etiology. Its incidence is 
increasing globally in parallel with the obesity epidemic, 
and it is now recognized as the most common liver disease 
in Western countries. The exact prevalence of NAFLD is 
difficult to determine as it is often asymptomatic, but recent 
estimates suggest that it affects more than 30% of the general 
population [117].

NAFLD encompasses a spectrum of disorders defined 
by the presence of abnormal lipid accumulation in hepato-
cytes with or without evidence of liver cell injury [5]. Most 
patients with NAFLD have non-alcoholic fatty liver (NAFL) 
defined as simple steatosis or isolated fat accumulation, 
whereas a subset of NAFL patients can progress to non-
alcoholic steatohepatitis (NASH), characterized by steatosis 
with evidence of hepatocellular injury, inflammation, and 
fibrosis [5, 10]. The severity of fibrosis correlates with the 
risk of developing complications like cirrhosis, liver fail-
ure, and hepatocellular carcinoma (HCC) [5, 64]. The pro-
gression of NAFLD to end-stage liver disease is depicted 
in Fig. 1A. The precise mechanisms underlying the devel-
opment and progression of NAFLD are complex and still 
poorly understood, but a combination of dietary factors, 
a poor glycemic control, and genetic predisposition likely 
play a role [27]. Recent evidence suggests that NAFLD is 
linked with a range of extrahepatic manifestations such as 
insulin resistance, dyslipidemia, adipose tissue dysfunction, 
systemic inflammation, and gut microbiota dysbiosis [27]. 
In addition to these well-known factors related to obesity, 
type 2 diabetes, and cardiovascular disease, NAFLD is also 
associated with several other conditions, including chronic 
kidney disease and metabolic syndrome [7]. Early detection 
and treatment of NAFLD are essential to prevent its progres-
sion towards end-stage liver disease, which has significant 
implications for both patients and health care systems [116]. 
NAFL is diagnosed by the presence of steatosis on liver 
biopsy, whereas the diagnosis of NASH requires the pres-
ence of steatosis, necroinflammation, and fibrosis [69]. The 
most common cause of death in patients with NAFLD is 
cardiovascular disease, and the risk of death from NAFLD 
is increased in patients with NASH [69].

Epigenetics refer to the heritable modification of gene 
expression that does not involve changes in the underlying 
DNA sequence [33]. These modifications can occur in the 
form of DNA methylation, histone modification, and non-
coding RNA-mediated gene regulation [33]. The field of epi-
genetics is rapidly evolving and holds great promise for the 

treatment of various diseases including NAFLD [20, 37, 44, 
50]. Emerging evidence suggests that epigenetic alterations 
may contribute to the development of NAFLD by regulating 
genes involved in lipid metabolism, inflammation, and cell 
death [65, 97]. DNA methylation is a common epigenetic 
modification based on the addition of a methyl group to 
cytosine residues in CpG dinucleotides [74]. This modifica-
tion can silence gene expression by preventing the binding 
of transcription factors to DNA and by promoting chroma-
tin compaction. Several studies have found increased DNA 
methylation in the liver tissue of patients with NAFLD, par-
ticularly in genes involved in lipid metabolism and inflam-
mation [42, 111, 122]. The covalent modification of histones 
is another epigenetic mechanism that can affect chromatin 
organization and gene expression. These modifications, 
which include reactions such as acetylation, methylation, 
and phosphorylation, can change the structure of chromatin, 
modulate the recruitment of transcriptional regulators, and 
influence gene expression. Several studies have found altered 
histone modification patterns in the liver tissue of patients 
with NAFLD, which suggests that this epigenetic mecha-
nism may also play a role in the development of this disease 
[19, 54, 111]. Non-coding RNA-mediated gene silencing is 
another epigenetic mechanism that can regulate gene expres-
sion. MicroRNAs (miRNAs) are a type of non-coding RNA 
that can bind to complementary sequences in mRNA result-
ing in gene silencing. Several studies have found altered 
miRNA expression in the liver tissue of patients with 
NAFLD [111], suggesting that this epigenetic mechanism 
may play a role in developing this disease. Overall, the evi-
dence suggests that epigenetic modifications may contribute 
to the development of NAFLD.

Over the last couple of decades, considerable efforts have 
been made to characterize the highly dynamic and revers-
ible RNA modifications. More than 150 modifications with 
regulatory potential have been identified to date and together 
define the field of epitranscriptomics. Among them, meth-
ylation reactions leading to the formation of N6-methyladen-
osine, N1-methyladenosine, N6,20-O-dimethyladenosine, 
5-methylcytosine, and 5-hydroxymethylcytidine are the most 
extensively investigated [14, 108]. It has become evident 
that these RNA modifications significantly influence gene 
expression, and their dysregulation is increasingly being 
associated with different pathologies including NAFLD 
[123]. Interestingly, epigenetic and epitranscriptomic mecha-
nisms also rely on reversible enzymatic reactions performed 
by the so-called epigenetic and epitranscriptomic “writers” 
and “erasers,” as well as protein-protein and protein-DNA/
RNA interactions mediated by “readers,” processes that are 
amenable to pharmacological targeting [28, 29].

While some gene variants are well-known pathogenic or 
protective factors in NAFLD (Fig. 1B), the roles of specific 
epigenetic and epitranscriptomic factors in the progression 
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Fig. 1   NAFLD progression, genetic variants in NAFLD, and the 
cross-talk between epigenetic and epitranscriptomic factors and 
metabolism. A Natural history of NAFLD to end-stage liver dis-
ease and hepatocellular carcinoma (HCC). B Genetic variants with 
a known pathogenic or protective role for NAFLD, epigenetic and 
epitranscriptomic genes known to be up- (↑) or downregulated (↓) in 
NAFLD. The DNA methylation status of genes potentially involved 

in NAFLD pathogenesis is also indicated. C Cross-talk between epi-
genetic and epitranscriptomic factors and metabolites acting as sub-
strates or inhibitors of these reactions. D Major metabolic pathways 
involved in the synthesis and conversion of substrates and cofactors 
of epigenetic and epitranscriptomic enzymatic reactions. Abbrevia-
tions can be found in Suppl. Table 8
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of this disease remain poorly defined. There are some reports 
showing the dysregulation in the expression of certain epi-
genetic and epitranscriptomic factors in NAFL and NASH, 
as well as altered methylation patterns in key genes for liver 
disease progression in these conditions (Fig. 1B) [49, 86, 
123]. On the other hand, fluctuations in the intracellular 
levels of specific intermediary metabolites, including those 
associated with dietary alterations and obesity, can impact 
on epigenetic and epitranscriptomic mechanisms for which 
these metabolites behave as substrates or inhibitors [13, 28, 
41, 58, 65, 80]. Thus, there is a complex interplay between 
the intracellular pools of metabolites, related metabolic 
enzymes, and the epigenetic and epitranscriptomic machin-
ery (Fig. 1C and D). Further studies are needed to confirm 
the role of epigenetics and epitranscriptomics in NAFLD 
pathogenesis and to identify potential epigenetic targets for 
the prevention and treatment of this chronic liver condition. 
In the present study, we have performed a comprehensive 
transcriptomic analysis of hepatic epigenetic and epitran-
scriptomic genes in different cohorts of patients. Our inte-
grated data revealed marked changes in the expression of 
specific genes in association with the course of the disease. 
These findings may improve our understanding of NAFLD 
pathogenesis and pave the way for the identification of novel 
therapies [93].

Materials and methods

Functional selection of interrogated genes

Epigenetic and epitranscriptomic genes were selected from 
the literature [11] and Modomics [12], EpiFactors [70], and 
ChromoHub [61] databases to generate a manually curated 
list. Among the epigenetic genes, those whose function was 
related to the methylation and acetylation of DNA and his-
tones, as well as the citrullination (or deimination) of histone 
arginine residues, were considered conventional epigenetic 
genes. All other epigenetic genes were classified as non-
conventional epigenetic genes. Then, the function of each 
selected gene was confirmed by the availability in reliable 
databases (GeneCards, PubMed, and Uniprot) of experi-
mental evidence demonstrating their purported biochemi-
cal activity. All the genes with no experimental evidence 
of functional activity were discarded. Reader and eraser 
functions were prioritized above reader or cofactor activity 
to classify the genes, although some of them have several 
functions as readers and erasers or writers [11]. On the other 
hand, genes encoding for metabolic enzymes involved in the 
metabolism of epigenetic cofactors were selected based on 
the proximity of function to the epigenetic and epitranscrip-
tomic machinery.

Transcriptomic data preprocessing

Transcriptomic high-throughput data (RNA-seq) were 
downloaded from the NCBI Sequence Read Archive (SRA) 
in fastq format using SRA Toolkit version 3.0.0. The first 
step in the workflow involves quality control and preprocess-
ing of the raw RNA-seq data. Adapter sequences and low-
quality reads are removed using TrimGalore version 0.6.0 
with Cutadapt version 1.18 [53, 71]. Subsequently, clean 
reads are aligned to the reference genome using a splice-
aware aligner STAR​ version 020201 over genome version 
hg38 [26]. Aligned reads are then quantified at the gene 
level using HTseq version 0.11.0 [4]. EdgeR version 3.28.1 
[90] for R software version 3.6.3 (hereafter referred to as R) 
requires raw read counts as input and performs normaliza-
tion using the trimmed mean of M-values (TMM) method 
[91]. TMM normalization accounts for library size differ-
ences and composition biases, ensuring accurate compari-
sons between samples.

A “normal liver” was considered when a sample is col-
lected from a healthy liver (without NAFLD, alcoholic 
hepatitis, virus infection, or cancer). However, the original 
sequencing studies may have not reported other non-hepatic 
diseases that could affect the liver.

Data integration

Once all samples were correctly normalized, ComBat [47] 
from sva R package version 3.44.0 [56] was used to remove 
the batch effect using sex and disease stage as covariates, the 
only variables present in all samples or inferable (sex). Com-
Bat integrates and harmonizes high-dimensional biological 
data from multiple sources by removing batch effects, such 
as differences in experimental protocols while preserving 
true biological differences. The method consists on organ-
izing data into a single matrix, identifying batch effects, fit-
ting a linear model that includes both biological factors and 
batch effects, and using an empirical Bayes framework to 
estimate model parameters. ComBat then computes adjusted 
values for each feature, subtracting the estimated batch effect 
from the original data. The resulting dataset, with reduced 
batch effects, can be used for downstream analyses more 
accurately and reliably.

In addition, the adjusted expression matrix was trans-
formed into a positive value matrix adding the minimum 
value of expression of genes that were negative in some of 
the samples. Some of the genes were not detected in any of 
the RNA-seq datasets of liver samples although they could 
be detected by microarray technology as far as there is no 
competence between the mRNA molecules. These genes 
were discarded for not being present in none of the samples 
of a complete dataset, which inclusion may result in a loss 
of statistical power and robustness.
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Sample clustering and visualization

The robustness of the batch effect removal was tested using 
four different dimensional reduction techniques including 
principal component analysis (PCA), uniform manifold 
approximation and projection (UMAP), and t-distributed 
stochastic neighbor embedding analysis (t-SNE) with M3C 
version 1.18.0 [46] and discriminant analysis of principal 
components (DAPC) (adegenet version 2.1.7) [48]. UMAP 
excels in preserving the topological structure of the data 
by approximating the manifold on which it resides and 
projecting it onto a lower-dimensional space. Its primary 
advantage lies in its ability to maintain both local and 
global structures, making it particularly useful for analyz-
ing complex data. On the other hand, t-SNE focuses on 
minimizing the divergence between two probability dis-
tributions: one representing pairwise similarities in high-
dimensional space and the other in low-dimensional space. 
By employing a t-distribution to model similarities in the 
latter, t-SNE effectively addresses the crowding problem 
often encountered in other techniques [105]. Its strength 
lies in revealing intricate, nonlinear structures in the data 
and generating visually interpretable embeddings. Mean-
while, PCA is a linear dimensionality reduction technique 
that identifies the principal components or axes in high-
dimensional space where data variance is maximized. By 
projecting data onto the first few principal components, 
PCA effectively reduces dimensionality while retaining 
as much original variance as possible. This technique is 
particularly suited for datasets with linear relationships 
and Gaussian-like distributions.

Finally, to complete these unsupervised approximations 
(clustering with unlabeled data), supervised DAPC was car-
ried out. The number of principal components (PC) selected 
explained 95% of the variance. All the linear discriminants 
generated were taken because the number of eigenvalues 
was small enough to make the difference at this point. The 
explained intergroup variance of each gene of the signature 
was taken as a variable importance measure, to uncover the 
most informative genes (genes that explain more than 2% of 
the variance). The supervised mode of DAPC was also used 
to reconstruct the evolution of the disease with the whole 
transcriptome following the same parameter choice, check-
ing if it was congruent with the development described in 
the bibliography. Using gene set variation analysis (GSVA) 
package version 1.44.2 [35] with the implemented single-
sample gene set enrichment analysis (ssGSEA) method 
[55], the pathway activity score of a combination of two 
previously published gene signatures of NAFLD was com-
puted [36, 92]. This activity score was comprised by the 
combined list of genes divided into two signatures: the first 
one, with the genes described to be upregulated in the pub-
lished signatures, and the second one with those described 

to be downregulated with disease progression. Thereby, this 
analysis proved the biological relevance of integrated data.

Gene expression analyses

To evaluate transcriptomic differences of these epigenetic, 
epitranscriptomic, and metabolic genes, edgeR fits a gener-
alized linear model (GLM) to the normalized count data, 
using the negative binomial distribution to account for both 
biological and technical variability. Low expression genes 
were filtered using the filterByExpr function implemented in 
edgeR with the default settings. Dispersion parameters are 
estimated using the empirical Bayes method, and statisti-
cal tests are performed using the likelihood ratio test or the 
quasi-likelihood F-test. Multiple testing correction is applied 
using the Benjamini-Hochberg procedure to control the false 
discovery rate (FDR).

Regarding the number of differentially expressed genes 
described throughout the present study, only statistically 
significant changes were reported for each comparison. To 
clarify the possible molecular and biological functions of 
differentially expressed genes, gene set enrichment analysis 
(GSEA) was conducted using clusterProfiler R package ver-
sion 4.4.4 [118] with whole msigdb database [99]. Between 
200 and 800 significant genes were taken, ordered by the 
log2 fold change, as input for pathway analyses. The influ-
ence of age, sex, and fibrotic stage was tested, and the pres-
ence of a potential confounding effect was ruled out.

Hierarchical clustering

Hierarchical clustering of conventional epigenetic genes 
using Euclidean distance in combination with Ward’s clus-
tering method, with dist function in R over adjusted read 
counts, resulted in three gene sets or clusters. The most 
informative and changing cluster was selected for the sig-
nature definition from epigenetic and epitranscriptomic 
gene lists using GSVA. Gene signatures revealed a gradi-
ent of expression in both disease stages that, for simplicity 
of downstream comparisons, were subclassified using the 
same hierarchical clustering method in three subgroups (low, 
medium, and high expression levels). This approach resulted 
in three groups per signature in each disease stage (NAFL 
and NASH).

Statistical analyses

Genes were considered differentially expressed if the 
adjusted p-value (FDR method of Benjamini and Hochberg) 
was lower than 0.05. For exploratory pathway analyses, all 
genes with p < 0.05 were included. The identified catego-
ries were considered significant and up- or downregulated if 
p-value < 0.05. Gene expression correlation was computed 
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using Pearson’s correlation methods, and significantly cor-
relating gene pairs were plotted using corrplot package ver-
sion 0.92.

For the statistical significance of more than two groups, 
the Kruskal-Wallis test was applied. Multiple comparisons 
were controlled by the false discovery rate (FDR) using the 
Benjamini and Hochberg correction (Q = 5%). Chi-square 
tests of homogeneity were used to analyze if the observed 
proportion of patients in a certain fibrosis stage was dis-
tributed as in the integrative dataset (used as expected pro-
portions). Gene signature association with HCC patients’ 
survival was measured with the survival package in R v3.3-5 
as described [104]. HCC gene expression and patients’ 
related information were obtained from data generated 
by the TCGA research network (https://​www.​cancer.​gov/​
tcga). GraphPad Prism 9.0.2 software (GraphPad Prism, San 
Diego, CA, USA) was used for these statistical analyses and 
the corresponding boxplots. Data are presented as mean and 
standard error. Values of p < 0.05 were considered statisti-
cally significant.

Results

Integration of transcriptomic data

The transcriptomic data of 903 human liver samples were 
integrated from 10 publicly available datasets (Table 1), 
including samples from normal (n = 103, 11%), obese (n 
= 27, 3%), NAFL (n = 194, 21%), and NASH (n = 579, 
64%) patients. The dimensionality reduction analyses using 
t-SNE, UMAP, and PCA techniques revealed a strong ten-
dency for liver samples to cluster by disease stage (Fig. 2A). 
This finding suggests that the batch effect was successfully 
mitigated, enabling a more accurate representation of the 
underlying biological processes. In addition to the unsu-
pervised dimensionality reduction techniques, a supervised 
DAPC conducted to test if samples would be grouped by 

independent datasets demonstrated that the batch effect 
was diminished even using the supervised mode over the 
integrated data (Fig. 2B). Supervised DAPC based on the 
similarity of the full transcriptional profile was able to 
reconstruct the natural history of NAFLD (Fig. 2C). This 
approach recapitulates at the transcriptional level what is 
described in the literature in the transition from normal liver, 
and livers from obese patients, towards NAFL and finally 
NASH stages. We also found that the activity scores using 
previously published NAFLD signatures [36, 92] in our 
integrated data clearly reflected the progression of the dis-
ease (Fig. 2D). The soundness of our approach was further 
supported by the analysis of specific genes within previ-
ously reported NAFLD gene signatures [36, 92] (Fig. 2E 
and Suppl. Fig. 1A), as well as genes functionally linked 
to NAFLD pathogenesis (Fig. 2F) [1, 2, 31, 36, 78, 92]. 
As mentioned above, liver fibrosis is a hallmark of NASH 
progression [10, 109], and consistently, we observed that 
the expression of a broad range of these genes significantly 
changed according to the fibrosis stage of liver tissues (F0 to 
F4) [10] in the NASH cohort (Suppl. Fig. 1B). Altogether, 
these analyses confirm the robustness of our strategy and 
support the accuracy of further gene expression studies per-
formed in this integrated dataset.

Differential gene expression of epigenetic 
and epitranscriptomic genes

Epigenetic factors comprising 20 families, a total of 419 
genes, were selected for the analyses. Of these, 257 genes 
(11 families) were categorized as conventional epigenetic 
factors (Table 2). These are considered the most widely 
described genes that belong to three different categories 
of epigenetic writers: DNA methyltransferases (DNMTs), 
protein arginine-methyltransferases (PRMTs), protein 
lysine-methyltransferases (KMTs), histone acetyl-trans-
ferases (HATs); epigenetic erasers: DNA demethylases 
(TETs), histone-lysine demethylases (HDMs), histone 

Table 1   Studies included for the 
meta-analysis of human liver 
transcriptomic data, integrated 
from publicly available datasets. 
Sequence Read Archive (SRA) 
https://​www.​ncbi.​nlm.​nih.​gov/​
sra

First author SRA ID Normal Obese NAFL NASH Total

Brosch M et al. SRP120376 12 15 15 15 57
Burgess SK et al. SRP135703 20 0 0 0 20
Choy JY et al. SRP058036 2 0 0 0 2
ENCODE SRP003497 2 0 0 0 2
Febbraio MA et al. SRP149518 3 0 3 3 9
Fujiwara N et al. SRP353346 0 0 12 258 270
Gerhard GS et al. SRP174668 36 0 50 106 192
Govaere O et al. SRP217231 10 0 51 155 216
Hoang SA et al. SRP197353 4 0 48 26 78
Suppli MP et al. SRP186450 14 12 15 16 57
Total (n of patients) 103 27 194 579 903

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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deacetylases (HDACs), and histone deiminases (HDIs); 
and epigenetic readers: DNA methyl-binding proteins 
(MBPs), histone methyl readers (HMRs), and histone 
acetyl readers (HARs). Other 162 genes (9 families) 
were categorized as non-conventional epigenetic factors 
(Table 2). These included chromatin remodeling factors 
(ChrRs) and additional writers, erasers, and readers with 
other epigenetic activities such as histone-tyrosine phos-
phatases (HTPs), histone deubiquitylases (HDUs), or 
phosphorylated histone readers (PHRs) (Table 2). Regard-
ing the epitranscriptomic factors, 6 families involving 137 
genes were selected for further analyses, equally compris-
ing the three different categories of epitranscriptomic writ-
ers: RNA methyltransferases (RNMTs), pseudo-uridine 
synthases (PUSs); epitranscriptomic erasers: RNA dem-
ethylases (RDMs), RNA hydroxylases (RNHLs); epitran-
scriptomic readers: methylated RNA readers (MRRs) and 
others with miscellaneous epitranscriptomic functions, 
such as RNA acetylation or RNA decapping (Table 2). The 
classification, function, target, and source of information 
for selected epigenetic and epitranscriptomic factors are 
described in Suppl. Table 1 and Suppl. Table 2, respec-
tively. From 556 genes successfully validated as epige-
netic and/or epitranscriptomic effectors, 506 were present 
in all 10 datasets interrogated. Genes not detected in the 
expression analysis were independently checked set by set 
without integration. None of them was present in most of 
the datasets, thereby concluding that their expression in 
the liver was residual or not present. Out of 419 selected 
epigenetic genes, 379 were detected, whereas 128 out of 
137 epitranscriptomic genes were expressed in the selected 
transcriptomic datasets.

As can be observed in Fig. 3 and Suppl. Fig. 2, among 
the 379 epigenetic genes examined (213 conventional, and 
133 non-conventional, respectively), profound alterations 
in their expression were observed for many of them across 
the different disease stages. When comparing NAFL liver 
with normal liver, 39 genes (28 conventional and 11 non-
conventional) were significantly changed, 12 upregulated 
(10 conventional and 2 non-conventional) and 27 downreg-
ulated (18 conventional and 9 non-conventional). Between 
NASH and normal liver, we found an increase in the num-
ber of differentially expressed genes, 108 of them (62 
conventional and 46 non-conventional) were significantly 
altered, 67 upregulated (35 conventional and 35 non-con-
ventional) and 41 downregulated (27 conventional and 14 
non-conventional). The expression of some of these epi-
genetic effectors, such as DNMT1, SIRT1, SIRT3, PHF2, 
and ZBTB33, has been previously described to change in 
NAFL and NASH, confirming the robustness of our find-
ings [18, 32, 79, 86]. We also identified other genes not 
previously reported to be dysregulated in NAFLD, such 
as HAT1, SMYD2, CBX5, CBX1, and MPHOSPH8 which 

were induced, and KAT8 which was downregulated (Suppl. 
Fig. 3A).

Focusing on epitranscriptomic genes, 128 genes were 
interrogated of which 13 were differentially expressed (2 
upregulated and 11 downregulated) in NAFL, while in 
NASH 40 genes were differentially expressed (12 upregu-
lated and 28 downregulated) when compared to normal liver 
samples (Fig. 4). Among these genes, YTHDF3, YTHDC2, 
RNMT, METTL5, IGFBP3, and TRMT10C were upregu-
lated in both NAFL and NASH liver tissues, while IGFBP1 
expression was downregulated, in agreement with previous 
reports [34] (Suppl. Fig. 3B).

Despite these changes in both types of genes, the total 
number of them that showed statistically significant up- or 
downregulation in the NAFL or NASH cohorts was propor-
tionally low. Interestingly, upon closer examination, for both 
epigenetic and epitranscriptomic genes, there seemed to be 
subgroups of patients within the NAFL and NASH cohorts 
that presented similar gene expression patterns (Figs. 3 and 
4).

Epigenetic and epitranscriptomic gene signatures

In view of this apparent existence of different subgroups of 
patients, we next aimed to define the gene signatures that 
could stratify them. To this end, the observed expression 
gradients were split using hierarchical clustering on Euclid-
ean distance and three subgroups of patients with low (EpiG-
low), medium (EpiG-med), and high (EpiG-high) expression 
in each signature were generated. Taking gene expression 
as input for the hierarchical clustering, the Euclidean dis-
tance was used as a similarity measure to define specific 
signatures that captured the differences observed among 
patients with NAFL or NASH. This signature comprised 188 
and 193 genes for NAFL and NASH patients, respectively. 
To increase the robustness of the stratification, only genes 
expressed in both disease stages and upregulated in the third 
cluster (EpiG-high) were selected in the final epigenetic sig-
nature, which included a total of 156 conventional epigenetic 
genes (Fig. 5A and B, and Suppl. Table 3). To define the 
epitranscriptomic signature the same process was carried 
out, and three subgroups were defined: EpiT-low, EpiT-med, 
EpiT-high. In this case, the signature included 123 and 119 
genes for NAFL and NASH patients, respectively. When 
only genes expressed in both disease stages, and upregulated 
in the third cluster (EpiT-high), were considered, a more 
robust signature with 119 genes was established (Fig. 6A 
and B, and Suppl. Table 3). The distribution of male and 
female NASH patients in the EpiG and EpiT-low, EpiT-med, 
and EpiT-high clusters was homogeneous (Supplementary 
Fig. 4).

Next, we evaluated if the differential expression of epi-
genetic and epitranscriptomic genes could be related to the 
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pathological characteristics of the tissues. Therefore, we 
tested the distribution of patients according to their fibrosis 
stage (F0–F4) in the different Epi-G and Epi-T subgroups. 
The proportion of patients in each fibrosis stage was calcu-
lated in the full integrative dataset according to the informa-
tion on biopsy-proven fibrosis as reported by the authors. 
Thus, 11% of samples from NASH patients showed no 
fibrosis (F0), 19% of patients corresponded to F1 fibrosis 
stage, 26% had F2 fibrosis, 30% had F3 fibrosis, and 13% 
of patients were at F4 fibrosis stage. Then, we examined 
the distribution of F0–F4 cases across the groups of NASH 
patients classified in the different epigenetic (EpiG) and 
epitranscriptomic (EpiT) subgroups. Our analysis revealed 
an unbalanced distribution of patients classified by fibro-
sis stage across the EpiG groups, with patients classified 
as EpiG-high including significantly less F0 cases and the 
highest proportion of patients with advanced fibrosis (F4) 
(Fig. 7A–C). Although less marked, a similar observation 
was made when patients were classified according to EpiT 
category. F0 cases were very few, while F4 patients were 
more frequent in the EpiT-high subgroup compared to EpiT-
low (Fig. 7D, E).

To explore the molecular landscape and biological char-
acteristics of the NAFL and NASH liver tissue samples 
classified according to their EpiG and EpiT profiles, we 
performed Gene Ontology (GO) and gene set enrichment 
analysis (GSEAs) on the genes differentially expressed 
(DEGs) between these subgroups (Fig. 8A and B). In the 
NAFL stage, while the analysis of gene expression among 
the epigenetic subgroups uncovered relevant processes such 
as apoptotic signaling, events related to cell adhesion, cell 
death, or processes involving Notch, TGFβ, and other sign-
aling pathways mediated by GTPases (Fig. 8A and Suppl. 
Table 4), it was the epitranscriptomic subgroups that exhib-
ited a greater number of significant differences. EpiT-high 
vs EpiT-low subgroups differences encompassed crucial 
biological functions associated with the pathophysiology 

of the disease and its progression. Specifically, individuals 
classified as EpiT-high displayed enrichments in metabolic 
pathways (carbohydrates and lipids metabolism, cellular res-
piration), DNA damage and apoptosis-related mechanisms, 
and, remarkably, numerous inflammatory events (Fig. 8B 
and Suppl. Table 5). When considering the NASH stage, 
the comparison between epigenetic subgroups (EpiG-high 
vs EpiG-low) revealed greater number of differences than 
in the NAFL cohort. Notably, differentially expressed genes 
were primarily associated with important metabolic events 
(lipids, lipoproteins, bile acids, and mitochondrial metabo-
lism), inflammatory and fibrogenic processes (collagen fibril 
organization and metabolism, response to TGFβ), and WNT/
β-catenin signaling (Fig. 8C and Suppl. Table 6). The com-
parison between epitranscriptomic subgroups (EpiT-high vs 
EpiT-low) in NASH primarily revealed processes associated 
with collagen biosynthesis, response to TGFβ, and pathways 
involved in cell adhesion and migration, epithelial-mesen-
chymal transition phenomena, and angiogenesis (Fig. 8D 
and Suppl. Table 7).

In view of the key pathogenic role of fibrosis in the pro-
gression of NAFLD [5, 10, 30], we evaluated the potential 
correlation in the expression of epigenetic and epitranscrip-
tomic genes with that of key genes involved in liver extra-
cellular matrix synthesis. We selected the genes coding for 
fibrillar collagens I, III, and V; interfibrillar collagen VI; 
and collagen IV, which together with collagen VI is respon-
sible for the capillarization of liver sinusoids, being all of 
them being upregulated in liver fibrosis [52]. As shown in 
Suppl. Fig. 5A, there were several epigenetic genes which 
showed strong correlations with the expression of these col-
lagen genes, including writers, readers, and erasers such as 
CBX6, CHD3, DNMT1, EHMT2, HDAC7, MLLT3, PHF19, 
PRDM2, PRMT2, SMARCA4, TP53BP1, and ZBTB4, among 
others. Although less prominent, we also observed the cor-
relation of collagen gene expression with that of certain 
epitranscriptomic genes such as ADARB1, APOBEC3G, 
HEMT1, IGFBP2, PRRC2A, TCOF1, and TRMT1 (Suppl. 
Fig. 5B). We also included in the analysis the ACTA2 and 
LRAT​ genes, coding for α-smooth muscle actin (αSMA) and 
lecithin-retinol acyltransferase, which are upregulated and 
downregulated, respectively, in activated liver extracellular 
matrix (ECM)-producing cells [9]. Most of the epigenetic 
and epitranscriptomic genes which expression correlated 
positively with that of collagen genes also correlated with 
that of ACTA2, but not, or very weakly, with LRAT​ gene 
expression (Suppl. Fig. 5A and 5B), further emphasizing 
their association with liver disease progression.

As previously mentioned, NASH is increasingly rec-
ognized as a risk factor for HCC development [5, 64]. 
Given the strong association between our epigenetic and 
epitranscriptomic gene signatures established in NAFLD 
patients with key molecular pathways related to disease 

Fig. 2   Bioinformatic and biological validation of the integrated tran-
scriptomic data from human liver gene expression datasets. A Dimen-
sionality reduction analyses using t-SNE, UMAP, and PCA unsuper-
vised techniques. B Supervised dimensionality reduction by DAPC 
represented as a scatterplot using disease stage as groups (left) and 
the source (published article, right). C Supervised DAPC represent-
ing the centroid and ellipses of 95% confidence interval joined by 
the maximum similarity path representing the natural history of the 
disease. D Pathway activity score performed using previously pub-
lished NAFLD signatures [36, 92]. E Expression of genes previously 
reported in NAFLD gene signatures in our integrated transcriptomic 
datasets. F Expression of genes functionally linked to NAFLD patho-
genesis in our integrated datasets. Transcriptomic data are expressed 
as the trimmed mean of M-values (TMM) and grouped according 
to liver disease classification (Normal, Obese, NAFL, and NASH). 
p-values were obtained from the Kruskal-Wallis test and adjusted by 
FDR Benjamini and Hochberg correction (E and F). Values of p < 
0.05 were considered statistically significant

◂
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progression described above, we explored whether these 
signatures could also be observed in peritumoral and 
tumoral tissues from NASH-associated HCC [85]. As 
shown in Suppl. Fig. 6A and 6B, subgroups of patients 
showing EpiG-low and EpiG-high signatures, as well as 
EpiT-low and EpiT-high signatures, were found in peri-
tumoral and HCC tissues. In contrast with these observa-
tions, the expression of genes within the EpiG and EpiT 
signatures was uniformly altered in peritumoral tissues 
from patients developing HCC of viral (HBV) [101] or 
alcoholic [67] etiologies, and these changes were more 
pronounced in tumoral tissues (Suppl. Fig. 7A-D).

These observations led us to explore if the expression 
of these epigenetic and epitranscriptomic gene signatures 
could be linked to the prognosis of HCC patients. To this 
end, we analyzed data generated by the TCGA network, 
and as depicted in Supplementary Fig. 8A, we found that 
HCC patients in the EpiG-high subgroup had significantly 
poorer survival than those in the EpiG-med and EpiG-
low subgroups. However, this difference was not observed 
for patients in the three EpiT subclasses (Supplementary 
Fig. 8B).

Candidate epigenetic and epitranscriptomic 
biomarkers and therapeutic targets in NAFLD

Our current findings evidenced marked alterations in the 
expression of epigenetic and epitranscriptomic genes and 
their association with liver disease progression. Therefore, 
among these genes, there could be good candidates to be 
developed into biomarkers of disease severity and/or tar-
gets for pharmacological intervention. With this in mind, we 
implemented a supervised DAPC analysis for the selection 
of those genes that accounted for most of the intergroup 
variability (i.e., those that explained at least 2% of the vari-
ability between groups of samples). We performed these 
DAPC analyses in liver tissues from patients with NAFL 
and NASH, and for both the epigenetic (Fig. 9A and B) and 
epitranscriptomic (Fig. 9C and D) gene signatures.

Consistently, the expression of these largest contributors 
to the epigenetic and epitranscriptomic NASH signatures 
showed statistically significant upregulation across the EpiG 
and EpiT subclasses (Suppl. Fig. 9A and B). Interestingly, 
the expression of most of these epigenetic and epitranscrip-
tomic genes was significantly dysregulated in NASH patients 

Table 2   Epigenetic and 
epitranscriptomic genes 
classified by families. 
Epigenetic genes are 
categorized as conventional or 
non-conventional

Group Family Full name Genes

Conventional epigenetic genes DNMTs DNA methyltransferases 3
Conventional epigenetic genes TETs Tet methylcytosine dioxygenases 3
Conventional epigenetic genes MBPs Methylated CpG binding proteins 18
Conventional epigenetic genes PRMTs Arginine (R) methyltransferases 9
Conventional epigenetic genes KMTs Lysisne (K) methyltransferases 42
Conventional epigenetic genes HDMs Histone demethylases 29
Conventional epigenetic genes HMRs Histone methyl readers 77
Conventional epigenetic genes HATs Histone acetyl transferases 23
Conventional epigenetic genes HDACs Histone deacetylases 17
Conventional epigenetic genes HARs Histone acetyl readers 33
Conventional epigenetic genes HDIs Histone deiminases 3
Non-conventional epigenetic genes STKs Serine threonine kinases 21
Non-conventional epigenetic genes HTPs Histone tyrosine phosphatases 4
Non-conventional epigenetic genes PHRs Phosphorylated histone readers 3
Non-conventional epigenetic genes HUbs Histone ubiquitin ligases 28
Non-conventional epigenetic genes HDUs Histone deubiquitylases 5
Non-conventional epigenetic genes HUbRs Histone ubiquitin readers 4
Non-conventional epigenetic genes HMCs Histone modification cofactors 75
Non-conventional epigenetic genes ChrRs Chromatin remodelling factors 6
Non-conventional epigenetic genes Others Miscellaneous 17
Epitranscriptomic genes RNMTs RNA methyltransferases 65
Epitranscriptomic genes RDMs RNA demethylases 5
Epitranscriptomic genes MRR Methylated RNA readers 19
Epitranscriptomic genes PUSs Pseudouridine synthases 10
Epitranscriptomic genes RNHLs RNA hydroxylases 4
Epitranscriptomic genes Others Miscellaneous 34
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classified according to their fibrosis stage (F0–F4) (Suppl. 
Fig. 9C). Regarding the epigenetic gene signature, this 
analysis showed the upregulation of CHD3 and PRMT2 and 
the downregulation of TRIM24 expression across all fibrosis 
stages when compared to the F0 group. Also, DIDO1 and 
PRDM2 were upregulated, and ATAD2B and BRWD3 were 
downregulated in at least one fibrosis stage vs F0. For the 
epitranscriptomic genes, QTRT1 and TRMT112 expression 
was significantly upregulated across all fibrosis stages, while 
TRUB2 was upregulated in F1 to F3 compared to F0, and 
METTL3 and OSGEP were upregulated in F4 compared to 
F0 (Suppl. Fig. 9D).

Differential expression of metabolic genes

Finally, we also examined the expression of 89 genes 
encoding enzymes belonging to different metabolic 
pathways such as that of folates and one carbon (OCM) 

metabolism, tricarboxylic acid cycle (TCA), and the 
acetyl-CoA synthesis pathway (ACS). These enzymes are 
implicated in the synthesis and metabolism of cofactors 
involved in the activity and regulation of most epigenetic 
and epitranscriptomic reactions (Fig. 1C and D, and Suppl. 
Table 8) [13, 28, 58]. Unlike what was found for epige-
netic and epitranscriptomic genes, a rather homogeneous 
expression pattern was found across samples within the 
NAFL and NASH groups (Fig. 10A). Significant changes 
were observed in the expression of 12 metabolic genes in 
NAFL when compared to normal liver samples (Fig. 10B), 
of which 10 were downregulated and 2 were upregulated. 
Regarding the expression of metabolic enzymes in NASH 
liver samples, these changes were much more pronounced. 
The expression of 35 genes involved in all the above-men-
tioned metabolic pathways was significantly altered when 
compared to normal liver tissues, with 23 genes being 
downregulated and 12 upregulated (Fig. 10C).
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Fig. 3   Heatmap of the expression of conventional epigenetic genes grouped in families and according to liver disease classification (normal liver, 
liver from obese patients, NAFL, and NASH). Expression fold change is compared with normal liver
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Discussion

Weight loss through nutritional intervention and physical 
activity can improve liver disease in NAFLD, but currently 
there are no approved therapies to treat this condition. The 
progression of fibrosis, the deployment of cirrhosis, and the 
advent of adverse liver-related complications such as decom-
pensation and HCC development are still quite unpredictable 
[17, 30, 64, 103]. A better understanding of the molecular 
mechanisms underlying this complex disease is needed to 
predict and eventually treat these outcomes. Accumulating 
experimental and clinical evidence indicates that epigenetic 
and epitranscriptomic alterations occur during NAFLD 
development [2, 22, 49, 86, 106, 123]. These dynamic pro-
cesses are shaped by lifestyle, environment, and enduring 
risk factors, and their persistent influence on gene expres-
sion may be linked to metabolic derangement and disease 
progression in NAFLD [25, 38, 57, 65, 78, 119, 124].

In our study, we combined ten liver transcriptomic 
datasets including patients at different stages of NAFLD 
progression together with obese and normal individuals so 
they can be interrogated as a single transcriptome. After 
validating the robust integration of the different datasets, 
we performed a comprehensive study of the expression of 
epigenetic and epitranscriptomic modifiers, including 20 
epigenetic and 6 epitranscriptomic gene families. Our anal-
yses revealed significant variations in their expression pat-
terns across NAFL and NASH patients in comparison with 
normal liver samples. As could be anticipated, there were 
more pronounced statistically significant differences in 
both families of modifiers in patients with NASH. Among 
the 379 analyzed samples, 108 epigenetic effectors and 
40 epitranscriptomic genes exhibited differential expres-
sion. Some of these genes have been previously reported to 
show altered expression in both NAFL and NASH stages, 
including epigenetic genes such as DNMT1, SIRT1, and 
ZBTB33, and epitranscriptomic genes like IGFBP1. How-
ever, for most of these genes, their differential expression 
in NAFL or NASH had not been previously described. 
Among them, we found HAT1, which codes for a histone 
acetyl- and succinyltransferase recently reported to be 
induced in HCC with protumorigenic consequences [114], 
and SMYD2, a histone methyltransferase also induced in 
HCCs with poor prognosis and just described to be criti-
cal for the development of experimental steatosis in mice 
[107, 113]. CBX1 and MPHOSPH8, epigenetic readers 
binding methylated lysine residues, were also markedly 
upregulated in NASH tissues. Although their upregulation 

in chronic liver disease has not been reported, both have 
been involved in carcinogenesis, including HCC devel-
opment in the case of CBX1 [81, 100]. Similarly, genes 
coding for epitranscriptomic readers like YTHDF3 and 
YTHDC2 and epitranscriptomic writers such as RNMT, 
METTL5, TRNMT10C, and PUS7L were upregulated in 
NASH tissues and are known to be involved as well in 
hepatocarcinogenesis [45, 60, 62, 88, 98, 110].

Perhaps most interestingly, we also observed that within 
the NAFL and NASH cohorts, distinct patterns of expres-
sion of both epigenetic and epitranscriptomic genes were 
apparent among patients. Through hierarchical cluster-
ing, we identified three subtypes of patients based on their 
high, intermediate, or low expression of these two classes 
of genes. Interestingly, correlation analyses with clinico-
pathological information showed that the EpiT-high and the 
EpiG-high subtypes, but specially the latter, encompassed 
the highest proportion of patients with advanced fibrosis 
(F4, cirrhosis). A particularly strong correlation between the 
expression of epigenetic effectors and collagen genes was 
evidenced, indicating that these genes are likely involved in 
disease progression, as previously suggested [8, 75]. This 
notion was reinforced when we performed functional analy-
ses of the differentially expressed genes between each EpiG 
and EpiT subtype within NAFL and NASH cohorts. At the 
NAFL stage, the EpiT-high subgroup presented more active 
pathways involved in harmful events such as DNA dam-
age, cell death, and inflammatory activation and signaling. 
Moreover, those patients within the EpiT-high signature also 
showed marked downregulation in gene sets related to aero-
bic respiration, mitochondrial function, fatty acid metabo-
lism, and response to oxidative stress and insulin. Although 
changes in the expression of specific epitranscriptomic and 
epigenetic genes may have important consequences for dis-
ease development, globally, it appears that epitranscriptomic 
mechanisms could play adaptive and eventually pathogenic 
roles early in NAFLD progression. This idea fits well with 
the very dynamic nature of epitranscriptomic modifica-
tions, such as N6-methyladenosine, and their key role in the 
acute regulation of metabolic genes [106, 121]. Moreover, 
in line with our findings, a recent study found no significant 
relationship between the expression of N6-methyladeno-
sine regulators and liver fibrosis in NAFLD patients [22]. 
Growing evidence indicates that epigenetic changes, par-
ticularly histones and DNA methylation, can even persist 
after removal of harmful exposures such as food restriction 
or bad dietary habits, a phenomenon known as maladap-
tive epigenetic memory [21, 22, 57, 83]. Therefore, certain 
persistently dysregulated epigenetic genes could be respon-
sible for this long-term epigenetic memory contributing to 
disease progression. In this regard, in the NASH stage, the 
comparison between EpiG-low and EpiG-high revealed a 
clear stratification of patients with strong alterations in many 

Fig. 4   Heatmap of the expression of epitranscriptomic genes grouped 
in families and according to liver disease classification (normal 
liver, liver from obese patients, NAFL, and NASH). Expression fold 
change is compared with normal liver

◂
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Fig. 5   Heatmap showing the classification of patients according to 
their epigenetic gene expression signature. A NAFL and B NASH 
patients. Samples were grouped using hierarchical clustering based 
on similar expression profiles. Clusters of gene expression are clas-

sified as of low (EpiG-low), medium (EpiG-med), and high (EpiG-
high) expression. Fold change is established comparing with EpiG-
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important biological pathways mostly associated with lipid 
and steroid metabolism, ribosomal processes, inflammation, 
and fibrogenesis.

The magnitude of gene expression variation between dif-
ferent biological conditions does not necessarily relate to a 
more prominent functional role for a specific gene. Never-
theless, given the numerous epigenetic and epitranscriptomic 
genes differentially expressed between the EpiG and EpiT 
subclasses of patients, we performed an unbiassed analysis 
to identify those that contributed most to this stratification. 
Among the upregulated epigenetic genes were the reader 
and chromatin remodeller CHD3 [3], the methylated lysine 
reader DIDO1, the arginine methyltransferase PRMT2, 
and the lysine methyltransferase PRDM2, not previously 
described in NASH. Noteworthy, PRMT2 was recently 
reported to be induced and contribute to HCC tumorigenesis 
[39], DIDO1 has been involved in numerous types of tumors 
[16], and PRDM2 is a tumor suppressor epigenetically 
repressed in HCC [120]. Conversely, the acetylated histone 
reader TRIM24 was downregulated along fibrosis progres-
sion. Interestingly, TRIM24 is known to repress hepatic lipid 
accumulation and fibrosis in the murine liver [43]; however, 
its expression in human NAFLD has not been reported 
before. Among epitranscriptomic genes, we found QTRT​
, a queuine tRNA ribosyltransferase known to be induced 
in lung cancer [66], and TRUB2, a pseudouridine synthase 
essential for mitochondrial protein synthesis [6]. In this set 
of genes, we also identified TRMT112 which codes for a 

methyltransferase known to be induced in different cancers 
including HCC [112]. Most interestingly, TRMT112 was 
recently described to form an N6-methyladenosine meth-
yltransferase complex with METTL5, which we also found 
upregulated in NASH, that remodels fatty acid metabolism 
and promotes HCC tumorigenesis [84].

In this study, we have identified for the first time numer-
ous epigenetic and epitranscriptomic genes dysregulated 
along the course of human NAFLD. Interestingly, being 
NAFLD primarily a metabolic condition, the pathophysi-
ological roles described in the literature for most of these 
genes are related to carcinogenic processes, including 
HCC development [15, 29, 106, 123]. Indeed, NAFLD 
is an emerging risk factor for liver cancer, particularly in 
patients with type 2 diabetes [64]. While just changes in the 
expression of epigenetic and epitranscriptomic effectors are 
not likely to be tumorigenic per se, these alterations may 
indeed facilitate metabolic rewiring and pave the way for 
neoplastic transformation triggered by NAFLD-HCC driv-
ing mutations [85]. Supporting this notion, there is already 
experimental evidence showing that drug-mediated inhibi-
tion of epigenetic reprogramming can improve NASH and 
fibrosis progression [73] and prevent NASH-associated HCC 
development [51], illustrating the therapeutic potential of 
targeting these pathways. Importantly, when we analyzed 
the TCGA HCC cohort, we observed that patients within 
the EpiG-high subclass had significantly lower survival than 
those in the EpiG-med or EpiG-low subclasses. This finding 

.

.

Fig. 7   Pie charts showing the proportion of patients within each fibrosis stage (F0–F4) in A EpiG-low, B EpiG-medium, C EpiG-high, D EpiT-
low, E EpiT-medium, and F EpiT-high clusters
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suggests that the epigenetic genes comprised in a signature 
that defines advanced NAFLD stages may also be involved 
in HCC progression. Nevertheless, it would be interesting 
to test the predictive capacity of this EpiG signature in a 
selected cohort of NASH-related HCC patients.

Epigenetic and epitranscriptomic mechanisms are com-
plex and intertwined, and fluctuations in the expression of 
these effectors are likely to influence the course of NAFLD 
progression. However, gene expression regulation at the 
chromatin and epitranscriptomic levels involves another 

Ep
ig

en
et

ic
 g

en
e 

si
gn

at
ur

e

NAFL
ASH2L ATAD2BBRD1

KDM2B
KDM4CKDM6B

NCOA3

SIRT2
SMYD2

TP53BP1
TRIM28

0.00 0.02 0.04 0.06 0.08 0.10 0.12

NASH

0.00 0.02 0.04 0.06 0.08 0.10

ATAD2B
BRWD3

CHD3
DIDO1

HDAC1

KDM1A
KDM7A

MBD2

PRDM2
PRMT2

TRIM24 TRIM66

0.00 0.02 0.04 0.06 0.08 0.10 0.12

CBLL1
DCP2

LARP7 MEPCE

OSGEP
PUS3

RBM15
RPUSD4

TRMT2B
TRUB2

YTHDF1

0.02 0.04 0.06 0.08 0.10 0.12

BUD23

ELP3

METTL16
METTL2B

METTL3

NUDT7 NUDT8
OSGEPPUS3 QTRT1

TRMT112

TRUB2

0.00

Ep
itr

an
sc

rip
to

m
ic

 g
en

e 
si

gn
at

ur
e

BA

C D

Fig. 9   Most relevant genes contributing to the stratification of 
patients in the low- and high- EpiG and EpiT clusters in NAFL and 
NASH patients. A Most relevant epigenetic genes contributing to 
the stratification of NAFL patients in the EpiG-low and EpiG-high 
clusters. B Most relevant epigenetic genes contributing to the strati-
fication of NASH patients in the EpiG-low and EPIG-high clusters. 
C Most relevant epitranscriptomic genes contributing to the stratifi-

cation of NAFL patients in the EpiT-low and EpiT-high clusters. D 
Most relevant epitranscriptomic genes contributing to the stratifica-
tion of NASH patients in the EpiT-low and EpiT-high clusters. In 
the loading plot, the scale indicates the contribution to the separation 
between groups of each gene in a scale from 0 to 1. Selected genes 
explain at least 2% of the variability between low- and high- groups
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layer of complexity linked to the intrinsic enzymatic nature 
of these processes. As previously mentioned, epigenetic 
and epitranscriptomic writers and erasers utilize a range of 
metabolites as substrates and cofactors (Fig. 1C). For chro-
matin regulatory mechanisms, this interaction has proven 
so relevant that epigenetic processes can even act as sen-
sors of the activity of central metabolic pathways, includ-
ing pyruvate metabolism and the TCA cycle, acetyl-CoA, 
NAD+, FAD, S-adenosylmethionine (SAM)/OCM, and 
energetic metabolism (AMP/ATP), and in turn can regulate 
the expression of metabolism-related genes [13, 21, 58]. 
Indeed, the intracellular, and even intranuclear, levels of 
metabolites that behave as substrates or inhibitors of epi-
genetic and epitranscriptomic reactions, such as SAM and 
S-adenosylhomocysteine (SAH) for methylation/demethyla-
tion; α-ketoglutarate (α-KG), fumarate, and succinate for 
demethylation; and acetyl-CoA and NAD for acetylation/
deacetylation, strongly influence the homeostasis of these 
processes [13, 58]. Given the profound metabolic altera-
tions occurring in NAFLD, changes in the levels of these 
metabolites are likely to happen, albeit their direct measure-
ment in human liver tissues is quite challenging [40, 95]. 
Our transcriptomic analyses revealed profound alterations 
in the expression of genes coding for key enzymes in the 
metabolism of epigenetic and epitranscriptomic substrates 
and cofactors (Fig. 1D). These included acyl-CoA syn-
thetases involved in fatty acid metabolism and acetyl-CoA 
synthesis such as ACSL4, which is also markedly induced 
in HCC [89], the key TCA cycle enzyme citrate synthase 
(CS), and the gluconeogenic rate-limiting enzyme PCK1, 
also relevant for acetyl-CoA availability [115]. Interestingly, 
we also observed a marked reduction in the expression of 
SDHA, consistent with observations in murine NASH mod-
els [63] and with the increased levels of succinate found in 
human NASH liver tissues [95]. Importantly, succinate can 
compete with α-KG and inhibit enzymes involved in his-
tone, DNA, and RNA demethylation [13, 59]. Noteworthy, 
we found significant alterations in the expression of genes 
involved in folate metabolism and OCM. Low serum folate 
levels are consistently found in NAFLD patients; however, 

the expression of enzymes involved in folate metabolism has 
not been examined in the liver of these patients [24, 96]. We 
found induced and repressed levels of DHFR and FOLH1 
expression, respectively, in NASH patients. Impaired 
folate metabolism may affect the synthesis of SAM from 
homocysteine, and enzymes involved in the metabolism of 
this non-proteinogenic amino acid were also significantly 
affected in these patients [96]. Expression of BHMT, an 
enzyme that converts homocysteine back to methionine 
using betaine as a methyl donor, was significantly repressed 
in NASH, as was the expression of CHDH, the enzyme 
that synthesizes betaine from choline [80]. Choline defi-
ciency is well known to promote NASH in murine mod-
els, and choline metabolism is impaired at different levels 
in NASH patients [24]. Interestingly, BHMT knockout in 
mice results in liver SAM depletion along with NAFLD and 
HCC development [102]. We confirmed the downregula-
tion of GNMT and MAT1A expression in NASH [68, 77], 
key enzymes in the consumption and synthesis of SAM in 
the liver, respectively, and also found a marked reduction in 
ACHY expression, which codes for the enzyme in charge of 
metabolizing SAH into adenosine and homocysteine [80]. 
Experimental studies in genetically modified mice and diet-
induced NAFLD suggest that alterations in GNMT, MAT1A, 
and ACHY expression can contribute to NASH development 
in humans [72, 80, 87]. These transcriptional alterations in 
OCM-related genes can significantly modify on the hepato-
cellular SAM/SAH ratio, and therefore impact on numerous 
epigenetic and epitranscriptomic methylation reactions [13].

The changes in metabolic gene expression summarized 
above may affect the levels of key metabolites in epigenetic 
and epitranscriptomic reactions; however, there is little 
information available on the actual levels of these molecules 
in healthy liver and NAFLD. Emerging technologies such as 
spatial metabolomics will be crucial in providing this infor-
mation [94]. Nevertheless, recent molecular and genetic 
studies reveal that the function of many epigenetic enzymes 
extends beyond their catalytic activity [76]. This “epigenetic 
moonlighting” must be taken into account when evaluating 
the contribution of these effectors to the pathogenesis of 
NAFLD, and also at the time of designing potential thera-
peutic interventions which perhaps would need also to look 
beyond their enzymatic inhibition [23].

In this study, we have provided a comprehensive overview 
of the expression of epigenetic and epitranscriptomic genes 
in NAFLD. Of course, it will be important to validate these 
transcriptional changes at the protein level, and to identify 
the key target genes downstream these epi-regulators. Like-
wise, it will be very interesting to understand the upstream 
mechanisms that control the expression of epigenetic and 
epitranscriptomic genes in the context of NAFLD. These 
are likely to be multifarious, and involve signaling pathways 
associated with the prevalent pro-inflammatory and lipotoxic 

Fig. 10   Transcriptomic analysis of genes encoding enzymes involved 
in the syhthesis and conversion of substrates and cofactors of epige-
netic and epitranscriptomic enzymatic reactions in the integrated tran-
scriptomic dataset. A Heatmap of the expression of metabolic genes 
according to liver disease classification. Expression fold change is 
relative to normal liver. B and C Expression levels of the indicated 
metabolic genes genes in NAFL and NASH patients relative to nor-
mal liver tissues. Values are expressed as the trimmed mean of 
M-values (TMM) and transformed to log2 fold change versus nor-
mal liver. ACS-S/M, short- and medium-chain acyl-coA synthetase; 
ACS-L/VL, long- and very long-chain acyl-coA synthetase; OCM, 
one-carbon metabolism; TCA, tricarboxylic acid cycle. p-values were 
obtained from the Kruskal-Wallis test and adjusted by FDR Benja-
mini and Hochberg correction
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environment that characterizes NAFLD. Interestingly, the 
presence of the PNPLA3 I148M variant, strongly associated 
with NASH progression [27], has been recently reported to 
trigger potent pro-inflammatory signaling in cultured hepat-
ocytes [82]. Nonetheless, our work may help in the elucida-
tion of the pathogenic mechanisms of this complex disease, 
and also for the identification of pathways contributing to 
HCC development in this condition.
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