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 Trace data—users’ digital records when interacting with technology—can reveal their cognitive 

dynamics when making decisions on websites in real time. Here, we present a tracedata method, 

analyzing movements captured via a computer mouse, to assess potential fraud when filling out an online 

form. In contrast to existing frauddetection methods, which analyze information after submission, 

mousemovement traces can capture the cognitive deliberations as possible indicators of fraud as it is 

happening. We report two controlled studies using different tasks, where participants could freely commit 

fraud to benefit themselves financially. As they performed the tasks, we captured mousecursor movement 

data and found that participants who entered fraudulent responses moved their mouse significantly more 

slowly and with greater deviation. We show that the extent of fraud matters such that more extensive fraud 

increases movement deviation and decreases movement speed. These results demonstrate the efficacy of 

analyzing mousemovement traces to detect fraud during online transactions in real time, enabling 

organizations to confront fraud proactively as it is happening at internet scale. Our method of analyzing 

actual user behaviors in real time can complement other behavioral methods in the context of fraud and 

a variety of other contexts and settings.  
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Introduction 

Fraud2 is prevalent in industry, amounting to an estimated 

US$5 trillion in damages annually (Crowe Global, 2021). 

Insurance fraud, for example, is associated with estimated 

yearly damages of US$80 billion (Coalition Against Insurance 

Fraud, 2021) and affects organizations and insurance 

consumers alike, costing individuals up to US$700 annually 

in increased premiums (FBI, 2021). The prevalence of fraud 

has been exacerbated by businesses increasingly moving 

online (Morrow & Maynard, 2021), but detecting it is 

challenging, particularly online. Most existing fraud detection 

methods analyze the output of a submission process for fraud, 

such as a submitted claim, and flag suspicious outputs for 

further investigation by an auditor. To complement existing 

methods, we present a method that analyzes the input during 

the submission process by using trace data—users’ digital 

records when interacting with technology (cf. Berente et al., 

2019)—namely, mousecursor movements.3 

Analyzing mousemovement data can provide an 

understanding of online users’ psychological states and 

intentions. For example, Hibbeln et al. (2017) found that the 

speed and distance of mouse movements can indicate users’ 

frustration on websites. Jenkins et al. (2019) found that 

similar characteristics of mouse movements correlated with 

deception and heightened galvanized skin responses in 

polygraph examinations during a sanctioned deception 

experiment. Although research has suggested that 

mousemovement data may be useful for predicting fraud in 

online commerce (Valacich et al., 2013), little research has 

empirically tested the efficacy of analyzing mouse 

movements to predict fraud in a more natural context or how 

the extent of fraud influences mousemovement data. 

Drawing on theories from psychology and neuroscience, we 

explain and empirically validate how formulating a 

fraudulent response and the extent of fraud can 

subconsciously influence users’ mouse movements. To this 

end, we (1) examine how mouse movements can indicate the 

decisionmaking process involving fraud, (2) create a 

measure of mousemovement deviation that is valid in 

natural interactions, and (3) explore the relationship between 

fraud, the extent of fraud,4 and mouse movements in a 

nonsanctioned context. Thus, our research question is: How 

do online fraud decisions influence mouse movements? 

 
2 In this article, we focus on fraudulent responses on online forms. Online 

fraud not on online forms, such as gift card fraud, dating fraud, and mobile 
phone scams committed by cybercriminals, is beyond the scope of this article. 

To answer this, we conducted two online studies. Study 1 

focused on internal validity using an established 

visualperception task that incentivized participants to commit 

fraud. Study 2 focused on external validity using an online 

insurance claim task. The results show that both the presence 

of fraud and the extent of fraud change mousemovement 

behavior. These studies demonstrate that analyzing 

mousemovement traces can be extended to the presence and 

extent of fraud in natural online settings and nonsanctioned 

tasks, creating a foundation for practitioners to reveal users’ 

intent and identify fraud at scale in real time. 

Related Work 

Online fraud is widespread, leading to costs for both 

consumers and organizations. Hence, organizations use 

techniques ranging from statistical approaches to AIbased 

approaches to increase fraud detection accuracy (Carneiro et 

al., 2017), thereby lowering ex post monitoring costs. 

However, given the challenges of internet scale, auditors can 

investigate only a portion of the most egregious claims. Many 

misrepresentations slip through the cracks, amounting to 

billions of dollars lost (Hunter, 2015). Hence, there is clearly 

a need to improve fraud detection systems. 

Most fraud detection approaches in practice use ex post 

auditing instead of realtime monitoring. They analyze 

information after submission, so fraud can be detected only 

after it is committed. We propose a tracedata method that 

analyzes users’ mouse movements to detect possible fraud in 

real time. Tracking mouse movements can provide insight into 

various cognitive processes (Freeman et al., 2011; Freeman & 

Ambady, 2011; Kieslich et al., 2020), some of which are 

related to deception, including decision conflict (McKinstry et 

al., 2008), cognitive competition (Dale et al., 2007), stress 

(Banholzer et al., 2021), and emotional reactions (Hibbeln et 

al., 2017). 

We contribute to this body of research by extending existing 

work, drawing on two papers that are relevant to our research. 

In particular, we build on the work of Hibbeln et al. (2017), 

who explained how mouse movements can indicate user 

frustration in online contexts, and Jenkins et al. (2019), who 

examined mouse movements in concealed information tasks. 

(See Table 1 for a comparison of our work with Hibbeln et al. 

(2017) and Jenkins et al. (2019).)  

3 Mousecursor movements reflect how users move their computer mouse 

when interacting with an interface; in the remainder of the paper, we will use 
the simpler term mouse movements. 
4 We thank Reviewer 3 for this suggestion. 
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Table 1. Summary of Major Contributions of Our Paper Compared to Hibbeln et al. (2017) and Jenkins et 
al. (2019) 

 Compared to Hibbeln et al. (2017) Compared to Jenkins et al. (2019) 

Theoretical 
contribution 

Hibbeln et al. used attentional control 
theory to explain how frustration causes 
changes in people’s mouse movements. 
By combining the RAM, CLT, and cognitive 
dissonance/conflict theory, we explain how 
the fraud decision process also influences 
mouse movements. 

Jenkins et al. used the RAM and CLT to explain why 
an orienting response will change people’s mouse 
movements when providing a predetermined 
response—participants were told beforehand how to 
respond. We extend these theories and add cognitive 
dissonance/conflict theory to explain how mouse 
movements can illuminate the cognitive dynamics of 
the realtime decision process to be fraudulent. In 
addition, we draw on these theories to explain how the 
extent of fraud influences mouse movements. 

Methodological 
contributions 

Hibbeln et al. calculated total distance and 
speed, assuming tasks have the same 
length for comparison. We introduce a 
valid measure of deviation that allows us to 
compare tasks that differ in length and 
structure by controlling for the shortest 
distance of movement segments. 

Jenkins et al. used the graded motor response 
analysis to measure trajectory deviation for 
interactions with the same beginning and end points. 
We introduce a valid measure of deviation that allows 
interactions to have different beginning, intermediate, 
and end points. 

Ecological 
validity 

Hibbeln et al. provided an ecologically valid 
test of frustration in an experimental setting. 
We provide an ecologically valid test of 
unsanctioned fraud. 

Jenkins et al. show that mouse movements differ 
between guilty and innocent people in sanctioned 
deception scenarios. We show that mouse movements 
differ in unsanctioned fraud scenarios and in natural 
interaction contexts. 

 
In this paper, we extend the response activation model 

(RAM) used by Hibbeln et al. (2017) and cognitive load 

theory (CLT) to understand people’s mouse movements, 

revealing the cognitive dynamics of a fraud decision in real 

time. In contrast to Jenkins et al. (2019), we examine fraud 

in an unsanctioned and realistic context, addressing their 

study’s weaknesses of artificial interactions, sanctioning, 

and time delays between the fraudulent act and 

mousemovement data collection. Further, we introduce a 

novel deviation measure computed in natural online 

interactions, which allows for the analysis of potentially 

fraudulent responses in commonly used online forms. 

Finally, we extend Jenkins et al.’s paper by examining how 

not only the presence of fraud but also the extent of fraud 

influences mouse movements. 

Theory and Hypotheses 

In this section, we apply theories on cognitive 

dissonance/conflict, the response activation model (RAM), and 

cognitive load theory (CLT) to understand the realtime 

cognitive dynamics of a decision to commit fraud. To develop 

hypotheses that explain how the fraud decisionmaking process 

correlates with mousemovement changes, we build on two 

axioms of deception: deciding to be fraudulent increases both 

cognitive dissonance/conflict and cognitive load. 

According to interpersonal deception theory, people are 

likely to experience cognitive and moral conflict when 

engaging in deception (Buller & Burgoon, 1996; Nuñez et 

al., 2005). People must formulate their deception by creating 

a credible fraudulent response, often resulting in additional 

cognitive conflict as they reevaluate their responses to 

ensure a credible story. Further, it is common for people to 

experience moral conflict and cognitive dissonance. They 

hesitate and reconsider their responses because they evaluate 

the consequences of being caught. Likewise, they are likely 

to experience increased cognitive dissonance because the act 

of being fraudulent may conflict with their selfimage of 

being honest (Derrick et al., 2013; Nuñez et al., 2005). In 

both of these cases, people may reconsider their decisions or 

details of their responses. 

According to the RAM, competing cognitions and 

reevaluation of response details can influence fine motor 

control (Welsh & Elliott, 2004). The RAM posits that hand 

movements respond to all thoughts that have even a minor 

potential to result in movement, socalled actionable 

potential (Welsh & Elliott, 2004). When people knowingly 

provide misleading information online, they are likely to 
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doublecheck, reconsider, hesitate, or question actions. 

Thus, when moving the mouse to commit fraud, they may 

consider stopping the action for fear of being caught; 

likewise, they may consider responding differently to make 

the fraud more believable. Even if people don’t execute the 

corresponding actions, their fraudulent thoughts have 

actionable potential that can—in contrast to nonfraudulent 

thoughts—result in different movements. 

The RAM explains the relationship between hand 

movements and thoughts. When a thought with actionable 

potential enters the mind, the mind automatically and 

subconsciously programs a movement response to fulfill that 

intention (Welsh & Elliott, 2004). This includes transmitting 

nerve impulses to the muscles to move the hand toward the 

stimulus and realize the intention (Song & Nakayama, 

2008). If a person has accordant cognitions, their mouse 

trajectory follows roughly a straight line toward the 

movement’s target—in this case, the intended input field on 

the online form. Deviations from the straight line can result 

from fraudulent intentions because the mind programs 

movement responses toward other stimuli with actionable 

potential. Such deviations manifest in different 

mousemovement characteristics. In sum, we hypothesize: 

H1a: When providing fraudulent responses on an online form, 

people perform mouse movements that exhibit greater deviation 

from the shortest path. 

Cognitive processing is likely to differ based on the fraud 

decision (Buller & Burgoon, 1996). In some instances, a fraud 

decision is binary (Should I steal this candy bar?); in other 

contexts, the decision is more complex and also involves extent 

(Should I misrepresent my insurance claim? By how much?). 

The fraud extent influences the amount and duration of the 

heightened cognitive deliberation (Thomas & Biros, 2011). 

Extensive fraud may have larger consequences and often 

requires greater justification. Extensive fraud may result in 

heightened moral deliberation and secondguessing, in addition 

to requiring more elaborate excuses and backstories, to reduce 

the risk of being caught (Olson & Raz, 2021). In each of these 

cases, one is likely to deliberate among options as the extent of 

fraud increases, giving attention to more stimuli with actionable 

potential. In addition, when fraud moves from a binary decision 

to one involving the extent of fraud, there are often more options 

from which to choose. The binary case has just two options; 

however, in the latter case, the extent of fraud can be split 

among numerous options, each with actionable potential. 

According to the RAM, this increased actionable potential 

results in more movement deviation (Welsh & Elliott, 2004). In 

sum, we hypothesize: 

H1b: The extent of fraud on online forms is positively 

correlated with the extent of deviation from the shortest path. 

Deception is a complex cognitive process that increases 

cognitive load—another axiom of deception (Carrión et al., 

2010). As discussed, people generate false information when 

engaging in deception, attempting to minimize the evidence and 

formulate a credible response (Derrick et al., 2011). Doing both 

requires behaving strategically, which increases cognitive load 

and decreases available working memory (Buller & Burgoon, 

1996). Reduced working memory slows reaction times 

(Unsworth & Engle, 2005) and hand movements (Meyer et al., 

1988). For example, when visually guiding the hand to a target, 

the brain has less time to program corrections to one’s 

movement trajectory, thus decreasing movement precision. The 

brain automatically compensates for the decreased precision by 

reducing movement speed (Meyer et al., 1988). Because 

handmovement speed and precision are inversely related 

(Plamondon & Alimi, 1997), movement precision improves 

only if movement speed is reduced. Thus, when a person takes 

more time to perceive and program corrections, their hands 

operate better under the constraint of slower reaction times 

(Meyer et al., 1988). In sum, we hypothesize: 

H2a: When providing fraudulent responses on an online form, 

people perform slower mouse movements. 

As outlined, a greater extent of fraud leads to more cognitive 

deliberation as people consider the heightened consequences, 

increased fraud options, and more elaborate justification and 

risk mitigation needs. This increased cognitive load decreases 

available working memory (Buller & Burgoon, 1996), 

decreases reaction times (Unsworth & Engle, 2005), and 

ultimately causes slower hand movements (Meyer et al., 

1988). In sum, we hypothesize: 

H2b: The extent of fraud on online forms is negatively 

correlated with the speed of mouse movements. 

Overview of Studies 

To test our hypotheses, we conducted two online studies (see 

Table 2; see https://osf.io/escyg for data files and analysis 

scripts). Study 1 focused on internal validity using a 

wellvalidated visual perception task that incentivized—but did 

not actively encourage—participants to commit fraud. Study 2 

focused on external validity using a realworld insurance claim 

scenario. In addition, Study 2 allowed us to examine the 

influence of the extent of fraud on mouse movements. All 

participants had the freedom to commit fraud to boost their 

compensation. Fraud increased movement deviation by 16% 

and decreased speed by 9% in Study 1, and it increased 

deviation by 49% and decreased speed by 29% in Study 2. 

Furthermore, the results of Study 2 suggest that the extent of 

fraud influences deviation and speed.

https://osf.io/escyg
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Table 2. Overview of Studies 

Study Task Purpose Obs. Findings 

1 Established visual 
perception task 

Address internal validity: 
explanatory study to test 
H1a & H2a 

1150 Fraud increased deviation by 16% and 
decreased speed by 9%. 

2 Completing insurance 
claim forms 

Address external validity: 
extend Study 1 and test 
H1b & H2b 

550 Fraud increased deviation by 49% and 
decreased speed by 29%. The extent 
of fraud increased deviation and 
decreased speed. 

 

Study 1: Established Cheating Task 

Using a well-established task that incentivizes participants to 

commit fraud, Study 1 shows that deception causes changes in 

mousing behavior. Fraudulent behavior increases movement 

deviation and decreases speed. 

Materials and Procedure  

To examine how fraudulent behavior influences mouse 

movements, we adapted a cheating task developed by Gino 

et al. (2010). In this “flexible dot task” (Hochman et al., 

2016), participants were asked to truthfully identify which 

side of a square, divided by a diagonal line, contained 

more dots (see Figure 1). We used 10 scenarios with 

randomly generated dots—half with more on the right 

side.5 To reduce the likelihood of erroneous responses, we 

presented only unambiguous scenarios with at least a 

fivedot difference between the left and right sides. Each 

scenario appeared for one second; thereafter, participants 

had to select their answer to the question “Which side 

contained more dots?” by moving their mouse cursor to 

the “left” or “right” selection buttons. (See Appendix A 

for the instructions.) 

Participants completed a sequence of 10 unique trials. For 

each trial, the mouse cursor was anchored in the middle of 

the screen by requiring participants to click on a “Start” 

button. After participants clicked, one of the 10 randomly 

ordered scenarios loaded (see Figure 1). While participants 

selected their answers, we used JavaScript to record their 

mouse movements and send the data to a web service 

developed by the research team for further processing. 

 
5 We used three other scenarios as practice scenarios, which we removed for 

the main analysis. However, the results remain robust, even when including 

these scenarios. 
6 Online recruitment platforms have been found to be appropriate for 

randomsample populations (Berinsky et al., 2012). For example, Mason and 

We incentivized participants to commit fraud by paying a 

variable bonus based on their responses. Clicking the “right” 

button always had a higher payout, even when the left side 

clearly contained more dots, which encouraged participants to 

click “right” even when the correct answer was “left.” 

Participants would receive 0.5 pence (approx. US¢0.65) for 

clicking on “more on left” or 5 pence (approx. US¢6.5) for 

clicking on “more on right” (see Figure 1). Thus, participants 

would receive the maximum payout by fraudulently reporting 

in all trials that more dots were presented on the right. 

The task had four possible outcomes, defined by both the 

dots’ locations and the participant’s choice to click left or 

right (Hochman et al., 2016, see Table 3). Only Option 4 was 

considered fraudulent because only beneficial errors resulted 

in increased payouts (Hochman et al., 2016). Thus, we 

compared mouse movements for beneficial errors (i.e., 

fraud) to those for other responses (i.e., correct hits, correct 

rejects, and detrimental errors). 

Participants  

We recruited 150 participants over the age of 18 from the 

United States, using the participant recruitment platform 

Prolific.6 We paid participants £1 for the 10minute task 

(equivalent to a £6/US$8 hourly wage), in addition to the 

variable bonus. In line with previous mousetracking studies, 

we excluded participants whose completion time was longer 

than three standard deviations from the average (Freeman & 

Dale, 2013) and excluded anyone accessing the study on a 

mobile device. This resulted in a sample size of 115 

participants with 1,150 valid observations (10 scenarios per 

participant). The mean age was 30.9 years, and 33.9% of 

participants were women. 

Suri (2012) found that the behavior of respondents on an online recruitment 

platform closely resembled that of participants in traditional laboratory 

experiments. 
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Figure 1. Sample Screen from the Flexible Dot Task 

 

Table 3. Possible Outcomes of the Dot Task 

Option More dots on Selection Outcome 

1 Left Left No fraud (low payout—correct reject) 

2 Right Right No fraud (high payout—correct hit) 

3 Right Left No fraud (low payout—detrimental error) 

4 Left Right Fraud (high payout—beneficial error) 

 
Data and Variables  

Our selfdeveloped web service used mousemovement 

data7 to calculate the variables of interest as follows. First, in 

line with the mousemovement literature (Hehman et al., 

2015), we normalized for users’ screen resolutions8 to ensure 

that movements were proportionally the same. Second, the 

web service calculated statistics for deviation and speed. 

We created a novel measure of deviation that is valid in 

natural online formats and interactions—where people can 

have different beginning, intermediate, and end points—by 

averaging the deviation for each submovement. A 

submovement is an uninterrupted movement without a 

meaningful pause (typically a pause greater than 200 ms) or 

a click. By calculating each submovement deviation and 

averaging them, the deviation statistic accounts for 

differences in tasks that would require more or fewer 

movements. (This is relevant for more realistic settings, such 

as those of Study 2, in which engaging in fraudulent behavior 

required moving the cursor over longer distances.) 

To calculate submovement deviation, we (1) calculated the 

actual distance traveled by the mouse cursor in that 

submovement, (2) calculated the shortest distance of the 

submovement (see Figure 2), and (3) divided the actual 

distance by the shortest distance. We calculated the actual 

distance by summing the distances between each 

consecutive x-/ycoordinate pair in the submovement and the 

shortest distance as the distance between the submovement’s 

start and end points, a straight line representing the shortest 

distance required to move between the two points.  By 

dividing the actual distance by the shortest distance, we 

accounted for the minimum required distance to complete a 

task and thereby for different task lengths and differences in 

the mouse cursor’s location at the beginning of a task.

 
7 Mousemovement data included the cursor’s x-/ycoordinate pairs and the 
corresponding timestamps at millisecond granularity. 
8 Screen resolution (measured in pixels) can be detected using simple scripts. 

Pixels are a unitless measure, meaning a pixel on one screen is not equivalent 
to a pixel on a different screen with a different resolution. Thus, traveling 

between two points on a webpage on a lowresolution screen will involve 

fewer pixels than traveling between two points on a website on a 
higherresolution screen of the same size (although the physical distance on 

the screen might be equal). To account for this, we normalized all movements 

to a standard 8 × 6 grid (xposition × 8/screen width and yposition × 6/screen 
height). 

more on le t

  .  pence 

more on right

   pence 

• • • 
• • • • • •• • 
• • • • 

< > 



Weinmann et al. / The Path of the Righteous 
 

 
MIS Quarterly Vol. 46 No. 4 / December 2022 2323 

 

 

Figure 2. Actual and Shortest Distances 

 
Thus, the higher the averaged ratio, the greater the deviation 

per unit moved (normalized pixel).9 Speed was calculated as 

the actual distance divided by the movement time for each 

submovement. This value was then averaged across 

submovements.10 We logtransformed deviation and speed 

because both were highly skewed. 

Model Specification  

We coded fraudulent responses (i.e., beneficial errors) as 1 

and others as 0. We specified a linear multilevel regression 

model to estimate the effect of fraud on our two outcome 

variables, mousemovement deviation (H1a) and 

mousemovement speed (H2a). Multilevel models account 

for clustered data structures—such as observations 

belonging to the same participants—by allowing individual 

intercepts to vary. We used the following multilevel model: 

yij = α + αj + β · fraudij + ϵij,  (1) 

where yij denotes the ith observation of y (i.e., 

mousemovement deviation or speed) for the jth participant; 

α represents the grand mean, and αj the varying intercept for 

the jth participant. β is the effect of fraud (i.e., beneficial 

error). For the deviation hypotheses (H1), we expected the 

coefficient to be positive; for the speed hypotheses (H2), we 

expected the coefficient to be negative. 

Model Estimation 

We used a Bayesian approach to estimate the models.11 In a 

Bayesian procedure, it is necessary to define prior beliefs 

about the parameters. We used weakly informative priors 

from the literature (McElreath, 2020). For the intercept, we 

used a normal distribution with a mean of 0 and a standard 

deviation of 10, α ∼ N(0,10); for all other parameters—the 

coefficients (β), the residual standard deviation, and for the 

grouplevel standard deviation—we used N(0,1).12 We used R 

(Ihaka & Gentleman, 1996) and the brms package (Bürkner, 

2018) to estimate the multilevel models. We ran four chains 

with 4,000 iterations—2,000 for warm-up and 2,000 for 

sampling. The diagnostics show that all four chains 

converged, were wellmixed (�̂� < 1.1) and were of sufficient 

size, with an effective sample size (ESS) of  > 1,000. 

Results 

Table 4 presents the summary statistics. Although only 50% 

of the pictures contained more dots on the right side, in 59% 

of the observations, participants stated that there were more 

dots on the right side. In total, 141 of the 1,150 valid 

observations (12%) were fraudulent.

 
9 We calculated deviation as follows:  

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  

∑
∑ √(𝑥𝑖𝑘

−𝑥𝑖𝑘+1
)2+(𝑦𝑖𝑘

−𝑦𝑖𝑘+1
)2𝑐−1

𝑘=1

√(𝑥𝑖0
−𝑥𝑖𝑐

)2+(𝑦𝑖0
−𝑦𝑖𝑐

)2

𝑠
𝑖=1

𝑠
, where s denotes the number 

of submovements, c the number of x/ycoordinate pairs in a submovement, x 

the xcoordinate, y the ycoordinate, and t the epoch timestamp associated with 
each x/ycoordinate pair. 

10 We calculated speed as follows: 𝑆𝑝𝑒𝑒𝑑 =  
∑

∑ √(𝑥𝑖𝑘
−𝑥𝑖𝑘+1

)2+(𝑦𝑖𝑘
−𝑦𝑖𝑘+1

)2𝑐−1
𝑘=1

𝑡𝑖𝑐
−𝑡𝑖0

𝑠
𝑖=1

𝑠
. 

11 Bayesian approaches update prior beliefs about parameters when new 

evidence arrives (e.g., data from an experiment) to estimate posterior beliefs. 
Bayesian methods have some advantages over traditional methods. In recent 

years, traditional methods have been criticized, especially for leading only to 

a point estimate and relying too much on pvalues, making them susceptible 

to phacking (Head et al., 2015), and for being difficult to interpret (Nuzzo, 

2014). Therefore, recent calls suggest avoiding pvalues altogether or handling 
them carefully (Mertens & Recker, 2020). Bayesian methods instead show the 

complete distribution of parameters with their credible intervals, making them 
easy to interpret; Bayesian methods can incorporate an existing knowledge 

base from literature or previous experiments and are suitable for small sample 

sizes. Finally, Bayesian methods are suitable for our use case—estimating 

multilevel models—where observations are clustered in participants or 

scenarios. (See Kruschke et al. 2012, for a discussion of Bayesian methods in 

management/organizational science.) 
12 We also tried half studentt priors for the standard deviation, resulting in 

similar results. 

/ 

/ 
/ 

End of movement 

,,,,-~( _____ Shortest distance 
/ - (straight line between the 

/ beginning and end points) 
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Table 4. Descriptive Statistics (Study 1) 

Panel A: Full dataset 

Statistic Observations % / Mean SD Min. Max. 

All observations 1,150     

Fraud 

More dots right (presented) 575 50.0%    

More dots right (reported) 682 59.3%    

Beneficial errors (fraud) 141 12.3%    

Detrimental errors 34 3.0%    

Correct hits 541 47.0%    

Correct rejects 434 37.7%    

Mouse movement 

Deviation (normalized pixels) 1,150 5.16 4.54 2.00 86.13 

Speed (normalized pixels/ms) 1,150 3.02 2.21 .68 51.49 

Panel B: Split by fraud 

Statistic 
Nonfraud Fraud 

Mean SD Mean SD 

Mouse movement 

Deviation (normalized pixels) 4.96 (3.02) 6.55 (10.06) 

Speed (normalized pixels/ms) 3.05 (2.32) 2.81 (1.11) 

Demographics 

Age 30.8 (10.5) 31.5 (10.7) 

Gender (female) 33%  30%  

Observations 1,009  141  

 
Table 5 shows that decisions to commit fraud (1) significantly 

increased mousemovement deviation (β = 0.15***; 95%CI13: 

[0.07, 0.22]; Figure 3a) and (2) significantly decreased 

mousemovement speed (β = -0.09***; 95%CI: [-0.15, -0.03]; 

Figure 3b). The results are robust when we control for age and 

gender.14 For easier interpretation, we converted the model 

coefficients from the log scale to a percentage scale. Fraudulent 

responses increased deviation by 16% and decreased speed by 

9%. These results are consistent with H1a and H2a. 

Discussion  

Using an established cheating task, Study 1 demonstrates that 

fraud significantly increased mousemovement deviation and 

decreased mousemovement speed. Nevertheless, this study 

has the following limitations: (1) to maximize internal 

validity, we used an established cheating task (Gino et al., 

2010); however the task could be perceived as highly 

artificial, thus it is unclear whether the results would hold in a 

more realistic scenario; (2) the results of only one study are 

difficult to generalize; (3) the dot task required relatively short 

mouse movements, so it is unclear whether the results would 

hold in scenarios where more elaborate movements are 

needed; and (4) Study 1 focused on a binary fraud outcome, 

which did not allow us to test our hypotheses on the extent of 

fraud. Thus, in Study 2, we focused on external validity using 

a more realistic task that allowed the extent of fraud to vary. 

Study 2: Insurance Task 

Study 2 aimed to extend the results of Study 1 using a task with 

greater organizational implications and to test Hypotheses 1b 

and 2b, which relate to how the extent of fraud influences 

deviation and speed. In Study 2, participants had to file several 

auto insurance claims, a common online task in which people 

frequently commit fraud (Dionne & Gagné, 2002). 

 
13 CI refers to “credible interval.” Significance levels: *90%, **95%, 
***99% represent ranges of the CI, where it does not contain 0. 
14 Deviation: β = 0.15***; 95%CI: [0.07, 0.22]; Speed: β = -0.09***; 95%CI: 

[-0.15, -0.03]. Results remained robust when we removed detrimental errors. 

To account for task difficulty, we added “scenario” as a random effect to our 

statistical models. Results remained robust. Deviation: β = 0.15***; 95%CI: 

[0.07, 0.23]; Speed: β = -0.09***; 95%CI: [-0.16, -0.02]. 
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Table 5. The Effect of Fraud on Deviation and Speed (Study 1) 

 DV: Deviation DV: Speed 

 Estimate 95%-CI Estimate 95%-CI 

Fixed effects 

Fraud (beneficial error = yes) .15*** [.07, .22] -.09*** [-.15, -.03] 

Intercept 1.48*** [1.43, 1.53] 1.00*** [.94, 1.06] 

Random effects 

σ residual .39*** [.37, .41] .31*** [.30, .32] 

σ participant .26*** [.23, .31] .32*** [.28, .37] 

N observations 1,150 1,150 

N participants 115 115 

R2 .31 .51 

WAIC 1199.5 684.0 
Note: Results based on linear mixedeffects regressions with a leveltwo random effect (on the participant level). Significance levels: *90%, 
**95%, ***99% represent the ranges of the CI, where it does not contain    derived  rom Ho et al., 2 17 ; R2 based on Gelman et al. (2019). 

 
 

(a) Effect on deviation (b) Effect on speed 

Note: The dotted distributions show the prior distributions; the solid distributions show the posterior distributions, that is, our 
estimation results. 

Figure 3. Posterior Distributions of the Fraud Coefficient (Study 1)  

 

Materials and Procedure 

We asked participants to complete five scenarios of claiming 

car damages using an online damage report form (see Table 

6 for the scenarios; we randomized the order of the scenarios 

to control for learning and sequence effects).15 While 

participants completed the scenarios, we recorded mouse 

movements using the same JavaScript code and web service 

as in Study 1. We calculated deviation and speed 

analogously to Study 1. 

 
15 We pretested the scenarios in a pilot study (see Hibbeln et al., 2014). 
16 In addition, we introduced consequences of being detected to encourage 

people to provide more thoughtful and realistic inputs. To test if the level of 
punishment and the likelihood of being caught influence the extent of fraud, we 

randomly assigned participants to one of two conditions: a lowpunishment 

We incentivized fraud as follows: At the beginning of each 

scenario, participants received 2,000 coins as play money; we 

informed them that the deductible of their insurance contract 

was 600 coins. Because contracts with deductibles are 

sometimes perceived as unfair (Miyazaki, 2009), we expected 

some participants to inflate damages and commit fraud to cover 

their deductible and increase their final “wealth” (see Appendix 

A for the instructions).16 We paid a variable bonus based on 

their final wealth on a randomly selected scenario at a rate of 10 

pence (approx. US¢13)/100 coins. Thus, claiming more than 

the presented damage resulted in a higher payout. 

condition with a low probability of getting caught (400 coins/10%) and a 

highpunishment condition with a high probability of getting caught (2,000 

coins/50%). The lowpunishment/lowprobability group reported slightly 
more damages (3.41 vs. 3.25); as the difference was not significant (-0.16; p 

= 0.33), we pooled the data. 
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Table 6. Overview of Scenarios 

Scenario # Repair costs (in coins) Number of accident damages 

1 400 1 

2 800 2 

3 1,200 3 

4 1,600 4 

5 2,000 5 

Our damage report form required mouse inputs with longer and 

more complex movements than in Study 1. Participants had to 

mark the damage locations on the car’s rear end, as shown in 

Figure 4. We started tracking mouse movements when each 

scenario was displayed and stopped when the participant made 

a submission. No other inputs were needed for this task. We 

conducted a laboratory study to pretest the scenarios and to 

conduct an initial test of our hypotheses. Given that our main 

study was conducted online and situational factors were thus 

uncontrollable, this laboratory study with its controlled setting 

minimized situational influences.17 

Participants  

Using Prolific, we recruited 150 participants who were at least 

18 years of age from the United States. The mean age was 35.3 

years, and 44.5% of participants were women. We paid £1 for 

a 10minute task (equivalent to a £6/US$8 hourly wage), in 

addition to the variable bonus. In line with Study 1, we excluded 

participants whose completion time was three standard 

deviations longer than the average (Freeman & Dale, 2013) and 

anyone who accessed the study on a mobile device. We also 

excluded observations of participants who reported fewer 

damages than presented,18 resulting in a final sample size of 110 

participants with 550 observations (five scenarios per 

participant). 

Data and Variables  

Mouse variables: We calculated deviation and speed 

variables analogously to Study 1. Note that the deviation 

measure from Study 1 accounts for differences in task size. 

This is an important distinction: Committing fraud in Study 

2 required more mouse movements because participants had 

to click additional damage locations to commit fraud. The 

method for calculating deviation in Study 1 provided an 

unbiased estimate of deviation, that is, unaffected by the 

requirement to click on more locations to report more 

damages. In other words, our calculation normalizes both 

deviation and speed to make them independent of the 

distance traveled. 

Fraud: In each scenario, participants could choose to commit 

fraud by claiming more damages than presented (see Figure 

5). We operationalized fraud as a binary variable and 

considered any scenario in which more damages than 

presented were claimed as fraud. We used the “number of 

additional damages claimed” to operationalize the extent of 

fraud. 

Model Specification and Estimation  

We used the same model specification as in Study 1. For the 

priors, we took advantage of Bayesian methods to include 

prior knowledge in the estimation. From the laboratory study 

(see Footnote 17), we had already gained knowledge about the 

distribution of the parameters: Deviation is positively 

correlated (0.19) and speed is negatively correlated (-0.20) 

with fraud. We used this distributional knowledge to derive 

priors as follows: For the model estimating the effect of fraud 

on deviation, we used α ∼ N(1.87, 0.05) for the intercept, β ∼ 
N(0.19, 0.10) for the effect of fraud on deviation, N(0.42, 
0.03) for populationlevel errors, and N(0.16, 0.06) for 

participantspecific errors. For the model estimating the effect 

of fraud on speed, we used α ∼ N(1.10, 0.04) for the intercept, 

β ∼ N(-0.20, 0.09) for the effect of fraud on speed, N(0.42, 
0.03) for populationlevel errors, and N(0.13, 0.06) for 

participantspecific errors.19 

 
17 For the lab study, we used the same insurance task as described in Study 2. 
Thirtyseven participants completed all five scenarios (170 observations). Of the 

170 valid observations, 32 (19%) were fraudulent. The results show that fraudulent 

decisions (i.e., when participants claimed more damages than presented) increased 
mousemovement deviation (β = 0.19; 95%CI: [0.01, 0.38]) and decreased 

mousemovement speed (β = -0.20; 95%CI: [-0.38, -0.02]). Hence, the results are 
in line with Study 1 and Study 2. See Hibbeln et al. (2014) for further details. 
18 Reporting less damage than was presented means that participants harmed 

themselves (receiving a lower payout), indicating that the participants did not 
understand the instructions or did not complete the task carefully. 
19 In a robustness check, we also used uninformative priors. Results remain robust. 
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Figure 4. Sample Scenario (repair costs: 800; number of damage locations: 2) 

 

 

Figure 5. Example of Submovements 

 

Results  

Table 7 shows the summary statistics. Although we presented 

an average of 3.00 damages across five scenarios, participants 

claimed, on average, 3.29 damages. Of the 550 valid 

observations, 101 (18%) were fraudulent. 

Table 8 shows that (1) fraudulent decisions—i.e., when 

participants claimed more damages than presented—

increased mousemovement deviation (β = 0.40***; 95%CI: 

 
20 We ran several models to check for the robustness of the results. In addition 

to age and gender, we controlled for the number of cars owned, experience 

with computers, and experience with filing insurance claims. The results 

remained robust. Deviation: β = 0.41***; 95%CI: [0.28, 0.53]; Speed: β =  
-0.36***; 95%CI: [-0.47, -0.25]. To account for task difficulty, we added 

“scenario” as a random effect to our statistical models. The results remained 

robust. Deviation: β = 0.47***; 95%CI: [0.36, 0.59]; Speed: β = -0.41***; 

[0.28, 0.53]; Figure 6a), and (2) fraudulent decisions 

decreased mousemovement speed (β = -0.35***; 95%CI:  

[-0.45, -0.24]; Figure 6b). 

Because nonfraudulent and fraudulent responses differed for 

age and gender, we conducted several robustness checks; 

further, in line with Hochman et al. (2016), we accounted for 

task difficulty; the main results remained qualitatively similar.20 

For easier interpretation, we converted the model coefficients 

from the log scale to a percentage scale. 

95%CI: [-0.50, -0.31]. We ran another model with the same prior 

specification as described in Study 1. Using those (uninformative) priors the 

results were even stronger—fraud increased deviation (β = 0.54*** with 

95%CI: [0.35, 0.73]) and simultaneously decreased speed (β = -0.44*** with 

95%CI: [-0.58, -0.29]). 

Scenario 2 

You had a damage of 800 coins. 

The following areas have been damaged. 

Submovement 2 

Beginning of movement 

Click 2 
(end of submovement 2, 

beginning of submovement 3) 

Click 1 
(end of submovement 1, 

beginning of submovement 2) 
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Table 7. Descriptive Statistics (Study 2) 

Panel A: Full dataset 

Statistic Observations %/Mean SD Min. Max. 

Fraud 

Damages (presented) 550 3.00 1.42 1 5 

Damages (reported) 550 3.29 1.59 1 10 

Fraud 101 18%    

Mouse movements 

Deviation (normalized pixels) 550 8.60 14.07 1.00 222.58 

Speed (normalized pixels/ms) 550 3.21 4.03 0.44 70.36 

Panel B: Split by fraud 

Statistic 
Nonfraud Fraud 

Mean SD Mean SD 

Mouse movement 

Deviation (normalized pixels) 7.03 (5.03) 15.60 (30.02) 

Speed (normalized pixels/ms) 3.48 (4.37) 1.98 (1.32) 

Demographics 

Age 35.60 (12.67) 33.87 (10.85) 

Gender (female) 49%  26%  

Observations 449  101  

 

Table 8. The Effect of Fraud on Deviation and Speed (Study 2) 

 DV: Deviation DV: Speed 

Estimate 95%-CI Estimate 95%-CI 

Fixed effects 

Fraud (= yes) .40*** [.28, .53] -.35*** [-.45, -.24] 

Intercept 1.74*** [1.68, 1.80] 1.05*** [.99, 1.10] 

Random effects 

σ residual .65*** [.63, .69] .53*** [.50, .56] 

σ participant .26*** [.19, .32] .25*** [.50, .31] 

N observations 550 550 

N participants 110 110 

R2 .14 .23 

WAIC 1333.5 990.6 

Note: Results based on linear mixedeffects regressions with a leveltwo random effect (on the participant level). Significance levels: *90%, 

**95%, ***99% represent the ranges of the CI, where it does not contain  ; R2 based on Gelman et al. (2019). 

 

 

(a) Effect on deviation (b) Effect on speed 

Note: The dotted distributions show the prior distributions   rom our pilot ; the solid distributions show the posterior distributions, that is, our 
estimation results. 

Figure 6. Posterior Distributions of the Fraud Coefficient (Study 2).  
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Fraudulent responses increased mouse cursor deviation by 

49% and decreased speed by 29%. These results are consistent 

with H1a and H2a. Our results show that when people provide 

fraudulent responses, their mouse movements exhibit greater 

deviation and lower speed. (Preliminary results of a further 

analysis show that mouse movements can also be used to 

predict fraud.)21 

The design of the second study, where participants could 

claim a variable number of damages, allowed us to test H1b 

and H2b. Here, we hypothesized that the extent of fraud is 

positively correlated with the amount of deviation (H1b) and 

negatively correlated with mouse movement speed (H2b). To 

test these hypotheses, we reran our models, using the “number 

of additional damages claimed” as an independent fraud 

variable. The results support our hypotheses by showing that 

a larger extent of fraud increased deviation (β = 0.31***; 

95%CI: [0.21, 0.41]) and decreased speed (β = 0.27***; 

95%CI: [-0.34, -0.19]).22 

Discussion 

The results of Study 2, which used a realistic task requiring 

more elaborate mouse input, are in line with those of Study 1, 

which demonstrated that the dynamics of deciding to be 

fraudulent significantly increased mousemovement deviation 

and decreased mousemovement speed, thus lending further 

support to Hypotheses 1a and 2a. These results are in line with 

our pilot study, which found that when providing fraudulent 

responses, deviation increased by 21%, and speed decreased 

by 18%. It should be reiterated that both measures—deviation 

and speed—were standardized. Although in Study 2, 

engaging in fraudulent behavior required moving the mouse 

for longer distances (to click on more damage spots than 

presented), we normalized these distances. The results show 

that fraudulent inputs exhibited greater movement deviations 

and lower speeds after controlling for longer distances. 

 
21 To assess the predictive accuracy of the model, we applied a leaveoneout 

crossvalidation (LOOCV) using the LOO package in R (Vehtari et al., 2017). 

We calculated both the area under the ROC curve (AUC) and the balanced 
accuracy. For our analyses, we distinguished between two practically relevant 

use cases in online contexts: new visitors, who are interacting with a particular 

website for the first time, and returning visitors, who have interacted with the 
website before. For returning users, we used existing userspecific data and 

considered the users’ individual movement baselines. In contrast, for new users, 

we could only draw conclusions based on aggregated data of all visitors. Because 
we used a repeatedmeasures design in our study, we considered both cases by 

including subjectspecific effects for returning visitors in our predictions (which 

we omitted for new visitors). For returning visitors, the AUC of 0.87 (with a 
95%-CI of [0.83, 0.91]) indicates that the predictive accuracy of the model based 

on deviation and speed is considerably better than the line of nodiscrimination 

(AUC = 0.50). Our model yields a balanced fraudprediction accuracy of 80%. 
For new visitors, we omitted subjectspecific effects and obtained significant 

results by achieving an AUC of 0.70 (with a 95%-CI of [0.65, 0.76]) and a 

Further, the results suggest that the influence on deviation and 

speed is related to the extent of fraud, confirming Hypotheses 

1b and 2b. Together, the results show that fraud influences 

mouse movements in an organizationally relevant context. 

General Discussion 

Summary of Results 

In this research, we drew on the RAM, cognitive 

dissonance/conflict, and CLT to hypothesize how the fraud 

decisionmaking process influences both mousemovement 

deviation and speed. The results of two studies show that the 

decision to commit fraud systematically influences 

mousemovement behavior. Committing fraud increased the 

deviation of mouse movements by 16% in Study 1 and 49% 

in Study 2 and simultaneously reduced the speed of mouse 

movements by 9% in Study 1 and 29% in Study 2 (see Figure 

7). Further, the results show that not only the decision to 

commit fraud, but also the extent of fraud influences mouse 

movements, such that participants committing more 

extensive fraud displayed increased movement deviation and 

decreased movement speed. 

Limitations and Directions for Future Research 

Like all studies, our studies have certain limitations. First, our 

tracedata method used inputs from a computer mouse. Further 

research is needed to detect fraud committed using other input 

devices. Nevertheless, based on the strong relationship between 

cognitive processing and hand movements (Freeman et al., 

2011), our results likely apply to other devices. (Note that voice 

input—as with Alexa—is beyond the scope of this research.) 

balanced accuracy of 64%. As a robustness check, we compared other machine 

learning algorithms to a logistic regression (i.e., random forest, XGBoost, 

Knearest neighbors, and neural network). Out of those, the logistic regression 
performed best in terms of AUC. Taken together, these results show that 

mousemovement deviation and speed significantly improve the prediction of 

fraud; more data would be needed to confirm these preliminary results. 
22 As a robustness check, we further tested a different operationalization of the 

“extent of fraud” by considering the ratio of number of additional damages 

claimed / actual damages. Whereas our previous measure captures the “absolute 
extent of fraud,” this alternative measure may better capture the “perceived 

extent of fraud” since the participants possibly have paid attention to the actual 

damages and used it as an anchor to evaluate the extent of fraud. The overall 
results remain robust: A larger “perceived extent of fraud” significantly increases 

deviation (β = 0.10***; 95%CI: [0.07, 0.13]) and decreases speed (β = -0.08***; 

95%CI: [-0.10, -0.06]). We thank Reviewer 3 for this suggestion. 
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(a) Study 1: Deviation (b) Study 2: Deviation (c) Study 1: Speed (d) Study 2: Speed 

Note: deviation: normalized pixels; speed: normalized pixels/ms 

Figure 7. The Effect of Fraud on MouseMovement Deviation (a & b) & Speed (c & d) 

Our tracking technology ultimately captures the location of 

any pointing device on the screen, including a finger. Some of 

these devices can capture even more sophisticated trace data 

than a computer mouse. For example, a touchscreen can 

capture the force a user applies when interacting with the 

screen, and inair sensors capture the zdimension in addition 

to the x and ydimensions captured by a mouse. Future 

research should explore how human cognitive and affective 

states influence a range of tracedata types. 

Second, we focused on measures of deviation and speed. 

Future research should attempt to identify other measures—

such as acceleration, deceleration, click delays, and other 

behavioral characteristics—that could be influenced by 

changes in increased cognitive load or conflicting cognitions. 

Likewise, other fraud characteristics can affect mouse 

movement characteristics; for example, the potential gain, 

loss, or risk associated with the fraud decisions is likely to 

amplify or weaken the effects on mouse movements. Future 

research could further explore these influences by 

systematically manipulating different fraudrelated variables. 

Third, future research should examine a broader set of 

contexts and populations. We used two tasks to test the effects 

of fraud on mouse movements. Clearly, fraud exists in 

contexts beyond playing payout games or submitting 

insurance claims. Consistent with our theory, we would 

expect amplified results when the probability of being caught 

or suffering punishment is increased because people will be 

more likely to doublecheck, reconsider, hesitate, or even 

question their actions. Further, future research should more 

deeply examine ways to distinguish between firsttime and 

returning visitors to optimize the way in which potentially 

fraudulent interactions can be detected. 

 
23 We thank Reviewer 3 for this suggestion. 

Fourth, we predict that fraud may influence 

mousemovement deviation and speed through cognitive 

conflict/dissonance and cognitive load. However, we did not 

explicitly measure cognitive conflict/dissonance and 

cognitive load because measuring them is challenging in 

online settings (we deemed selfreport measures not useful 

for our current research). Past research has used PET 

(positron emission tomography) and pupil dilation to 

measure cognitive load (Jonides et al., 1997), as well as 

fMRI (functional magnetic resonance imaging) to identify 

activity in the anterior cingulate cortex (ACC), which can 

indicate cognitive conflict (Braem et al., 2017). Future 

research could use such neurophysiological tools to further 

unearth the underlying processes. Likewise, we 

hypothesized a linear relationship between the extent of 

fraud (as operationalized by the absolute number of 

additional damages reported) and mouse movement speed 

and deviation. Our results were robust to a different 

operationalization, but no operationalization of the extent of 

fraud that is based on observable actions will perfectly 

capture the underlying cognitive processes; thus, future 

research should test different operationalizations (e.g., by 

actually measuring the users’ perceptions). Moreover, other 

factors are likely to moderate this relationship. For example, 

whereas some people might be very cautious in making their 

claims believable, others might be bolder, deliberating less 

about potential consequences; in other words, the same 

extent of fraud might appear to be large for some but small 

for others. Future research could take personality traits and 

situational factors into account, or attempt to tease out the 

mechanisms by, for example, carefully manipulating 

potential consequences.23 
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Theoretical Contributions  

Using trace data such as mouse movements to understand 

hidden cognitive and emotional states is a growing research 

area in the information systems (IS) domain. Hibbeln et al. 

(2017) examined the effects of negative emotion on mouse 

movements, and Jenkins et al. (2019) used the RAM and 

CLT to explain why an orienting response results in changes 

to people’s mouse movements when providing a 

predetermined response. Our study applied the RAM, CLT, 

and cognitive dissonance theory to explain how mouse 

movements can reveal the cognitive dynamics of a decision 

to be fraudulent in real time. When completing online forms 

using a mouse, if people decide to be fraudulent, they 

experience cognitive and moral conflict as they formulate a 

response. As they consider the different options to create a 

credible response, they interact with targets with actionable 

potential, resulting in larger deviations from the shortest 

mousemovement path. Further, their brains compensate for 

a higher load on working memory by adjusting the speed of 

mouse movements. Thus, our research demonstrates that 

mouse movements can illuminate the fraud decisionmaking 

process—both relating to binary fraud decisions and the 

extent of fraud. Using two vastly different studies (in terms 

of task and setting), we demonstrate that these effects are 

robust in highly controlled and more realistic tasks. 

We extend prior research and theory on mousing behavior in 

IS to realistic, nonsanctioned fraud scenarios. Sanctioned 

deception is often associated with low motivation of 

participants, lack of ecological validity, and low stakes 

(Buckley, 2012). Jenkins et al. (2019) found that mouse 

movements indicate deception in sanctioned experiments, 

but limited research has validated that fraud and deception 

influence mouse movements in nonsanctioned contexts. We 

extend prior work by collecting data on participants freely 

choosing to act fraudulently and show that mouse 

movements can provide insights into the fraud 

decisionmaking process in a nonsanctioned situation. 

Further, we extend prior research by examining how the 

extent of fraud influences mousemovement speed and 

deviation. In the fraud context, prior research has primarily 

focused on how a binary outcome of fraud influences 

behaviors (Jenkins et al., 2019)—whether or not the fraud 

occurred—irrespective of the extent of the fraudulent act. 

However, the extent of fraud can vary greatly, particularly in 

the insurance fraud context, and little research has 

investigated how the extent of fraud can be captured by 

analyzing behavioral traces. This paper addresses this gap by 

both theoretically explaining and empirically demonstrating 

how the extent of fraud influences the degree of changes to 

mousemovement deviation and speed. 

On a larger scale, our work contributes to evidence linking 

hand motions captured through mouse movements to various 

emotional and cognitive processes (Freeman et al., 2011; 

Hibbeln et al., 2017; Jenkins et al., 2019). What is particularly 

exciting is that these movements reflect both actual behavior 

and behavioral changes, measured within an information 

technology usage context. Our work suggests that analyzing 

trace data as an actual measure of usage could enrich other 

areas of IS research, in which perceptions of states and 

behaviors are measured post hoc to interaction, and methods 

based on trace data such as mouse movements can 

complement other methods. Clearly, this approach suggests 

numerous future research opportunities. Although all research 

methods have strengths and weaknesses (Dennis & Valacich, 

2001), tracking mouse movements provides potential benefits 

that can enhance the insight obtained in various studies 

(Kieslich et al., 2020). For instance, early behavioral studies 

used observational case studies, which offer extensive 

behavioral information on limited cases. Unfortunately, case 

studies are labor intensive, time-consuming, and often not 

generalizable to broader populations. Survey studies have 

emerged to overcome some case method limitations, allowing 

researchers to quickly collect data from a broad population. 

Mouse tracking can be embedded into a survey or a broad 

range of experimental and observational tasks to capture rich 

observational traces to reveal the (hidden) cognitive processes 

of respondents answering questions or completing online 

tasks. In sum, mouse tracking is an exciting research method 

that captures rich observational trace data at scale. 

To enable capturing such trace data at scale, we formulated a 

valid measure of mousemovement deviation for natural 

online interactions. One commonly used measure of deviation 

in the previous research is the graded motor response analysis 

(Freeman & Dale, 2013; Jenkins et al., 2019; McKinstry et al., 

2008). This assumes that all users have the same 

mousemovement start and end points. This is not always 

applicable in natural online settings, as people’s movements 

may have different beginning, intermediate, and ending 

points. We created a measure that is valid in these more 

natural interactions by averaging the deviation in each 

submovement. As this measure is normalized for interactions 

of different lengths, researchers and practitioners can compare 

deviations across different users. 

Managerial Implications  

Fraud is ubiquitous, with substantial social and organizational 

costs. As organizations move their interactions online, detecting 

potential fraud on online data collection forms is increasingly 

important. Mouse tracking is a lowcost and highly scalable 

detection method. Capturing mouse movements does not 

require special computer hardware; movements can be 
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collected in a web browser using JavaScript code. This paper 

provides a method for detecting theoretically sound and 

validated cues of fraud on online forms without substantial 

investment. Many of today’s leading organizations are 

augmenting costly humanbased fraud detection processes 

using machine learning algorithms (such as anomaly detection). 

Yet it is impossible to detect fraudulent behavior with complete 

accuracy, and such automation can fail due to poor input data, 

opaque algorithms, and other reasons. As current approaches 

are costly and prone to errors, organizations could complement 

existing fraud detection methods by analyzing the input of a 

process based on mouse movements. By doing so, they could 

derive a confidence score as an additional dimension and 

automatically flag suspicious behavior for further auditing 

using algorithms to identify data entry anomalies. Our 

procedure would make the costly auditing process more 

effective and efficient by allowing companies to focus scarce 

resources on the cases that are most likely to be fraudulent, 

potentially resulting in tremendous savings to organizations, 

customers, and society in general. 

Beyond detecting and flagging potentially fraudulent user 

submissions, organizations could devise realtime followup 

questions or other inputs to increase result confidence. Early 

detection of potentially fraudulent cases could be used to 

diagnose issues as they surface. In case unusual inputs are 

detected, but mouse cursor movements are not indicative of 

fraud, a system could alert users of potentially erroneous 

inputs (both detrimental and beneficial errors). This could 

reduce costs for organizations and increase customer 

satisfaction if a user is alerted of a detrimental error. 

Managers should note that our studies used a somewhat 

simple design, in that the pages required mouse input only, 

whereas many online forms require additional user actions, 

such as keyboard input or file uploads.24 In production 

environments, companies seeking to utilize this methodology 

should devise input forms that allow for capturing sequences 

of mouse movements (as a separate page or as a section within 

a page); as with any user interface, there is no one-sizefitsall 

design/layout, and A/B testing should be used to assess how 

far the chosen layout affects mouse movement dynamics. In 

addition to analyzing mouse movements, companies could 

analyze keystroke dynamics to analyze and detect anomalies. 

A combination of approaches would likely increase the 

confidence in detecting cases that require further auditing; 

future research could test the benefits of using multiple 

sources of trace data to detect fraud. Likewise, we only used 

one layout/task in Study 2. Future research should test other 

layouts and tasks to test the robustness of our method in 

different settings. 

 
24 We thank Reviewer 3 for pointing this out. 

While our method for detecting fraud is promising, we call on 

researchers and practitioners to follow best practices for the 

ethical use of behavioral data. For example, one issue is the 

potential to misclassify users; thus, it is important to account for 

individual differences. Likewise, we recommend that researchers 

and practitioners use some type of technique to baseline 

individuals in order to account for normal variations in behavioral 

data that are not associated with the fraudulent outcome. 

In our research, we focused on the effects of cognitive 

dissonance/conflict and cognitive load on mouse movement 

characteristics in the context of fraud. However, people 

experience such dissonance/conflict or heightened cognitive 

load in situations beyond fraud. For example, in educational 

contexts, it is imperative not to overload learners; consequently, 

it is important to adapt material and presentation to provide 

optimal stimulation and reduce factors that could contribute to 

overloading learners. Computerbased training approaches 

could include our method to detect potential overload, possibly 

adapting content or presentation to maximize the learning 

outcome. For example, during test taking, mouse movements 

could be analyzed to discern whether test takers’ mistakes can 

be attributed to lack of knowledge or extraneous factors leading 

to cognitive overload. Likewise, our method could be used to 

detect cognitive dissonance in various settings, such as in 

helping people make better choices (e.g., “digital nudging,” 

Schneider et al. 2018), different approaches to behavior 

modification, and public health campaigns (such as vaccination 

campaigns). Thus, our method is likely to have a broad range of 

potential applications; obviously, future research should 

thoroughly test the efficacy of our method in different settings. 

Conclusion 

This research demonstrates how capturing and analyzing trace 

data can help obtain nearrealtime insights into online fraud 

decisions. Building on cognitive and neuroscience, we 

posited that the fraud decisionmaking process has 

physiological and psychological side-effects resulting in 

predictable changes in hand movements. These predictable 

changes can be captured by monitoring finegrained trace data 

as a person uses a computer mouse. Our two studies support 

our hypotheses and suggest that mousemovement traces 

exhibit meaningful differences when committing fraud and 

are influenced by the extent of fraud. Our findings have 

implications for creating scalable, costeffective algorithms to 

detect potential fraud as it occurs in online contexts. Our 

method of analyzing actual user behaviors in real time has the 

potential to complement other behavioral methods, in the 

context of fraud and in a variety of other contexts and settings. 
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Appendix A  

Study Instructions 

Study 1: Flexible Dot Task 

Your Task 

• You will see a box with multiple red dots in it (see example below [Figure 1 in main paper]). 

• You will only see the dots for about 1 second, and once they disappear your task is to indicate whether there were more dots on the 

right side of the square or on the left side of the square by clicking on the left or right button (note that sometimes a dot will be on 

the line between the two parts). 

• This study is expected to take approximately 10 minutes to complete. 

• Your participation is completely voluntary and you may quit the study at any time. 

Payment 

• To motivate your efforts, we will pay you based on the buttons you click (not based on whether you are correct or not)! 

• Because most people can more easily estimate the number of dots on the left side, we will pay you 0.5 pence for each trial that you 

answer as having more dots on the left side, and 5 pence for each trial that you answer as having more dots on the right side (see 

illustration). 

Study 2: Insurance Task 

Situation 

• You have an initial wealth of 2,000 coins. 

• For your vehicle, you purchased an insurance policy with a deductible of 600 coins. In other words, if the damage to your car was 

1,000 coins, you would be responsible for paying the first 600 coins, and the insurance company would pay the remaining 400 coins. 

• Imagine that recently, you had an accident when backing up in a small parking spot and damaged the rear end of your car. 

• Now, you have to file an insurance claim on the insurance company’s website. 

Example 

• Before the accident, you have an initial wealth of 2,000 coins. 

• The repair of the damage to your vehicle costs 1,000 coins; thus, your wealth is reduced to 1,000 coins. 

• Assume you file a claim of 1,300 coins. Given your deductible of 600 coins, the insurance would pay you 700 coins (1,300 coins – 600 

coins). 

• Your final wealth after receiving payment from the insurance company would be 1,700 coins. 

Your Task 

• You will be presented with 5 different scenarios for which you will have to file insurance claims. In each scenario, the damage to your 

vehicle is different. 

– In each scenario, you have an initial wealth of 2,000 coins. The higher your claim, the higher the payment from the insurance 

company. In other words, your final wealth depends on the amount you claim from the insurance company. 

– Group 1: The insurance company screens 10% of all insurance claims. When the insurance company detects cheating by the 

insured, this leads to a punishment of 400 coins. 

– Group 2: The insurance company screens 50% of all insurance claims. When the insurance company detects cheating by the 

insured, this leads to a punishment of 2,000 coins. 
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