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A B S T R A C T   

Reactive control strategies lack the flexibility necessary to optimize the operational costs of buildings and district 
systems. To overcome this limitation and to enable the transition to model predictive control strategies (MPC), 
the development of dedicated control platforms and models is required. Predictive models for district systems 
management should provide supply and demand side integrated modelling, high accuracy, generalization ca
pacity and reduced computational times. However, traditionally available MPC solutions do not meet these 
requirements as simplified models offer short computational times but lack the required accuracy; detailed 
physics-based models provide satisfactory generalization but at the expense of high computational costs; and the 
generalization capacity of data models is constrained by the quality and availability of data. In contrast, met
amodels developed through the combined use of physics-based models and machine learning techniques offer a 
powerful alternative at reduced computational cost. This paper describes an upgraded Integrated District Model 
concept developed through co-simulation coupling metamodels of buildings with a district heating infrastructure 
Modelica model. Furthermore, the process to produce the metamodels and optimization engine required to 
generate demand flexibility optimization functionalities for the buildings of the Stepa Stepanovic subnetwork 
(Belgrade) is depicted. Starting from the development of metamodels of instances of specific buildings (resi
dential and educational use) the process was expanded to provide additional generalization to define, (1) a 
generic metamodel with the capacity to reproduce the behaviour of any instance of building of the residential 
typology, and (2) metamodels with generalization capacity in relation to operational settings. As part of this 
process the potential of several machine learning algorithms (e.g Support Vector Machines, etc) was evaluated 
including the latest ensemble boosting methods (e.g. Adaboost, Gradient Boosting and Extreme Gradient 
Boosting) with comparatively low use in the building simulation community. Finally, a virtual test bed consisting 
in metamodels coupled to an optimization engine based on genetic algorithms, was implemented, and compared 
to a traditional Physics-based model MPC solution (EnergyPlus-GENOPT), to evaluate the potential of the 
developed building level optimization functionalities. The metamodels and optimization engine were able to 
reproduce the optimized settings identified by the EnergyPlus-GENOPT MPC solution with cost savings potentials 
of 5–10%.   

1. Introduction 

The operation of most existing buildings and thermal networks is 
managed using reactive control strategies implemented through static 
rules. These strategies rely on fixed setpoints and schedules based on 
historical data to minimize service deficiency risks. While these strate
gies can ensure reliable and reasonably efficient system operation when 
control rules and setpoint values are properly defined, they lack the 
flexibility to adapt system settings in real-time without human 

intervention, to changing user behavior and external conditions (e.g. 
weather and energy prices, etc) [1]. Therefore, a transition to Model 
Predictive Control (MPC) solutions, is necessary [2,3]. MPC solutions 
involve dedicated control platforms and models that allow real-time 
evaluation of alternative operational criteria to dynamically maximize 
system performance and exploit distributed energy resources, while 
considering building and tariff flexibility and continuous commissioning 
functionalities. 

In the context of building and district operation, MPC refers to an 
advanced approach to constrained control that utilizes a model of the 
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supervised systems to optimize control inputs while minimizing a cost 
function (e.g., energy cost, etc) subject to certain constraints (e.g., 
thermal comfort, etc) [4]. During each sampling interval, an optimal 
control problem over a finite prediction horizon is solved based on 
future disturbances (e.g., energy prices, weather forecast, etc) to 
generate a trajectory of inputs and states that satisfies system dynamics 
and constraints while optimizing the cost function [5]. 

MPC solutions have demonstrated significant potential for improving 
the efficiency of building and district systems, including cost and peak 
demand reduction, increased renewable energy penetration and 
improved control precision and stability [6,7]. However, traditional 
deterministic MPC approaches assume perfect disturbance forecasts, 
disregarding uncertainties that can impact the optimization process 
when inaccurate input data is used. To address these uncertainties, 
alternative MPC formulations such as Stochastic MPC have been 
developed [6]. While this approach increases the complexity and 
computational cost of the optimization process, it enables the incorpo
ration of uncertainties into the identification of control signals. 

The second major challenge for MPC solutions, particularly in 
district-scale applications, is the cost associated with developing models 
while ensuring compatibility with real-time applications in terms of 
computational time. Ideally, predictive models for MPC solutions in 
district systems should integrate supply and demand side modeling, 
offer high accuracy and generalization capacity, and have reduced 
computational times. Two main types of models, physics-based models 

and data-driven models (DDMs), have been traditionally used in build
ing and district domains, each with its own advantages and limitations. 

Due to their detailed nature, physics-based models provide satisfac
tory accuracy and high generalization capacity for evaluating new 
operational strategies. However, this comes at the expense of high 
computational costs. Additionally, deep knowledge of the physical 
domain and the availability of information are required for model 
definition. There is abundant literature available on MPC implementa
tions based on this type of model. In [8,9], a MPC solution combining 
EnergyPlus [10] and a Genetic Algorithm (GA) was proposed to enable 
multi-objective optimization of hourly set point temperatures with a 
day-ahead planning horizon. This solution was successfully applied to a 
multi-zone residential building in Naples. In [11], an MPC system based 
on an EnergyPlus energy prediction engine was utilized to optimize the 
control rules of an administrative building and minimize energy con
sumption. Additionally, [12] presented an MPC system based on a 
control-oriented dynamic thermal model. This system was tested in a 
TRNSYS [13]-MATLAB [14] co-simulation testbed and demonstrated 
that it could effectively utilize building thermal mass to optimize energy 
consumption during low-price periods. 

When it comes to DDMs, a deep understanding of the physical 
domain and detailed information about the dynamic system’s physical 
parameters become less important. These models are highly suitable for 
real-time applications due to their short computational times. However, 
their generalization capacity is constrained by the quality and 

Nomenclature 

ADA Adaboost 
AHU Air Handling Unit 
ANFIS Adaptive Neuro-Fuzzy Interference System 
ANNs Artificial Neural Networks 
BT Boosted Tree 
BTGP Bayesian trees Gaussian process 
CBECS Commercial Buildings Energy Consumption Survey 
CSI Cubic Spline Interpolation 
CPU Central Processing Unit 
DT Decision Tree 
DDM Data Driven Model 
DH District Heating 
DHW Domestic Hot Water 
DL Deep Learning 
DEAPS Dwelling Energy Assessment Procedure software 
EBT Ensemble Bagging Trees 
ELM Extreme learning machines 
ET Extremely Randomized Trees 
FFNN Feed Forward Backpropagation Neural Network 
FMI Functional Mock-up Interface Standard 
FMU Functional Mock-up Unit 
GA Genetic Algorithm 
GB Gradient Boosting 
GPR Gaussian Process Regression 
GP Gaussian processes 
GPE Gaussian process emulator 
GPU Graphics Processing Unit 
GRFM Kriging 
HEE Heterogeneous Ensemble 
HMPC Hybrid Model Predictive Control 
HOE Homogeneous Ensemble 
HVAC Heating, Ventilation, and Air Conditioning 
IDM Integrated District Model 
IBPN Improved Back-Propagation Network 
KNN K-Nearest Neighbors 

L Metamodel for L – Shaped floor plan buildings 
LOLS Linear Ordinary Least Squares 
LM Linear models 
LR Lasso regression 
LSTM Long-Short-Term-Memory Neural Network 
MARS Multivariate Adaptive Regression Splines 
ML Machine Learning 
MLP Multi-Layer Perceptron 
MLRM Multiple Linear Regression Model 
MPC Model Predictive Control 
MSA Multi Step Ahead 
NSGA-II Non-Dominated Shorting Genetic Algorithm II 
OLS linear regression with ordinary least squares 
PCA-ANN Principal component Analysis Artificial Neural Networks 
PSO Particle Swarm Optimization 
PR Polynomial Regression 
Q2 Second quartile 
Q3 Third quartile 
R Metamodel for rectangular floor plan buildings 
R + L Metamodel for rectangular or L shape floor plan buildings 
R_PLUS Upgraded metamodel for rectangular floor plan buildings 
R + L_PLUS Upgraded metamodel for rectangular or L shape floor 

plan buildings 
RF Random Forest 
RBFN Radial-basis function networks 
RC Resistance Capacitance 
ResNet Residual network 
RNNs Recurrent Artificial Neural Networks 
RVFL Random Vector Functional Link 
R2 Coefficient of determination 
SGD Stochastic Gradient Descent 
SRC Standardized Regression Coefficient 
SSA Single Step Ahead 
SVM Support Vector Machine 
SVR Support Vector Regression 
XGBoost, XGB Extreme Gradient Boosting  
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availability of data. The MPC domain offers a diverse literature on the 
use of DDMs. For instance, in [15], an MPC system with Machine 
Learning (ML) based building models was proposed to control the 
Heating Ventilation and Air Conditioning (HVAC) system of a building 
located in Singapore. The system incorporated a multi-objective func
tion to optimize energy efficiency and indoor thermal comfort. In [16] 
an approximate MPC system that emulated the dynamic behaviors of a 
building in Singapore equipped with an MPC system using a Recurrent 
Artificial Neural Network (RNNs) was described. Another study [17] 
proposed a system based on Support Vector Machines (SVM) classifi
cation to approximate the optimal behavior of an MPC controller for 
blind operation. In [18], Several ML algorithms were trained to model 
the HVAC system of office buildings using data collected at the Energy 
Resource Station of the Iowa Energy Center. The system incorporated a 
Particle Swarm Optimization (PSO) algorithm to optimize HVAC system 
settings. In [19], an MPC solution was defined to optimize the comfort 
settings of several rooms in the Saint George Hospital in Chania, Greece. 
The system incorporated dedicated Artificial Neural Networks (ANNs) to 
predict outdoor and indoor temperatures. Furthermore, [20] described 
an MPC solution based on ANNs models developed for the HVAC system 
of a residential house in Ontario. Nonetheless, owing to their limited 
ability to generalize, DDMs find their primary application in forecasting 
tasks, such as predicting building heating and cooling demands [21–23], 
estimating building energy consumption [24,25], and making pre
dictions regarding district demands [26–28]. 

As an approach to maintain the generalization capacity of detailed 
physics-based models while addressing the computational time limita
tions, researchers have explored the potential of parallelization tech
niques and simplified physics-based models. Parallel computing enables 
optimization algorithms to distribute simulation tasks among multiple 
process threads simultaneously, thereby reducing the overall computa
tion time. However, it requires advanced programming skills [29]. In 
[30], a high-performance cluster for parallel computing integrating the 
Non-Dominated Shorting Genetic Algorithm II (NSGA-II) with Ener
gyPlus was presented. The effectiveness of this method was demon
strated through its application to the optimal design of a typical single- 
family house. Moreover, the optimization time was reduced from almost 
12 days to 4.4 h. 

The use of simplified physics-based models is often considered as an 
alternative approach. However, it carries the risk of oversimplification, 
potentially leading to inaccurate modelling [29,31–33]. Despite these 
limitations, several successful applications can be found in the literature. 
In [4], a MPC solution was developed based on a Resistance Capacitance 
(RC) model to identify optimal comfort settings in a multizone building 
with the goal of minimizing energy consumption. The solution was 
tested in a two-month experiment conducted in an educational building 
in Prague with energy savings ranging from 15 % to 28 %. Another study 
[34] focused on the development of an ANNs model to predict the 
evolution of indoor temperatures in multi-zone buildings. The temper
ature predictions were utilized by a MPC solution based on a RC model 
to optimize HVAC control. In [35], a Hybrid Model Predictive Control 
(HMPC) scheme was developed to minimize operating costs of HVAC 
systems in commercial buildings. The HMPC model was developed using 
a RC model, while the nonlinearity associated with the HVAC process 
was handled by an ANNs model. Furthermore, [36] focused on an MPC 
energy management system based on a RC model for optimizing the 
operation of a residential building equipped with air-sourced heat 
pumps for heating and Domestic Hot Water (DHW) production. 

Contrasting the limitations of simplified models and parallelization, 
the combination of detailed physics-based models with ML techniques 
offers a powerful alternative in the form of metamodels. These meta
models approximate the behavior of complex physics-based models at a 
reduced computational cost [33]. By utilizing a set of simulation input 
and output data from the original model, metamodels are generated 
through ML techniques. Once trained and validated, they can reproduce 
the behavior of the physics-based models and generate predictions, such 

as energy demand and internal temperatures, with reduced computa
tional requirements [37–39]. Past research has successfully employed 
metamodels for predicting energy behavior in specific instances of 
buildings. In [40], ANNs, SVR, and Long-Short-Term-Memory Neural 
Network (LSTM) were proposed for simultaneous prediction of heating, 
cooling, and lighting loads. Another study [41] presented an ANNs 
model trained with synthetic data produced through a calibrated model 
for predicting energy consumption and thermal comfort levels in an 
indoor swimming pool. [42] focused on ML models to predict energy 
consumption. A virtual test case of a French residential building simu
lated in TRNSYS was evaluated, resulting in heating energy load pre
dictions with values of up to 0.98 for the Coefficient of determination 
(R2). 

However, these surrogate models, specifically developed for indi
vidual buildings, are limited to the specific problem they were trained 
for. As a result, they lack the necessary generalization capacity to be 
reused for similar problems, such as alternative locations or different 
building geometries. Nonetheless, researchers are actively exploring 
ways to enhance the generalization capacity of metamodels to broaden 
their applicability. These efforts aim to extend their usage in areas such 
as building design optimization, building model calibration, and pre
diction of building stock energy behavior. The approach employed in 
these studies involves expanding the solution spaces used to train the 
metamodels by incorporating additional features, such as thermal en
velope characteristics, orientation and other relevant factors specific to 
the desired application [29], in order to increase their generalization 
capacity. According to the existing literature, most metamodels devel
oped for these applications rely on simplified geometric and architec
tural inputs, providing aggregated outputs with low temporal 
resolution, such as annual heating consumption. Additionally, there is a 
noticeable scarcity of studies focusing on building energy performance 
forecasting at the urban scale [43]. 

In [44], an approach combining metamodels and metaheuristic al
gorithms was developed to optimize the indoor thermal comfort and 
energy performance of residential buildings in Morocco. The solution 
was successfully tested on a residential building using a dataset gener
ated with various variants of a TRNSYS model to train an ANNs meta
model. In another study [45], a solution for multi-use building 
performance optimization based on a Principal Component Analysis 
Artificial Neural Networks (PCA-ANN) metamodel coupled with a GA 
was presented. In [46], a combined physical and data-driven modeling 
approach was applied to predict the annual thermal energy use intensity 
of buildings at the stock level. The approach was successfully tested in a 
case study in Chongqing, China. In another study [31], a surrogate 
model based on a deep temporal convolutional neural network was 
developed with the generalization capacity required to predict heating 
and cooling demands for buildings exposed to different climatic 
conditions. 

Similarly, metamodels with an appropriate level of generalization 
capacity offer an ideal alternative for MPC solutions in the building and 
district domain. However, research focusing on MPC solutions based on 
metamodels remains relatively scarce. In one study [47], an MPC solu
tion based on RNNs was presented to enhance the operation of thermal 
substations. In another study [18] an ensemble of Multi-Layer Percep
trons (MLPs) was integrated into an energy optimization system 
including a PSO algorithm to optimize Air Handling Unit (AHU) settings. 
In [48], a MPC system for multizone HVAC systems was developed for a 
non-residential building in France. An ANNs model was constructed 
using a dataset generated from an EnergyPlus model. The ANNs model 
was coupled with a GA to enable real-time optimization of the opera
tional schedules. Table 1 and Table 2 provide a summary of the key 
features of the analysed literature on the use of metamodels for the 
aforementioned applications. 

In summary, the development of MPC solutions, especially at the 
district level, remains a complex technical field, and various limitations 
remain unresolved, including: 

V.F. Sánchez-Zabala and T. Gómez-Acebo                                                                                                                                                                                                



Energy Conversion and Management: X 21 (2024) 100512

4

• The high development cost and long computational times associated 
with detailed Physics-based models. 

• The challenge of efficiently providing detailed physics-based de
mand-side modeling.  

• The limited generalization capacity of DDMs.  
• The lack of accuracy in simplified models.  
• The cost and complexity of parallel computation solutions.  
• The open challenges still existing in metamodel-based optimization 

methods. 

In their previous work [90], the authors attempted to address some 
of these limitations, such as demand-side modeling and computational 
time reduction, through the concept of an Integrated District Model 
(IDM). The IDM utilized co-simulation techniques and a combination of 
data models and physics-based models (Modelica [91] and EnergyPlus) 

to maximize generalization capacity and reduce computational times 
simultaneously. The developed solution was tested in the Stepa Stepa
novic subnetwork of the city of Belgrade, and in spite of an 85 % 
reduction of the physics-based building (EnergyPlus) models used in 
real-time the defined solution did not fully exploit the potential for 
computational time reduction. 

Therefore, the objective of the present work is to develop an 
enhanced version of the IDM concept by coupling metamodels of 
buildings with a DH infrastructure Modelica model for use as an energy 
prediction engine in district MPC solutions. This upgraded model offers 
integrated supply/demand side modeling, improved generalization ca
pacity, and reduced computational times, enabling the evaluation of 
numerous alternative operational strategies in real-time. To test this 
proposed solution, metamodels and optimization engines were devel
oped to generate demand flexibility optimization functionalities for the 

Table 1 
References of metamodels use for building design/retrofitting optimization and model calibration.  

Ref Algorithm Prediction 
horizon 

Time 
step 

Target Domain Application Data Source Testbed 

[49] MLP, ANNs, 
SVM, MARS, 
GPE 

Monthly 
and annual 

Month Monthly and annual 
energy use intensity 

Office 
buildings 

Calibration Model. EnergyPlus. medium 
office building Archetype 

Virtual. EnergyPlus. medium 
office building Archetype 

[50]  GPE Annual Annual Annual normalized 
electricity 
and natural gas 
demand 

Office 
buildings 

Calibration Model Retrofitted Building 

[51]  FFNN, LR From yearly 
to 15 min 

15 min Building energy 
consumption 

Residential 
buildings 

Calibration Model. EnergyPlus. 
Residential building 

Virtual. EnergyPlus. 
Residential building 

[52]  CSI Annual Annual Annual energy 
consumption 

Buildings Design 
optimization 

Model. EnergyPlus. 
Residential building 

Virtual. EnergyPlus. 
Residential building 

[53]  ANNs Annual Hourly Annual energy load 
and summer 
comfort index 

Residential 
buildings 

Design 
optimization 

Model. French residential 
building 

Virtual. TRNSYS-GENOPT. 
French residential building 

[54] MARS Hourly Hourly Annual indoor 
environmental 
indexes 

Residential 
buildings 

Design 
optimization 

Model. EnergyPlus. 
Residential building in Hong 
Kong 

Virtual. EnergyPlus. 
Residential building in Hong 
Kong 

[55] PR Annual Hourly Annual Heating/ 
cooling energy 
needs 

Single family 
houses 

Design 
optimization 

Model. TRNSYS. Single family 
houses in six Moroccan 
climatic zones 

Virtual. TRNSYS. Single 
family houses in six Moroccan 
climatic zones 

[56] ANNs Annual Hourly Yearly Total Energy 
Consumption 

Institutional 
buildings 

Design 
optimization 

Model. EnergyPlus. 
Institutional building in 
Montreal 

Virtual. EnergyPlus. 
Institutional building in 
Montreal 

[57]  SVR Annual Annual Annual energy 
consumption 

Multi use 
buildings 

Design 
optimization 

Model. EnergyPlus. Multi use 
buildings in Great Lakes (USA) 

Virtual. EnergyPlus. Multi use 
buildings in Great Lakes (USA) 

[58] PR, GRFM, 
RBFN, 
MARS, SVM 

Annual Annual Annual Primary 
Energy for Heating 

Residential 
buildings 

Renovation 
optimization 

Model. TRNSYS. 3 residential 
building typologies in Milan 

Virtual. TRNSYS. 3 residential 
building typologies in Milan 

[59] ANNs Annual Annual Annual energy 
consumption 
intensity 

Buildings Retrofitting 
optimization 

Model. TRNSYS school 
building in Coimbra 
(Portugal) 

Virtual. TRNSYS school 
building in Coimbra 
(Portugal) 

[60]  ANNs Annual Annual Annual energy 
consumption for 
heating and cooling 

Single-family 
buildings 

Design 
optimization 

Model. EnergyPlus. Single- 
family house in Argentina 

Virtual. EnergyPlus. Single- 
family house in Argentina 

[61]  LM, MARS, 
GP, SVM, 
BTGP 

Monthly Monthly Monthly heating 
and cooling demand 

Educational 
buildings 

Design 
optimization 

Model. ISO13790. 114 
buildings in the 
University of Pennsylvania 
and 30 buildings in the 
Georgia Institute of 
Technology 

Virtual. ISO13790. 114 
buildings in the 
University of Pennsylvania 
and 30 buildings in the 
Georgia Institute of 
Technology 

[62] ANNs Annual Annual Annual CO2 
emission 

Residential 
buildings 

Retrofitting 
optimization 

Real data (baseline) and 
simulated data (refurbishment 
scenarios). EnergyPlus. Group 
of buildings of the city of 
Zurich 

Real data (baseline) and 
simulated data (refurbishment 
scenarios). EnergyPlus. Group 
of buildings of the city of 
Zurich 

[63] RBFN Annual Annual Annual energy 
consumption 

Buildings Design 
optimization 

Model. EnergyPlus. Buildings 
in Birmingham (UK), Chicago 
(USA) and San Francisco 
(USA) 

Virtual. EnergyPlus. Buildings 
in Birmingham (UK), Chicago 
(USA) and San Francisco 
(USA) 

[64] IBPN  Annual Hourly Annual energy 
consumption 

Residential 
buildings 

Design 
optimization 

Model. EnergyPlus. 
Residential building in China 

Virtual. EnergyPlus. 
Residential building in China 

[65] DL Annual Monthly Annual Heating and 
cooling energy 
consumption 

Office 
buildings 

Design 
optimization 

Model. EnergyPlus. Office 
building in Brussels 

Virtual. EnergyPlus. Office 
building in Brussels  
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Table 2 
References of metamodels use for energy demand forecasting at building, district and building stock level.  

Ref ML algorithm Prediction 
horizon 

Time 
step 

Target Domain Application Data Source Testbed 

[66] SVR, ANNs Hourly Hourly Heating/cooling 
loads 

Buildings Heating/cooling loads 
forecasting 

Model. 768 variations 
of 12 buildings 

Virtual. 768 variations 
of 12 buildings 

[67] ANNs Annual Annual Annual cooling loads Office buildings Cooling load 
forecasting in different 
climates 

Model. EnergyPlus. 
Office building in 
Brazil 

Virtual. EnergyPlus. 
Office building in 
Brazil 

[68] MARS, SVM, 
GP, RF. ANNs 

Annual Annual Annual cooling loads Commercial 
building 

Cooling load 
forecasting (generic 
buildings) 

Model. EnergyPlus. 
Commercial building 
in Brazil 

Virtual. EnergyPlus. 
Commercial building 
in Brazil 

[69] Clustering Annual Annual Annual energy use 
intensity 

Building groups Energy use intensity 
forecasting 

Model. EnergyPlus. 
Building 

Real. 2646 buildings in 
Geneva 

[70] RF, KNN, 
ANNs 

Annual Annual Urban energy use 
(operational and 
transportation) 

Urban energy Urban energy use 
forecasting 

Real. The city of 
Chicago 

Real. The city of 
Chicago 

[71] ANNs Annual Annual Annual heating and 
cooling consumption 

Residential 
buildings 

Residential building 
labelling 

Simulated. Brazilian 
regulation labelling 
dataset 

Virtual. Brazilian 
regulation labelling 
dataset 

[72] ResNet Hourly, daily, 
monthly, 
annual 

15 min Electricity use (single 
building, block, 
urban) 

Buildings and 
building stock 

Electricity use 
forecasting (single 
building, block, urban) 

Simulated and real. 
University campus in 
California. 

Real. University 
campus in California. 

[73] MLP, RF, 
SVM, GB 

Annual  Annual Annual building 
energy consumption 

Commercial 
buildings 

Annual building energy 
consumption 
forecasting 

Real. National survey 
data from CBECS 

Real. New York City 
Local Law 84 energy 
consumption dataset 

[74] LR, RF, SVR Annual Annual Building annual 
electricity and gas use 
intensity 

Buildings, districts 
and city 

Annual electricity and 
gas use intensity 
forecast (building, 
district, city) 

Real. Subset from 
23.000 buildings of 
the city of New York 

Real. Subset from 
23.000 buildings of the 
city of New York 

[75] MLRM Annual Annual Annual dwelling 
natural gas and 
electricity 
consumption 

Residential 
buildings 

Dwelling annual gas 
and electricity 
consumption 
forecasting 

Real. GIS database of 
the city of Rotterdam 

Real. GIS database of 
the city of Rotterdam 

[76] ANNs Hourly and 
daily 

Hourly Electric load 
forecasting 
(individual and 
cluster level) 

Heterogeneous 
buildings districts 

Load forecasting 
(individual and cluster 
level) 

Real. Urban 
educational district in 
Montréal 

Real. Urban 
educational district in 
Montréal 

[77] RF, KNN 
RNNs, LSTM, 
MLP 

15 min, 2 h, 
24 h 

15 min Load forecast 
(individual building 
and cluster level) 

Heterogeneous 
buildings districts 

Load forecasting 
(individual and cluster 
level) 

Real. Urban 
educational district in 
Montréal 

Real. Urban 
educational district in 
Montréal 

[78] SVR, ANNs, 
RF, BT, GP 

Daily Hourly Daily electricity 
forecast (individual 
and clusters) 

Commercial 
buildings 

Electricity demand 
forecasting (individual 
buildigns and clusters) 

Real. 47 commercial 
buildings in 
Nederlands (2 years 
of data) 

Real. 47 commercial 
buildings in 
Nederlands (1 year of 
data) 

[79] EBT Hourly Hourly Hourly electricity 
demand 

Institutional 
building 

Forecast of electricity 
demand 

Real. Institutional 
building in Florida 

Real. Institutional 
building in Florida  

[80] PR Annual Daily Annual heating and 
cooling intensity 

Office buildings in 
Korea 

Heating and cooling 
demand forecasting 

Model. TRNSYS. 
Office building in 
Korea 

Virtual. TRNSYS. 
Office buildings in 
Korea 

[81] OLS, RF, SVR, 
MARS, GPR, 
ANNs 

Annual Annual Annual energy 
demand intensity 

Tertiary buildings Energy forecasting Office Model (BSim) 
and educational 
building model (ISO 
13790) 

Virtual. Office Model 
(BSim) and 
educational building 
model (ISO 13790) 

[82] SRC, MARS Annual Annual Annual gas 
consumption 
intensity 

Secondary school 
buildings 

Demand forecasting for 
Building stock 

Model. EnergyPlus. 
School buildings in 
London 

Virtual. EnergyPlus. 
school buildings in 
London 

[83] KNN, RF, GB, 
ANNs, DT 

Annual Annual Annual primary 
energy use intensity 

Residential 
buildings 

Building stock 
refurbishment 

Model. DEAPS. Irish 
building stock 

Virtual. DEAPS. Irish 
building stock 

[84] MLRM Annual Annual Annual gas and 
electricity 
consumption 

Residential 
buildings 

Dwelling gas and 
electricity 
consumption 
forecasting 

Real data. GIS 
database of the City 
of Rotterdam 

Real data. GIS database 
of the City of 
Rotterdam 

[85] ANNs Annual Annual Annual heating 
energy use 

Residential 
buildings 

Heating energy use 
forecasting 

Model. ESP-R. 
Different typologies 
of residential 
buildings 

Virtual. ESP-R. 
Different typologies of 
residential buildings 

[86] SVR, ANNs, 
Ensemble 

Hourly Hourly Cooling load 
forecasting 

Office buildings Cooling load 
forecasting 

Model. TRACE 700. 
Dataset of 243 office 
buildings in Taiwan 

Virtual. TRACE 700. 
Dataset of 243 office 
buildings in Taiwan 

[87] FFNN, RBFN, 
ANFIS, 
HEE 

Daily Daily Daily heating 
consumption of the 
campus 

University campus Campus Heating 
forecasting 

Actual data. Campus 
building in Sweden 

Actual data. Campus 
building in Sweden 

[88]  ANN, SVR, 
LOLS, KNN, 
HEE 

Hourly Hourly Building level Hourly 
electricity demand 

Buildings Electricity demand 
forecasting (single 
generic building) 

Real. 24 residential 
buildings and 8 

Real. 24 residential 
buildings in California 

(continued on next page) 
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buildings in the Stepa Stepanovic subnetwork. Initially, metamodels 
were created for specific instances of residential and educational 
buildings. The process was then expanded to provide additional gener
alization, resulting in (1) generic metamodels capable of reproducing 
the behavior of any residential building instance, and (2) metamodels 
with generalization capacity for operational settings. To maximize the 
solution space covered in the dataset used to train the metamodels of 
residential building typology, an incremental process was implemented. 
Despite the limited availability of EnergyPlus models for the buildings in 
the Stepa Stepanovic neighborhood (Belgrade, Serbia), the incremental 
approach allowed the utilization of building simulation models from 
previous projects, thereby improving the accuracy of the metamodels 
without additional effort in defining physics-based models. 

The development process of the metamodels involved evaluating the 
potential of various ML algorithms, including SVM, Random Forest (RF), 
k-nearest neighbors (KNN), Extremely Randomized Trees (ET), and 
different architectures of ANNs. Additionally, the applicability of 
ensemble boosting methods, such as Adaboost, Gradient Boosting (GB), 
and Extreme Gradient Boosting (XGBoost), which are relatively less 
commonly used in the building simulation community, was assessed. 
Boosting algorithms are gaining research interest in the building 
domain. However, further investigation is still required to assess the 
strengths and limitations of boosting methods in this domain, and the 
present work contributes to narrowing this knowledge gap. 

Lastly, in order to facilitate the assessment of metamodels for opti
mizing building operations, a virtual testing environment was estab
lished. This environment incorporated metamodels coupled with a GA- 
based optimization engine. The control commands generated through 
this setup were then compared against those generated by a conven
tional physics-based model MPC solution. 

The remaining sections of this paper are structured as follows: Sec
tion 2 describes the methods used to develop the metamodel-based IDM, 
while Section 3 describes the implementation in the buildings of the 
Stepa Stepanovic neighbourhood of the process defined to evaluate the 
performance of different ML algorithms in predicting building energy 
behavior, considering various levels of generalization capacity (specific 
building instances, residential typology, and demand flexibility opti
mization). The results of the testing processes for the defined models are 
discussed in Section 4. Finally, Section 5 concludes the paper. 

2. Methods 

2.1. Metamodels definition procedure 

As previously described, metamodels serve as surrogates, approxi
mating the behavior of detailed physics-based models at a reduced 
computational cost. Contrasting the limitations of simplified models, 
parallelization, detailed physics-based models and data models they 
offer a powerful alternative for MPC functionality development in the 
building and district domains. The workflow to produce metamodels 
through supervised ML techniques can be summarized in the following 
sequence:  

• Identification of the alternative operational strategies relevant to the 
systems to be supervised. 

• Definition of the feature space considering all the inputs that char
acterize buildings and systems dynamics. 

• Feature engineering to optimize the feature space (e.g. dimension
ality reduction through unsupervised methods, etc). An adequate 
selection of inputs is extremely important to define accurate and 
efficient metamodels. The inputs should be highly correlated with 
the predicted parameters, while having the least possible correlation 
with each other [43].  

• Definition of representative samples of inputs to train and validate 
the metamodel, and calculation of the corresponding outputs 
through dedicated simulation sets of the detailed physics-based 
models.  

• Training and validation of the metamodel selecting the most suitable 
supervised regression ML algorithm according to appropriate meta
model performance evaluation metrics. 

Fig. 1 displays the workflow to develop building heating demand and 
interior temperature metamodels to be used in MPC systems. 

Despite the potential displayed by metamodels, the strength and 
weakness of the metamodels based optimization methods is still a great 
research field within the building simulation community with several 
open challenges such as the number of building model evaluations 
required to construct and validate metamodels and the comprehensive 
evaluation of the accuracy and sensitivity of the optimization results 
[37,39,60]. For the sake of brevity, a comprehensive description of the 
ML algorithms available for metamodeling is beyond the scope of this 
paper. Therefore, the provided overview will be limited to ensemble 
methods, which are successfully applied in many domains, but are 
relatively scarce in use in the building/district domain. Additional in
formation related to metamodeling techniques can be found in [92–96]. 

2.2. Ensemble methods 

ML models can be classified as single or ensemble models based on 
their structure and the number of prediction algorithms used. The single 
prediction method relies on a single prediction algorithm, while the 
ensemble prediction method consists of multiple models with an inte
gration process to achieve improved predictive performance. The main 
distinction between these two model types lies in the process of selecting 
and training the learning algorithms. While the single prediction method 
offers several advantages such as ease of implementation and fast 
computation, when compared to ensembles their main disadvantage is 
limited accuracy. The ensemble prediction method, on the other hand, 
offers improved prediction accuracy and stability. However, ensembles 
require more computation time and a higher level of knowledge. 

In the case of ensembles, the base models are developed through 
resampling data [95]. The most common resampling techniques include 
Bagging, Stacking, and Boosting [97]. The bagging process starts by 
randomly selecting instances with replacement (Bootstrap) from the 
original training dataset. Each bootstrap sample is used to train a 
separate model, typically using the same algorithm. The predictions 
from all the individual models are then combined to obtain the final 
prediction. Bagging reduces the impact of individual model errors, in
creases the overall accuracy and stability of the ensemble and helps to 
reduce overfitting. 

On the other hand, Boosting is an in-series ensemble that trains weak 

Table 2 (continued ) 

Ref ML algorithm Prediction 
horizon 

Time 
step 

Target Domain Application Data Source Testbed 

university buildings 
(California) 

[89] HOE of ANNs Hourly Hourly Hourly cooling loads Buildings Cooling load 
forecasting (specific 
building instances) 

Model. Trnsys. Real 
commercial 
skyscraper in Hong 
Kong 

Virtual. Trnsys. Real 
commercial skyscraper 
in Hong Kong  
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learners sequentially, where each subsequent learner focuses on the 
samples that the previous learners struggled to predict correctly. 
Initially, all instances are given equal weights, and a weak learner is 
trained on the weighted data. The subsequent weak learners are then 
trained on modified versions of the training data, with the weights 
adjusted to emphasize the poorly predicted instances from previous 
iterations. 

Stacking involves training several base models on a subset of the 
dataset and then using their predictions as input for a final model, which 
learns how to combine these predictions. Base models are trained 
independently with specific subsets of the complete dataset and then 
used to make predictions on the remaining data. The final model is 
trained on these intermediate predictions along with the actual target 
values improving prediction accuracy by reducing bias and variance. 

Ensemble models can be further classified into two types: homoge
neous and heterogeneous, according to the selection of the base models. 
In the case of homogeneous ensembles, the same base learner is applied 
to different distributions of the training set. On the other hand, a het
erogeneous ensemble consists of different learning models that are 
trained using the same data set. The heterogeneous ensemble improves 
prediction performance by leveraging the complementarity among 
different types of learning algorithms. In contrast, the homogeneous 
ensemble can be seen as an optimization process that enhances the 
performance of a specific learning algorithm by training it multiple 
times with varied datasets and combining their predictions [79]. 

According to [95], 91 % of ML-based building energy use predictions 
rely on single algorithms, while studies on ensemble prediction methods 
are limited to only 9 %. Therefore, further research to validate model 
superiority and computational efficiency is necessary before ensemble 
models can be widely adopted in the building/district energy domain. 

Boosting ensemble algorithms such as AdaBoost, GB and XGBoost 
have been successfully applied to real-world problems with high pre
dictive accuracy. However, again according to [95], there are only a few 
studies focused on the application of this type of homogenous ensemble 
models for building energy use prediction. For instance, in [98], twelve 
DDMs were developed to predict building thermal load. XGBoost was 
recommended for long-term predictions based on the obtained results. 
In [99] a data-driven workflow based in the XGBoost algorithm for office 
building performance assessment was constructed and successfully 
applied to an office building. In [100], an integrated optimization sys
tem combining a GA and GB surrogate model was used to achieve 
energy-optimal thermal designs for residential buildings in Turkey. This 
study highlighted the performance of the rarely used GB-based surrogate 

model in predicting building thermal loads. However, further investi
gation is still required to assess the strengths and limitations of boosting 
methods in this domain, and the present work aims to contribute to 
narrowing this knowledge gap. Table 3 provides a short overview of the 
most popular boosting methods. Further details related to boosting 
methods can be found in [101–104]. 

2.3. Metamodel-based integrated district model 

Ideally, to develop MPC solutions for district systems, it is crucial to 
have an integrated model that can accurately predict all the phenomena 
affecting its behavior across various scales, including buildings, district 
infrastructure, and interfaces. This model should demonstrate a strong 

Fig. 1. Development procedure for the residential building flexibility optimization metamodels.  

Table 3 
Overview of boosting methods.  

Boosting methods 

Adaboost Gradient Boosting and Extreme Gradient 
Boosting  

• Operates by iteratively training a 
series of weak regression models, 
typically decision trees, on weighted 
subsets of the training data. 

Each weak model focuses on 
instances with high prediction errors 
from the previous models. 

During each iteration, the weak 
regression model is fitted to the 
weighted training data, and the 
weights are updated based on the 
model’s errors, assigning more 
importance to poorly predicted 
instances. 

The final ensemble model is 
constructed by combining the 
predictions of all the weak models, 
weighted by their individual 
performance. 

Can deliver robust predictions, but 
it may be prone to overfitting. 
Therefore, it is crucial to employ 
proper regularization techniques.  

• GB combines multiple weak prediction 
models, typically decision trees, to 
create a robust model. 

Models are trained sequentially, 
with each subsequent model aiming to 
correct the mistakes of the previous 
ones fitting them to the residuals of the 
previous models minimizing a loss 
function. 

By combining these weak models, 
GB can effectively capture complex 
patterns in the data, resulting in 
enhanced accuracy. 

GB offers several advantages, 
including regularization parameters to 
prevent overfitting and demonstrates 
high robustness and accuracy in 
various domains. 

Extreme Gradient Boosting, 
commonly referred to as XGBoost is a 
particularly powerful implementation 
of GB specifically designed to optimize 
performance. 

With its robustness, scalability, and 
high performance, XGBoost has proven 
to be very effective in diverse 
applications of ML.  
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capacity for generalization and enable real-time evaluation of a wide 
range of alternative operating scenarios, while maintaining efficient 
computation times. 

However, the definition of a model with these characteristics re
mains an unresolved challenge. In their previous work [90], the authors 
introduced the concept of an IDM, capitalizing on the potential offered 
by co-simulation techniques and data models. The IDM allowed for the 
detailed physical modeling of both the demand side and district in
frastructures by combining EnergyPlus models for representative 
buildings with a Modelica model of the thermal network infrastructure. 
This model offered high generalization and a significant reduction in the 
number of real-time simulated EnergyPlus models compared to con
ventional physics-based MPC solutions. However, this solution did not 
fully tap into the existing potential for reducing computation times. 

To address this limitation, the current work has evolved the concept 
of an IDM by replacing EnergyPlus models with metamodels. This 
advancement allowed for the concurrent reduction of computation times 
while maintaining a significant portion of the model’s generalization 
capability for both the demand and supply sides. The co-simulation 
solution was implemented using the capabilities of the Functional 
Mock-up Interface (FMI) standard [105]. The designed co-simulation 
scheme comprises metamodels that depict the energy behavior of each 
building, encapsulated as Functional Mock-up Units (FMUs) (slaves), 
and coupled with the Modelica model (master). Dynamic coupling is 
accomplished by exchanging relevant variable values at the interface 
(the substation of each building) between the master and slaves during 
time integration. 

During each simulation time step, the energy demand from each 
building to the network is incorporated by considering the instantaneous 
setpoint temperature of the heating system, building temperature 
(B_TEMP), as well as the flow rate (RET_FLOW) and return temperature 
(RET_TEMP) of the heating circuit in the secondary side of building 
thermal substation. Using these values, the IDM enables the computa
tion of the required flow rate through the primary side of each building’s 
substation and the return temperature to the network. Precisely pre
dicting the network’s return temperature is crucial for optimizing its 
operation. 

Likewise, for each calculation time step, the impact of the energy 
supply quality from the network on the comfort conditions of each 
building can be evaluated. This integration is accomplished by utilizing 
the temperature value at the secondary side outlet of each building’s 
substation (SUP TEMP) as an input parameter for the metamodels. 

Hence, in accordance with the designed co-simulation scheme, the 
energy performance of each building is characterized by three distinct 
metamodels. These metamodels facilitate the forecasting of the heating 
system’s flow rate (RET_F_RATE_FMU), return temperature 
(RET_TEMP_FMU), and building indoor temperature (B_TEMP_FMU), 
considering predicted disturbances. Table 4 provides an overview of the 
scope and connectivity of the components of the Integrated District 
Model and Fig. 2 displays a simplified version of the architecture of the 
co-simulation scheme of the IDM, where the infrastructures (distribution 
network, heating plant, etc) are modelled using the DH Modelica library 
described in the previous work of the authors [90]. 

The purpose of the IDM is to serve as a predictive engine for MPC 
solutions for district energy networks. Based on predictions of weather 
conditions and energy prices, the MPC system will exploit the pre
dictions (hourly resolution) provided, over a 24-hour prediction hori
zon, by the IDM to assess the energy consumption (thermal production 
and pumping) associated with different operational strategies in real- 
time. Through an optimization engine, the MPC system will be able to 
identify operational strategies that minimize the cost associated with the 
energy consumption of the DH system. Typically, the complete optimi
zation process will be carried out on an hourly basis to minimize the 
impact of uncertainties associated with disturbances forecasting (e.g. 
weather conditions, etc). 

The conversion of the metamodels into FMUs is achieved through the 

Table 4 
Integrated district model components scope and connectivity overview.  

Component Component 
scope 

Connectivity Outputs 

District heating 
plant sub-system 
model including 
hot water 
generators, 
storage tanks, 
control valves 
and hydraulic 
pumps 

DH heating plant 
sub-system 
model 
hydraulically 
connected to the 
distribution 
pumping station 
sub-system 
model 

Energy 
consumption of 
DH heating 
plant hot water 
generators. 
Electricity 
consumption of 
DH heating 
plant pumps. 

DH heating 
distribution 
pumping station 
sub-system 
model including 
all the 
distribution 
hydraulic pumps 

Pumping sub- 
system model 
hydraulically 
connected to the 
DH plant and 
distribution 
network sub- 
system models 

Electricity 
consumption of 
distribution 
pumps. 

Distribution 
network sub- 
system model 
including pipes 
and the 
connection nodes 
of the buildings 
as necessary to 
define network 
topology 

Distribution 
network sub- 
system model 
hydraulically 
connected to the 
pumping station 
and building 
thermal 
substation 
models 

Water 
temperature 
distribution over 
the distribution 
network. 
Distribution 
thermal and 
pressure losses. 

Solar plant sub- 
system model 
including solar 
collectors, 
storage tanks, 
control valves 
and hydraulic 
pumps 

Solar plant sub- 
system model 
hydraulically 
connected to the 
distribution 
network sub- 
system model 

Solar collector 
production. 
Electricity 
consumption of 
solar plant 
pumps. 

Building thermal 
substation model 
including heat 
exchangers and 
control valves 

Building thermal 
substation model 
hydraulically 
connected to the 
distribution 
network sub- 
system model 
and to building 
metamodels 
(encapsulated as 
FMUs) 

Primary side 
(network) inlet/ 
outlet 
temperatures 
and water flow 
rate. 
Secondary side 
(building) outlet 
temperature. 

Building interior 
temperature 
metamodel 
(encapsulated as 
an FMU) 

In order to 
receive the 
needed input, 
building interior 
temperature 
metamodel 
connected to the 
substation model 
(hot water supply 
temperature) 

Interior 
temperature of 
the building 

Building thermal 
substation 
secondary side 
flow rate 
metamodel 
(encapsulated as 
an FMU) 

In order to 
receive the 
needed input, 
building 
substation 
secondary side 
flow rate 
metamodel 
connected to the 
substation model 
(hot water supply 
temperature) and 
to the building 
temperature 
metamodel 
(building interior 
temperature) 

Water flow rate 
of the heating 
system of the 
building (water 
flow rate on the 
secondary side 
of the building 
thermal 
substation) 

(continued on next page) 
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use of the SimulatorToFMU software package [106]. Written in Python, 
this package allows users to export a Python-driven simulation program 
or script as a FMU that adheres to the FMI. 

Due to space constraints, the comprehensive evaluation of the IDM’s 
potential at the district scale will not be covered in this article. Instead, it 
will be the subject of a separate paper. As a consequence, this paper 
focuses on the development and experimental evaluation of the neces
sary components (metamodels and optimization algorithms) for imple
menting and exploiting the IDM. In order to assess the potential of the 
enhanced IDM, sections 3 and 4 will quantify the metamodels’ capability 
to predict the energy behavior of buildings within the Stepa Stepanovic 
subnetwork. This evaluation focused on using metamodels to predict 
heat demand and indoor temperature in buildings connected to DH 
systems. The choice to utilize metamodels for heat demand, instead of 
the previously mentioned metamodels for flow rate and return tem
perature to the substation, was due to the limitation of available his
torical data, which only included heat demand information without 
corresponding profiles for flow rate and return temperature. 

2.4. Optimisation techniques 

Optimization algorithms can be categorized into various groups, 
including but not limited to deterministic or stochastic methods, 

derivative-based or derivative-free methods, trajectory or population- 
based methods, and single-objective or multi-objective algorithms 
[37]. Selecting the appropriate algorithm for a specific problem is 
crucial to achieve the highest accuracy and performance. The selection 
of optimization algorithms should consider both the nature of the 
problem and the features of the optimization method [33,37]. Gener
ally, three criteria should be considered when selecting an optimization 
method: robustness, efficiency in terms of computational time and 
required memory, and accuracy. Additionally, the nature of design 
variables and objective functions, the presence of constraints, and the 
availability of derivatives of the objective functions should also be taken 
into account. In general, optimization algorithms can be classified into 
Enumerative, Calculus and Stochastic methods [33]. Their main char
acteristics are presented in Table 5. 

From the perspective of their applicability to optimization problems 
in the building and district domain, the most relevant classification of 
optimization algorithms consists of gradient-based and gradient- free 
methods, as gradient-based methods can only be applied to smooth and 
continuous functions [109]. Since building energy behaviour is pri
marily nonlinear and discontinuous, MPC solution development should 
be based on gradient-free optimization methods. Consequently, and 
according to the features depicted in Table 5, evolutionary algorithms 
are applied to overcome the shortages of derivative-based methods. 

According to the literature, the stochastic population-based algo
rithms are the most frequently used methods in building performance 
optimization [37]. Among these, the highest use increase was experi
enced by GAs, followed by PSO. The analysed literature was in agree
ment with the prevalence of GA and PSO methods. Therefore, GA and 
PSO were selected as the optimization methods to be used in this work. 

Genetic algorithms mimic the process of biological evolution to find 
optimal or near-optimal solutions to complex problems. It is a 
population-based algorithm that falls under the category of global 
optimization algorithms, incorporating both global search operations 
for the optimal solution and local improvement operations. Further 
details related to GAs can be found in [117,118]. 

Similarly, PSO is inspired by the collective behavior of social or
ganisms, such as bird flocking, fish schooling or swarming. It aims to 
find the optimal solution by simulating the cooperation of particles in a 
multi-dimensional search space. The process involves both individual 
intelligence and the communication between individuals, therefore PSO 
involves both local and global optimum finding processes. Further de
tails related to PSO can be found in [119]. 

Table 4 (continued ) 

Component Component 
scope 

Connectivity Outputs 

Building 
substation 
secondary side 
inlet temperature 
metamodel 
(encapsulated as 
an FMU) 

In order to 
receive the 
needed input, 
building 
substation 
secondary side 
flow rate 
metamodel 
connected to the 
substation model 
(hot water supply 
temperature) and 
to the building 
temperature 
metamodel 
(building interior 
temperature) 

Return 
temperature of 
the heating 
system of the 
building (inlet 
temperature to 
the secondary 
side of the 
building thermal 
substation)  

Fig. 2. Simplified architecture of the co-simulation scheme of the upgraded IDM.  
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3. Stepa Stepanovic use case 

In this section, the process designed to evaluate the performance of 
the developed metamodels in predicting building energy behavior 
within the Stepa Stepanovic neighborhood will be described. The eval
uation took into account different levels of generalization capacity, 
encompassing metamodels for specific building instances, metamodels 
for the residential typology, and metamodels for building demand 
flexibility optimization. 

3.1. Vozdovac DH system and Stepa Stepanovic subnetwork 

The Vozdovac system is one of the several heating networks that 
form the DH system of the city of Belgrade. It comprises of a DH plant 
and a two-pipe distribution network based on a branched topology and 
meets the energy demand of different areas of the city, including the 
Stepa Stepanovic neighbourhood. The latter is covered by the Stepa 
Stepanovic subnetwork which supplies the energy required to cover the 
heat demand of 52 residential buildings and two educational buildings 
(kindergarten and primary school) of the neighbourhood. A detailed 
description of the technical features of the Vozdovac system and of the 
buildings of the Stepa Stepanovic neighbourhood can be found in [120]. 

As described in the following sections, the evaluation process of the 
predictive capabilities of building surrogate models was completed 
taking advantage of the EnergyPlus models defined in the previous work 
of the authors [90] for each of the 6 residential representative buildings 

(1D, 2A, 3G, 4E, 6D and 6L) and the 2 educational buildings of the Stepa 
Stepanovic neighbourhood. Detailed information on the modelling 
specification followed to develop these models can be found in [120]. 

3.2. Testing scenarios 

In this section, the scenarios defined to assess the metamodels’ 
ability to predict the energy performance of buildings in the Stepa Ste
panovic neighbourhood are described, including all the details related to 
defining the feature space, the process of generating datasets for 
training, testing, and validation, as well as the packages, algorithms, and 
metrics used for metamodel definition. 

3.2.1. Metamodels for residential and educational building instances 
The evaluation of metamodel potential involved developing specific 

metamodels for six residential buildings and two educational buildings 
within the demonstration district. Taking into account that the ultimate 
purpose of these metamodels is their integration into MPC systems, a 
time resolution (time step) of one hour and a predictive horizon of 24 
hours were established, values typically used in MPC solutions.The 
analysis initially focused on a 1-hour prediction horizon and was later 
extended to a 24-hour ahead prediction horizon. The primary objectives 
of these metamodels were twofold: predicting the energy supplied from 
the DH to the buildings and forecasting the interior temperature of each 
building. 

To assess the feasibility of metamodel development, diverse ML 

Table 5 
Overview of optimization methods.  

Algorithms Approach Advantages Limitations References 

Enumerative (Hooke 
and Jeeves, Brute 
Force, Derivative 
Free method, 
Simplex 
Nelder–Mead, Non- 
Linear 
programming, Hill 
Climbing Method, 
Pattern Search, 
Adaptive Search, 
etc) 

Based on the 
analysis of all 
possible points 
in the search 
space 

Finding the global 
optimum, given 
enough time and 
computational 
resources 
guaranteed. 
Simplicity and ease of 
implementation. 
Differentiability, 
convexity, or 
smoothness of the 
objective function 
not required. 
Applicable to 
nonlinear problems. 

Can become 
computationally 
intractable or 
impractical when 
the search space is 
vast. 
Can get trapped in 
local optima. 

Brute Force:[58] 
Derivative free method: [57] 
Simplex Nelder–Mead: [55] 
Non-Linear programming: [52] 

Calculus or Gradient 
based (Newton’s 
Method, Steepest 
Descent Method, 
Interior Point, etc) 

Based on 
mathematical 
expressions or 
gradients 

Fast convergence to 
the optimal solution 
exploiting 
information provided 
by the derivatives. 
Convergence to the 
global optimum 
guaranteed, for 
convex problems and 
to local optima for 
non-convex 
problems. 

Inapplicable to most 
building studies due 
to the nonlinear and 
discontinuous 
nature of the 
problem 

Interior Point: [57] and [107] 

Stochastic (GA, PSO, 
Harmony Search, 
Ant Colony 
Optimisation, 
Simulated 
Annealing etc) 

Randomness is 
included in the 
optimization 
process. 

Offer a high 
probability of finding 
a near- optimal 
solution. 
Efficient even with 
non-differentiable 
and non-convex 
functions. 
Properly used can 
avoid getting stuck in 
local optima. 
Can make use of 
parallel or distributed 
computing 
techniques. 

If not properly used 
risk of becoming 
trapped into local 
optimum instead of 
finding the global 
optimum. 
Their reliance on 
randomness can lead 
to different results 
on different runs. 

GA:  
[108,109,48,8,60,58,56,110,111,112,59,44,45,64,53,10,63,113,29,19,114,100,99] 
PSO: [108,47,115,44,45,18,116] 
Harmony Search: [115]  

V.F. Sánchez-Zabala and T. Gómez-Acebo                                                                                                                                                                                                



Energy Conversion and Management: X 21 (2024) 100512

11

algorithms (SVR, RF, ET, KNN, ANNs) were applied to each represen
tative building in the district. Additionally, special attention was given 
to boosting methods such as GB, XGBoost, and Adaboost during the 
evaluation. As a result, building-specific synthetic data for an entire 
heating season was used to generate the metamodels for each repre
sentative building. This synthetic data was derived from the EnergyPlus 
models of the representative buildings, which had been previously 
calibrated with real data in the authors’ prior work [90]. The feature 
space of the dataset was carefully defined, drawing from the authors’ 
experiences in their previous work [90]. Table 6 presents the parameters 
that comprised the initially employed feature space. 

Given the high number of zones in the different buildings (ranging 
from 40 to 175), several approaches were explored to optimize the 
employed feature space. Finally, thermal zone setpoints and tempera
tures at the beginning of each time step were replaced with an equiva
lent setpoint and interior temperature for the entire building. The 
equivalent setpoint temperature was calculated as the volume-weighted 
mean value of the heating setpoint values of the heated zones of each 
building. The equivalent building temperature at the beginning of each 
time step was defined similarly. This resulted in a much more compact 
feature space without significantly impacting the model’s accuracy, as 
depicted in section 4. Fig. 3 describes the complete process of generating 
the metamodels for residential building 1D, including the definition of 
the feature space, the generation of synthetic data for training, testing, 
and validation, and ultimately, the generation and evaluation of the 
metamodel’s performance for each of the considered ML algorithms. 
This procedure was replicated for each of the residential and educational 
buildings. 

To train the metamodels for each building, 75 % of the generated 
synthetic data was utilized, while the remaining 25 % of the data was 
reserved for the testing phase. The generation of synthetic data for 
training and testing was accomplished by leveraging climatic data from 
the EnergyPlus weather file for the city of Belgrade. Furthermore, a 
specific synthetic dataset was generated for validating the performance 
of the metamodels for each building. This validation dataset was created 
using the EnergyPlus models of the representative residential and 
educational buildings. In this case, the models were fed with weather 
data corresponding to another location in Serbia with weather condi
tions similar to those of Belgrade (Banja Luka). The produced datasets 
underwent a standardization process, where the values of different 
features were transformed to a range between 0 and 1 using scaling. 

The hyperparameter tuning for different algorithms was carried out 
using a grid search procedure with cross-validation, typically employing 
5 K-folds. For metamodels based on ANNs, the network architecture was 
defined through an iterative manual process, including determining the 
number of hidden layers and neurons per layer. Given the substantial 
number of buildings and ML algorithms considered, a large number of 
metamodels were developed. Therefore, providing detailed hyper
parameter values for all the developed metamodels would be imprac
tical for the sake of brevity. The development of metamodels was 
accomplished through dedicated ML platforms, including Scikit-learn 
[121], KERAS [122], Tensorflow [123], and XGBoost [124]. As the 

ultimate purpose of these metamodels was to be integrated into an MPC 
solution, their potential was evaluated based on accuracy and latency. 
To assess the performance of different ML algorithms R2 [125] was 
selected. 

Expanding on the metamodels developed for one-step-ahead pre
dictions (hourly time resolution), Fig. 4 illustrates the recursive pro
cedure established to generate multi-step-ahead forecasting capabilities 
necessary for providing 24-hour ahead predictions. As depicted in Fig. 4, 
in order to generate heating demand and temperature predictions for a 
specific timestep (N), it is necessary to have the corresponding input 
vector for that timestep, which includes the building’s temperature at 
the beginning of the timestep, predicted by the temperature metamodel 
in the previous timestep (N-1). 

3.2.2. Metamodels for residential building typology 
As previously mentioned, developing metamodels for building ty

pologies could offer improved efficiency by creating valid models that 
could be applied to any building within a specific typology. This evo
lution could allow a reduction of the required workload without 
significantly compromising the accuracy of the models. As a conse
quence, after evaluating the potential of metamodels in predicting the 
energy behavior of specific building instances, the possibility of 
expanding their predictive capacity was explored by defining dedicated 
metamodels for predicting the heating demand and interior temperature 
of any residential building equipped with hot water radiators and having 
either a rectangular or L-shaped floor plan (R + L). To achieve this, a 
procedure was developed to upgrade the generalization capacity of 
these metamodels as necessary to predict the energy behavior of 
buildings with diverse characteristics. In the initial step, additional pa
rameters were incorporated into the feature space described in Table 6 
to enhance the metamodels’ generalization capacity concerning the 
architectural design of the buildings, including the following:.  

• Heated area.  
• Orientation and height.  
• Long and short façades lengths and widths.  
• Percentage of glazing area.  
• Façade, roof, and slab thermal transmittances.  
• Glazing Thermal and solar transmittances. 

The metamodels for predicting heating demand and building tem
perature were trained, tested, and validated using synthetic data 
generated from 6 representative residential buildings in the district (1D, 
6D and 6L with rectangular floor plans and 2A, 3G and 4E with L-shaped 
floor plans), using the EnergyPlus weather data file for Belgrade. To 
configure the training and testing datasets, synthetic data from 2 
buildings with rectangular floor plans and 2 buildings with L-shaped 
floor plans were employed. The validation dataset, on the other hand, 
was generated using data from de two remaining buildings. Fig. 5 pro
vides a simplified overview of the metamodels generation process for the 
residential building typology. 

The analysis was expanded by defining 2 additional sets of meta
models for the residential typology, considering, on one hand, only 
buildings with a rectangular floor plan (R), and on the other hand, only 
buildings with an L-shaped floor plan (L). In both cases, a total of 3 
buildings were available for training, testing and validation, with 2 
buildings allocated for training and testing and 1 building for validation. 
The distribution of synthetic data for training and testing followed the 
same criterion as mentioned earlier. 

To evaluate the impact on the model quality resulting from the in
clusion of extra buildings in the datasets for model generation, the 
metamodel generation process was repeated for both the metamodel set 
for rectangular and L-shaped floor plan building typology (R + L_PLUS), 
and for the metamodel set for rectangular floor plan building typology 
(R_PLUS). In this iteration, synthetic data from 3 additional rectangular 
floor plan buildings (NSA1, NSA5, NSA7) obtained from a previous 

Table 6 
Feature space for metamodels development. Specific building instances.  

Initial Feature Set 

Climatic User behaviour and 
activity patterns 

Ambient conditions  

• Air dry bulb 
temperature 

Solar 
irradiation 

Wind speed 
and direction 

Absolute 
humidity  

• Zone heating setpoint 
temperature 

Ventilation rates 
Occupancy patterns 
Day of the week, 

month, hour of the day  

• Zone temperatures at the 
beginning of the prediction 
time step  
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Fig. 3. Metamodels development procedure for specific building instances (residential and educational buildings).  

Fig. 4. Recursive procedure for multi-step ahead predictions.  

Fig. 5. Development procedure for the residential building typology metamodels.  
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project were added to the dataset after making slight modifications to 
align them with the architectural criteria of the Stepa Stepanovic 
buildings. Table 7 provides a summary of the evaluated metamodels, 
identifying the buildings used for training, testing, and validation. 

To generate multi-step ahead predictions, the procedure described in 
the preceding section was followed. Similarly, the evaluation of meta
model performance considered both latency and accuracy. The process 
of normalizing the datasets, the ML algorithms employed, hyper
parameter fine tuning, and the ML packages used to develop these 
metamodels followed the same criteria mentioned in the preceding 
section. 

3.2.3. Metamodels for MPC functionalities 
The ultimate purpose of the work described in this paper, and spe

cifically of the IDM, is to develop MPC functionalities that can be applied 
at the building/district scale to optimize the operation of building/dis
trict systems. To achieve this, it is necessary to develop metamodels with 
sufficient generalization capability concerning the strategies and set
tings to be optimized in each case. In contrast to the metamodels ana
lysed in the two preceding sections, which can predict the behavior of 
buildings operated based on predefined control logic and setpoints, the 
metamodels intended for MPC solutions must be capable of predicting 
the behavior of buildings operated under a wide range of alternative 
strategies or settings. 

As an initial step to assess the feasibility of developing metamodels 
for MPC applications in the buildings/district domain, a building-scale 
proof of concept was conducted. Specific metamodels were developed 
for residential building 6L with the necessary generalization capability 
to predict the impact on the building’s energy behavior resulting from 
optimal utilization of its own flexibility. Therefore, the developed met
amodels provided the capacity to predict the energy behaviour of the 
building depending on the existing heating setpoint temperature. Since 
the ventilation of the residential buildings, including Building 6L, was 
solved through natural ventilation and considering the characteristics of 
their thermal envelopes, this proof of concept was carried out for a 
modified design of building 6L, adding an improved thermal envelope 
and a mechanical ventilation system with heat recovery to increase the 
capacity of the building to store energy. Furthermore, to moderately 
expand the limited optimization potential dictated by the prevailing 
meteorological conditions during the heating season (marked by mini
mal outdoor temperature fluctuations throughout the day), a flexible 
heat tariff was introduced. This tariff encompassed a 50 % reduction in 
the heat supply cost during nights and the central hours of the day. 
While flexible tariffs are not commonly adopted by district heating op
erators, the growing integration of renewables and the adoption of 
decarbonized heat production technologies, along with the transition 
toward low distribution temperatures, anticipate the increasing viability 
of such tariff structures in the future. 

The dataset required to develop the aforementioned metamodels 

(training and testing) was generated by utilizing the results provided by 
the EnergyPlus model of building 6L adapted to its upgraded design. 
This involved a specific set of simulations carefully designed to provide 
the most accurate representation of the solution space while minimizing 
the number of required simulations. The designed set consisted of a total 
of 320 simulations. Each simulation was used to generate synthetic data 
corresponding to the building’s energy behavior for a complete heating 
season, with a specific profile for the heating setpoint. 

The setpoint temperature profiles were defined in a manner that 
enabled the generation of necessary synthetic data to describe the 
building’s dynamics with the minimum number of profiles. Due to space 
limitations, a detailed description of these profiles is omitted here. Fig. 1 
provides a simplified depiction of the process used to define the meta
models for optimizing the flexibility of building 6L, including dataset 
generation, evaluation of different ML algorithms, and the final defini
tion of the metamodels. 

The data from a series of preselected days was excluded from the 
training and testing datasets for later use in the optimization phase 
described below. The procedures for dataset normalization, data split to 
define training and testing datasets, generation of multi-step ahead 
predictions, hyperparameter fine tuning, used ML packages, and eval
uation of metamodel performance were all carried out according to the 
approaches described in the two preceding sections. 

In addition, optimization algorithms based on NSGA-II and PSO were 
defined, and the necessary testbed was implemented to integrate the 
metamodels with the optimization algorithms. The developed testbed 
enabled the identification of the heating setpoint hourly profile with a 
24-hour prediction horizon, facilitating the optimization of the daily 
energy cost of the building. Thus, optimizing building 6L’s flexibility 
became an optimization problem of the 24-value vector defining the 
heating setpoint hourly profile, using the daily energy consumption of 
the building as the objective function. To validate the developed opti
mization capabilities, days not used in the generation of training and 
testing datasets were employed. The testbed implementation was con
ducted in Python, utilizing the Pymoo [126] optimization package. Due 
to space limitations, specific details concerning the parameter values 
used to fine-tune the employed stochastic algorithms (e.g., number of 
generations, population size, etc.) are omitted. Fig. 6 illustrates the 
conceptual high-level architecture of the developed testbed, showing the 
coupling between the metamodels and optimization algorithms, as well 
as the main information flows involved in the optimization process. 

For validation purposes and to establish the ground truth of the 
evaluated optimization problem, a second testbed was designed by 
coupling EnergyPlus models to the GenOpt [127] general-purpose 
optimization platform, thus emulating a physics-based model MPC so
lution. Fig. 7 illustrates the conceptual architecture of this testbed, 
depicting the coupling of the model and optimization algorithm (PSO), 
as well as the existing information flows. 

4. Results and discussion 

In this section, the results derived from the application of the process 
outlined in Section 3.2 will be presented and analysed. This process aims 
to assess the potential of the developments required for the imple
mentation of the IDM as presented in Section 2.2. 

4.1. Building instance metamodels 

As described in Section 3.2.1, firstly, based on the feature space 
outlined in Table 6, the feasibility of reducing the number of parameters 
considered in the feature space was evaluated. This reduction involved 
substituting the parameter set related to setpoint temperature and in
ternal temperature of each thermal zone with an equivalent set of set
point temperature and interior temperature for the entire building. This 
modification of the feature space enabled a significant reduction in the 
number of required parameters (depending on the building, from 78 to 

Table 7 
Summary of developed residential building typology metamodels.  

METAMODELS FOR THE RESIDENTIAL BUILDING TYPOLOGY 

Metamodel Metamodel 
code 

Training and 
testing 
buildings 

Validation 

buildings Code 

Rectangular and L 
shaped floor plan 

R + L 6D, 6L, 2A, 4E 1D, 3G 1D, 3G 

Rectangular floor 
plan 

R 6D, 6L 1D 1D_SPEC 

L-shaped floor plan L 2A, 4E 3G 3G_SPEC 
Rectangular floor 

plan Plus 
R_PLUS 6D, 6L, NSA1, 

NSA5, NSA7 
1D 1D_SP_PLUS 

Rectangular and L 
shaped floor plan 
Plus 

R +
L_PLUS 

6D, 6L, 2A, 4E, 
NSA1, NSA5, 
NSA7 

1D, 3G 1D_PLUS, 
3G_PLUS  
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348). To evaluate this potential reduction, separate heating demand 
prediction metamodels were developed for the 1D residential building 
using different ML algorithms, employing both the initial feature space 
and the reduced feature space. Fig. 8 illustrates the comparison of R2 

values obtained from these metamodels for both the testing and vali
dation datasets. With the exception of the KNN metamodel, it can be 
observed that the simplification introduced in the feature space pro
duced a minor model prediction (SSA) accuracy degradation. 

In terms of model fitting durations and latency for the testing dataset, 
in the case of 1D residential building, diminishing the feature space led 
to a reduction of model training time of between 42.81 % and 87,01 % 
and a decrease of latency of between 27,57 % and 95,22 %, depending 

on the used ML algorithm. Given the substantial frequency of re-fittings 
required for each model throughout the grid search with cross- 
validation process, the adoption of the reduced feature space had the 
potential to considerably decrease the necessary computation times. The 
exercise was replicated for the rest of the residential buildings, yielding 
analogous outcomes. Therefore, taking into account the modest reduc
tion in algorithm precision and the potential cost savings in computa
tion, the reduced feature space was adopted for the completion of the 
rest of the work. 

Fig. 9 illustrates the distribution of R2 values obtained for the heating 
metamodels (SSA prediction) of the residential buildings in relation to 
the applied algorithms, encompassing both the testing dataset (left) and 

Fig. 6. Residential building flexibility optimization test bed.  

Fig. 7. Genopt-EnergyPlus building residential flexibility optimization test bed.  
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the validation dataset (right). For both the testing dataset and the vali
dation dataset, KNN yielded significantly inferior results compared to 
the rest of the considered algorithms. Specifically, in the case of the 
testing dataset, the values for the second (Q2) and third (Q3) quartiles 
were 0.964 and 0.968, respectively. For the validation dataset, the Q2 
and Q3 values were 0.878 and 0.89, respectively. These values signify a 
significant decrease in comparison to the figures from the testing data
set. This is thought to be a result of an incomplete similarity between the 
climatic conditions of Belgrade and those in Banja Luka, potentially 
giving rise to an overfitting concern for a straightforward model like 
KNN. In any case, to facilitate the relative comparison of the rest of the 
considered algorithms, the results pertaining to KNN have been 
excluded from Fig. 9. As displayed there the rest of the methods pro
vided high R2 values for the testing and validation datasets. In the case of 
the testing dataset, boosting methods clearly display the highest per
formance with Q2 values of 0.996, 0.995 and 0.995 for Adaboost (ADA), 
GB and XGBoost (XGB) respectively. Among classic ML algorithms RF 
(0.99) and SVR (0.983) display the best performance, followed by ANNs 
methods (KERAS and MLP) with Q2 values of 0.983 and 0.966 respec
tively. If Q3 is adopted as comparison parameter almost the same al
gorithm relative performance is obtained with values of 0.997, 0.996, 
0.996, 0.991, 0.986, 0.985 and 0.974 for ADA, GB, XGB, RF, KERAS, 
SVR and MLP respectively. 

As already indicated for KNN, the results obtained for the validation 
dataset present a reduction of performance in relation to the testing 
dataset. However, in this case and owing to the much higher general
ization capacity of the considered algorithms the observed reduction is 
moderate. However, this effect seems to affect the performance of the 
boosting methods with a slightly higher intensity. As a consequence, the 
prevalence of boosting methods in terms of performance, is less evident 
with SVR presenting almost comparable R2 values. More specifically, in 
terms of Q2 values, GB (0.9765) presents the highest performance 
closely followed by SVR (0.9755), ADA (0.974) and XGB (0.973). The 
rest of the algorithms also display high Q2 values with KERAS (0.971), 
RF (0.966) and MLP (0.953) completing the performance evaluation. If 
Q3 is adopted to evaluate the relative performance of the considered 
algorithms, Boosting (GB, ADA, XGB) methods prevail followed by SVR 

with Q3 values of 0.982, 0.98, 0.979 and 0.978 respectively. 
Fig. 10 illustrates the distribution of the MSA prediction R2 values 

obtained for the heating (left) and indoor temperature (right) meta
models of the residential buildings. For both, KNN yielded significantly 
inferior results. Specifically, in the case of the heating metamodel, the 
values for Q2 and Q3 were 0.8755 and 0.883, respectively. For the 
interior temperature metamodel, the Q2 and Q3 values were 0.934 and 
0.939, respectively. Therefore, in the case of the heating metamodel the 
existing performance decrease in relation to SSA prediction was mod
erate. In any case, to facilitate the relative comparison of the perfor
mance of the rest of the considered algorithms, the results pertaining to 
KNN have been excluded from Fig. 10. 

As displayed in Fig. 10 the rest of the methods provide high R2 values 
for the heating and interior temperature metamodels. In the case of the 
heating metamodel, in terms of Q2 values, the prevalence of boosting 
methods observed for SSA prediction disappears, and instead, the best 
performance is displayed by SVR (0.974), closely followed by ADA 
(0.969), GB (0.968), XGB (0.966) and MLP (0.966), with RF (0.952) 
offering the lowest performance. In relation to the results obtained for 
SSA prediction, these values represent a moderate, performance degra
dation. If Q3 is adopted as comparison criteria almost the same algo
rithm relative performance is obtained with values of 0.975, 0.972, 
0.969, 0.969, 0.967, and 0.955 for SVR, ADA, GB, MLP, XGB and RF 
respectively. 

In the case of the interior temperature metamodel, as displayed by 
Fig. 10 (right), in terms of Q2 values, XGB (0.9845) slightly outperforms 
SVR (0.984), ADA (0.983) and GB (0.983), with RF (0.98) and MLP 
(0.973) displaying the lowest performance. If, instead, Q3 is adopted as 
comparison parameter boosting methods prevail with values of 0.986, 
0.986, 0.985, 0.985, 0.984, and 0.974 for XGB, ADA, GB, SVR, RF and 
MLP respectively. 

Fig. 11 illustrates the distribution of R2 values obtained for the 
heating metamodels (SSA prediction) of the educational buildings in 
relation to the applied algorithms, encompassing both the testing 
dataset (left) and the validation dataset (right). For both datasets, KNN 
yielded significantly inferior results. Specifically, in the case of the 
testing dataset, the values for Q2 and Q3 were 0.936 and 0.944, 

Fig. 8. Residential building 1D. Heating metamodels R2. Testing dataset (left) and validation dataset (right). SSA prediction.  

Fig. 9. Residential building instances. Heating metamodels R2. Testing dataset (left) and validation dataset (right). SSA prediction.  
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respectively. For the validation dataset, the Q2 and Q3 values were 
0.899 and 0.944, respectively. As already mentioned in the case of 
residential buildings the performance degradation displayed for the 
validation dataset is believed to be caused by some level of disparity 
between the climatic conditions of Belgrade and those of Banja Luka. For 
the reasons already stated KNN results have been excluded from Fig. 11. 
The rest of the methods provide high R2 values for the testing and 
validation datasets. In the case of the testing dataset, as displayed by 
Fig. 11 (left), boosting methods clearly display the highest performance 
with Q2 values of 0.984, 0.982 and 0.982 for ADA, GB and XGB 
respectively. Among classic ML algorithms RF (0.974) and MLP (0.97) 
display the best performance, followed by SVR and KERAS with Q2 
values of 0.967 and 0.962 respectively. If Q3 is adopted as comparison 
parameter the same algorithm relative performance is obtained with 
values of 0.984, 0.982, 0.982, 0.979, 0.975, 0.971 and 0.969 for ADA, 
GB, XGB, RF, MLP, SVR and KERAS respectively. 

As already mentioned for the residential buildings, the results ob
tained for the validation dataset presented a moderate reduction of 
performance in relation to the testing dataset that affected the perfor
mance of the boosting methods with a slightly higher intensity. As a 
consequence, as displayed in Fig. 11 (right), the prevalence of boosting 
methods in terms of performance, is less evident with RF presenting 
comparable R2 values. More specifically, in terms of Q2 values, ADA 
(0.965) presents the highest performance closely followed by GB (0.96), 
RF (0.96) and XGB (0.959). The rest of the algorithms also display high 
Q2 values with KERAS (0.957), MLP (0.955) and SVR (0.951) 
completing the performance evaluation. If Q3 is adopted to evaluate the 
relative performance of the considered algorithms, no modifications can 
be observed. 

It is worth mentioning that in relation to the performance displayed 
by metamodels for residential buildings, in this case a moderate but 
relevant and consistent performance decrease was observed. This is 
consequence of the higher impact of using the reduced feature space on 
the educational buildings, derived from the existing significantly more 
complex and diverse activity patterns in relation to those of residential 
buildings. 

Fig. 12 illustrates the distribution of the MSA prediction R2 values 

obtained for the heating (left) and indoor temperature (right) meta
models of the educational buildings. For both KNN yielded significantly 
inferior results. Specifically, in the case of the heating metamodel, the 
values for Q2 and Q3 were 0,745 and 0,799, respectively. For the inte
rior temperature metamodel, the Q2 and Q3 values were 0,853 and 
0.883, respectively. For the reasons already mentioned the results for 
KNN have been excluded from Fig. 12. As displayed in Fig. 12 the rest of 
the methods provide relatively high R2 values for the heating and inte
rior temperature metamodels, but with a considerable performance loss 
in relation to the performance observed for SSA prediction. This effect is 
much more intense than in the case of the residential buildings. This is 
consequence of the higher impact of using the reduced feature space on 
the educational buildings derived from the existing significantly more 
complex and diverse activity patterns. 

In the case of the heating metamodel, in terms of Q2 values, the 
prevalence of boosting methods observed for SSA prediction disappears, 
with MLP and SVR presenting comparable levels of performance. More 
specifically, the best performance was displayed by ADA (0.93), fol
lowed by MLP (0.928), GB (0.926), SVR (0.924) and RF (0.922), with 
XGB (0.921) offering the lowest performance. Although suboptimal 
these performance levels remained acceptable in relation to the existing 
goals. If Q3 is adopted as comparison parameter almost the same algo
rithm relative performance is obtained with values of 0.94, 0.939, 0.935, 
0.933, 0.928 and 0.927 for ADA, MLP, GB, SVR, XGB and RF 
respectively. 

In the case of the interior temperature metamodel, in terms of Q2 
values, ADA (0.962) slightly outperforms XGB (0.960), SVR (0.960)and 
GB (0.953), with MLP (0.942) and RF (0.92) displaying the lowest 
performance. If, instead, Q3 is adopted as comparison parameter the 
relative performance of the considered algorithms remained the same 
with values of 0.972, 0.972, 0.969, 0.963, 0.952 and 0.935 for ADA, 
XGB, SVR, GB, MLP and RF respectively. 

Fig. 13 depict the distribution of the R2 value of the heating meta
models developed for the educational buildings according to the 
building type. The obtained results display the impact in terms of met
amodels performance degradation associated to the complexity of the 
activities performed in the buildings. There, it can be observed that the 

Fig. 10. Residential building instances. Heating metamodels R2 (left) and indoor temperature metamodels R2 (right). MSA prediction.  

Fig. 11. Educational building instances. Heating metamodels R2. Testing dataset (left) and validation dataset (right). SSA prediction.  
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performance results for the primary school, which displays significantly 
more complex activity patterns, are consistently below those obtained 
for the kindergarten. 

Regarding the latency associated with the developed metamodels, it 
is important to note that the computation times presented by all of them 
are entirely suitable for real-time usage. For example, in the case of the 
residential building with the highest number of thermal zones (building 
3G), except for ADA, the latency values corresponding to the testing 
dataset (881 instances) fall within the range of 0.018 (XGB) to 0.13 
(SVR) seconds. ADA was clearly the slowest algorithm with a latency of 
3.6 s. 

According to the obtained results and performed analysis the 
following conclusions can be delineated: 

• The proposed simplified feature space effectively captured the dy
namics of energy behavior for specific instances of residential and 
educational buildings, reducing computation times with a moderate 
impact on model accuracy. However, as the considered building 
usage patterns become more complex, the impact of using the 
reduced feature space increased, though without compromising its 
validity.  

• The developed metamodels were able to provide energy behavior 
predictions for specific instances of residential and educational 
buildings, with suitable levels of accuracy concerning the established 
objectives, both for 1-hour and 24-hour prediction horizons, with a 
moderate degradation in performance quality when extending the 
prediction horizon.  

• With the exception of KNN, all evaluated ML algorithms exhibited 
high R2 values. Particularly, boosting methods demonstrated a sig
nificant potential generally outperforming the rest of the considered 
algorithms. 

4.2. Residential typology metamodels 

Fig. 14 (left) displays the distribution of the R2 value of the meta
models for heating (SSA prediction and testing dataset) developed for 

the residential typology with rectangular and L-shaped floor plan (R +
L), the residential typologies with rectangular floor plans (R and 
R_PLUS), and the residential typology with L-shaped floor plan (L), 
respectively. It can be observed that in all cases, the values obtained for 
both Q2 (from 0.988 to 0.991) and Q3 (from 0.991 to 0.996) are very 
high, indicating a high level of precision for the developed metamodels. 
Regarding the Q2 value, all four considered models exhibited very high 
levels of accuracy without significant differences among them. On the 
other hand, when Q3 is used as the evaluation parameter, the meta
model for the residential typology with L-shaped floor plan (0.996) 
showed slightly higher levels of accuracy, closely followed by the rest of 
the metamodels with values of 0.992, 0.992, and 0.991 for the R_PLUS, 
R + L, and R metamodels, respectively. 

In contrast, Fig. 14 (right) illustrates the distribution of the R2 value 
obtained for the heating metamodels (SSA prediction and testing data
set) for the different considered residential building typologies, based on 
the algorithms employed for the development of these metamodels. It 
can be observed that for all considered algorithms, high accuracy values 
were achieved, with boosting methods prevailing over the others. In 
terms of Q2, ADA (0.996) exhibited the best performance, closely fol
lowed by GB (0.996), RF (0.991), ET (0.989), SVR (0.987), KERAS 
(0.979), MLP (0.972), KNN (0.973), and XGB (0.964). Using Q3 as the 
evaluation parameter, the relative performance levels of the considered 
algorithms was very similar, with the prevalence of boosting methods 
being somewhat more evident. In this case, GB (0.997) displayed the 
best performance, followed by ADA (0.996), XGB (0.996), RF (0.992), 
ET (0.99), KERAS (0.989), SVR (0.988), MLP (0.987), and KNN (0.976). 

As displayed in Fig. 14 (right), in the case of R and R_PLUS building 
typologies, and in relation to the rest of boosting methods, XGBoost 
algorithm demonstrated a higher susceptibility to overfitting issues. This 
could cause an increased variance in the model and a notable loss of 
precision for the validation datasets (SSA and MSA), when compared to 
the rest of boosting algorithms. In order to achieve a better balance 
between bias and variance in XGBoost models for building typologies R 
and R_PLUS, a decision was made during the training process to adjust 
these models with slightly less flexibility. This adjustment resulted in 

Fig. 12. Educational building instances. Heating metamodels R2 (left) and indoor temperature metamodels R2 (right). MSA prediction.  

Fig. 13. Educational building instances. Heating metamodels R2. Validation dataset SSA and MSA prediction (left). Testing and validation datasets SSA predic
tion (right). 

V.F. Sánchez-Zabala and T. Gómez-Acebo                                                                                                                                                                                                



Energy Conversion and Management: X 21 (2024) 100512

18

higher bias in relation to the testing dataset (lower R2 values). However, 
it enhanced the models’ generalization capability for the validation 
datasets (lower variance). This phenomenon occurred to a lesser extent 
for the rest of building typologies, producing a greater dispersion in the 
R2 values for XGBoost method compared to other boosting algorithms. 

Fig. 15 (left) depicts the distribution of the R2 value obtained for the 
heating metamodels (SSA prediction and validation dataset) for the 
different considered residential building typologies, based on the algo
rithms employed for the development of these metamodels. It can be 
observed that reasonably high performance values were achieved for all 
considered algorithms, but they were significantly lower than those 
observed for the testing dataset, with Q2 values ranging from 0.9 to 
0.951 and Q3 values ranging from 0.919 to 0.964. It is believed that this 
effect was due to a suboptimal definition of the solution spaces associ
ated with the different metamodels for the residential typology, result
ing from the availability of a suboptimal number of buildings for 
training. Additionally, this effect was slightly more pronounced in the 
case of boosting methods, causing their prevalence relative to other 
methods to be reduced. In terms of Q2, XGB (0.951) exhibited the best 
performance, closely followed by ET (0.945), ADA (0.938), SVR (0.935), 
GB (0.931), RF (0.925), MLP (0.917), KERAS (0.907), and KNN (0.9). 
Using Q3 as the evaluation parameter, the relative performance levels of 
the considered algorithms underwent some modifications, further 
aligning the performance of the boosting methods with that of the rest. 
In this case, KERAS (0.964) presented the best performance, followed by 
ET (0.959), ADA (0.952), XGB (0.952), MLP (0.952), GB (0.951), SVR 
(0.945), RF (0.9251), and KNN (0.919). 

On the other hand, Fig. 15 (right) displays the distribution of the R2 

value obtained for the heating metamodels (MSA prediction and vali
dation dataset) for the considered residential building typologies, based 
on the algorithms employed for the development of these metamodels. It 
can be observed that, except for MLP and RF, reasonably high precision 
levels were obtained for all the considered algorithms, with Q2 values of 
up to 0.948 and Q3 values of up to 0.959. Additionally, it can be noted 
that in relation to the SSA prediction in Fig. 15 (left), the loss of meta
model performance was very moderate. In terms of Q2, XGB (0.948) 
presented the best performance, followed by ADA (0.943), SVR (0.931), 
GB (0.93), ET (0.918), KNN (0.897), MLP (0.871), and RF (0.841), 

which yielded the worst results. Using Q3 as the evaluation parameter, 
the relative performance levels of the considered algorithms underwent 
minimal changes, with a slight increase in the prevalence of boosting 
methods. In this case, XGB (0.959) presented the best performance, 
followed by ADA (0.959), GB (0.943), SVR (0.940), ET (0.932), RF 
(0.931), MLP (0.922), and KNN (0.913). 

Fig. 16 (left) displays the distribution of the R2 value for the vali
dation buildings summarized in Table 7 (1D and 3G, 1D_SPEC, and 
1D_SP_PLUS and 3G_SPEC) used in the development of the heating 
metamodels (SSA prediction) for the residential typology (R + L, R and 
R_PLUS and L). It can be observed that, in all cases the values obtained 
for both Q2 (from 0.915 to 0.959) and Q3 (from 0.938 to 0.964) were 
acceptably high, but displayed a significant performance degradation in 
relation to the values observed for the testing dataset. As already 
mentioned this degradation was caused by the limitations on the defi
nition of the solution spaces of these metamodels, consequence of the 
suboptimal number of buildings available for training. The sensitivity of 
the metamodel performance to the number of building models available 
for training can be deduced comparing the performance provided by the 
metamodels for building 1D_SP_PLUS (R_PLUS metamodel) and building 
1D_SPEC (R metamodel). The addition of 3 extra models to train the 
R_PLUS metamodel enabled an increase in Q2 from a 0.919 value for 
building 1D_SPEC to a value of 0.959 in the case of building 
1D_SP_PLUS. If Q3 is used as evaluation parameter, it grows from 0.951 
for building 1D_SPEC to a value of 0.964 for building 1D_SP_PLUS. On 
the other hand, according to the Q2 and Q3 values observed for 1D 
(0.931 and 0.938) and 3G (0.915 and 0.945) buildings the R + L met
amodel displayed a similar performance for both rectangular plan 
buildings and L shape plan buildings. Finally, according to the Q2 and 
Q3 values displayed by buildings 1D (0.931 and 0.938) and 1D_SPEC 
(0.919 and 0.951) and buildings 3G (0.915 and 0.945) and 3G_SPEC 
(0.925 and 0.952), the performance of the R metamodel and of the L 
metamodel seemed to be slightly higher than that provided by the R + L 
metamodel. 

Similarly, Fig. 16 (right) displays the distribution of the R2 value for 
the validation buildings summarized in Table 7 (1D and 3G, 1D_PLUS 
and 3G_PLUS, 1D_SPEC and 1D_SP_PLUS and 3G_SPEC) used in the 
development of the heating metamodels (MSA prediction) for the 

Fig. 14. Residential typology. Heating metamodels R2 vs building typology (left). Heating metamodels R2 vs ML algorithms (right).  

Fig. 15. Residential typology. Heating metamodels R2. SSA prediction (left). MSA prediction (right). Validation dataset.  

V.F. Sánchez-Zabala and T. Gómez-Acebo                                                                                                                                                                                                



Energy Conversion and Management: X 21 (2024) 100512

19

residential typology (R + L and R + L_PLUS, R and R_PLUS and L). It can 
be observed that, excluding buildings 3G and 1D_SPEC, in all cases the 
values obtained for both Q2 (from 0.886 to 0.95) and Q3 (from 0.92 to 
0.975) were acceptably high and the performance degradation in rela
tion to the SSA prediction moderate. The impact associated with the 
availability of 3 additional models for the training of the R + L_PLUS and 
R_PLUS metamodels can be observed by comparing the Q2 and Q3 
values of the 1D (0.914 and 0.935) and 3G (0.886 and 0.920) buildings 
with those of the 1D_PLUS (0.932 and 0.975) and 3G_PLUS (0.930 and 
0.936) buildings, and the values of the 1D_SPEC building (0.895 and 
0.922) with those of the 1D_SP_PLUS building (0.950 and 0.955). In all 
cases, the availability of even a limited number of additional models 
allowed for a significant increase in the metamodels’ performance. On 
the other hand, according to the Q2 and Q3 values obtained for 1D 
(0.914 and 0.935) and 3G (0.886 and 0.920) buildings in the case of 
MSA predictions the R + L metamodel seemed to display a higher per
formance predicting the behaviour of rectangular plan buildings. 

Regarding the latency associated with the developed metamodels, it 
is important to note that the computation times presented by all of them 
were entirely suitable for real-time usage. For example, in the case of the 
R + L residential building typology, except for ADA, the latency values 
corresponding to the testing dataset (3524 instances) fall within the 
range of 0.016 (ET) to 4.16 (SVR) seconds. ADA was clearly the slowest 
algorithm with a latency of 23.4 s. These computation times were ob
tained using a portable workstation equipped with an Intel(R) Core(TM) 
i7-9750H Central Processing Unit (CPU) and 32 GB of RAM, exclusively 
utilizing the computing capabilities of its CPU without resorting to 
Graphics Processing Unit (GPU) capabilities. According to these pre
liminary results, with a suitable computing infrastructure and model 
implementations tailored to exploit GPU computing capabilities, 
computation times will be compatible with the integration of such 
models into predictive engines for district MPC solutions, even with an 
arbitrarily high number of connected buildings. In any case, as 
mentioned earlier, the utilization of the IDM in MPC solutions for DH 
systems will be the subject of a comprehensive district scale study in a 
subsequent specific paper. 

According to the obtained results and performed analysis, as a 
summary, the following conclusions can be compiled:  

• The degradation in model accuracy between the testing datasets and 
the validation datasets indicated that the number of buildings 
available for model generation (6) was suboptimal to achieve a 
sufficiently precise solution space definition to fully exploit the po
tential of metamodels in terms of precision.  

• Despite this, for all the evaluated residential building typologies, 
several of the considered algorithms allowed for the generation of 
metamodels with the capacity to provide 24-hour ahead predictions, 
with acceptable levels of precision relative to the set objectives. 
Particularly, boosting methods demonstrated a significant potential 
in general outperforming the rest of the considered algorithms.  

• For all the considered building typologies, the availability of even a 
small additional number of models (3) for metamodel training led to 

significant increases in their performance. Therefore, the proper 
definition of the solution space was the critical aspect for harnessing 
its potential. As a consequence, this process could potentially serve to 
progressively generate metamodels for residential typologies with 
increasing accuracy and generalization capability over time. 

4.3. MPC metamodels 

As described in the previous sections, boosting methods demon
strated significant potential for the development of metamodels. 
Therefore, for the development of metamodels aimed at optimizing the 
flexibility of specific instances of residential buildings, only boosting 
methods, as well as some stacking-based solutions, were investigated. 
However, stacking-based solutions were ultimately discarded since the 
marginal improvements in accuracy did not outweigh the lengthy 
training times resulting from the size of the dataset used (324.406 in
stances). Furthermore, the latency of these solutions was significantly 
higher than that of the rest of the methods, slowing down the real-time 
identification of optimal setpoints. 

As described in Section 3.2.1, the generation of building heating 
demand predictions for time horizons greater than 1 hour is based on a 
recursive procedure involving the coupling of a metamodel to predict 
the indoor temperature of the building and another metamodel to pre
dict building heating demand. From a purely predictive perspective the 
best performance, among all the considered algorithm combinations, 
was delivered by a combination of XGBoost heating demand metamodel 
(R2 = 0.978. SSA prediction) and a nested Adaboost (R2 = 0.995. SSA 
prediction) temperature metamodel. This combination displayed the 
best balance of high predictive precision levels over the complete so
lution space relevant for the addressed optimization problem. The nes
ted AdaBoost model was created by employing a standard AdaBoost 
algorithm, using an AdaBoost model as the base regressor instead of the 
more commonly used decision tree-based regressor. While the imple
mentation of the nested AdaBoost model led to longer computation 
times compared to other algorithms discussed in earlier sections, it 
became particularly important in optimizing building flexibility. Accu
rately predicting the indoor temperature evolution during the central 
hours of the day, when the heating system is inactive, proved essential 
for precise forecast of the building’s heating demand over prediction 
horizons exceeding 1 hour. In any case, as already mentioned, with 
suitable computing infrastructures and model implementations tailored 
to harness the computing capabilities of GPUs, the computation times 
associated with these models will be compatible with their integration 
into MPC solutions for large-scale DH systems. 

The evaluation of the simultaneous capacity of metamodels to pre
dict building behavior and of optimization algorithms to identify opti
mum heating setpoint temperature profiles, was carried out by 
replicating the system’s operation for a series of validation days not 
included in the training and testing datasets. To identify the optimal 
setpoint temperature profile, the optimization engine calculates, for 
each of the alternative operational settings, the cost associated with 
heating energy consumption based on the heating demand predictions 

Fig. 16. Residential typology. Heating metamodels R2. SSA Prediction (left) and MSA prediction (right). Validation dataset.  
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provided by the metamodels, applying the district heating supply tariff 
as outlined in Section 3.2.3. 

As an illustrative example, the results corresponding to January 10th 
are included, which can be considered representative of the perfor
mance provided by the developed solution for the entire set of evaluated 
validation days. Fig. 17 (left) displays the base hourly temperature 
setpoint profile for January 10th. This profile consists of a setback 
temperature of 16 ◦C maintained during the night and the central part of 
the day characterized by the lack of occupancy in the building, and a 
setpoint temperature of 20 ◦C maintained during the hours when the 
apartments remained occupied (from 7:00 to 10:00 h and from 17:00 to 
24:00 h). On the other hand, Fig. 17 (right) shows the hourly heating 
demand profile of building 6L for January 10th (E + ) corresponding to 
the base setpoint temperature profile, as well as the SSA and MSA pre
dictions provided by the heating metamodel. It can be observed that the 
SSA predictions accurately replicated the demand profile throughout the 
day, including the peak load occurring at 17:00 h. The MSA predictions 
also reasonably captured most of the profile but did not achieve suffi
ciently precise prediction of the peak occurring at 17:00 hours. 

Fig. 18 (left) depicts the comparison between the optimized hourly 
setpoint temperature profile for January 10th (E_PLUS_GENOPT) and 
the approximation provided by the system developed based on meta
models and stochastic optimization algorithms (GA). The optimized 
profile was characterized by a shift of two hours in the activation times 
of the heating system. As can be observed, the approximation provided 
by the developed system was able to closely replicate the optimized 
profile. On the other hand, Fig. 18 (right) shows the hourly heating 
demand profile of building 6L for January 10th (E + ), corresponding to 
the optimized profile, as well as the SSA and MSA predictions provided 
by the heating metamodel. It can be seen that the SSA predictions 
accurately reproduced the demand profile throughout the day, including 
the load peaks occurring during the two heating system startups (at 7:00 
and 15:00 h). Despite a certain degradation in performance, the MSA 
predictions also reasonably captured most of the profile, but from 17:00 
hours onwards, significantly underestimated the heating demand value. 

The combined effect of energy savings associated with smoothing 
heating peaks, as well as shifting a portion of energy consumption to 
times with lower heat purchase prices, resulted in daily cost savings 
ranging from approximately 5 to 10 % in relation to the cost associated 
to the baseline settings, depending on the validation day. The assess
ment of cost reduction related to heating energy throughout the entire 
heating season will undergo a thorough analysis in a subsequent, dedi
cated paper. This upcoming publication will delve into the evaluation of 
the impact at district scale of the integration of the IDM into district 
network MPC solutions. 

Based on the results obtained, as a summary conclusion, it is worth 
noting that although further efforts are still necessary to improve the 
accuracy of the metamodels for specific regions within the solution 
space, the developed metamodels and optimization engine successfully 
enabled an effective determination of optimized control commands with 
a dramatic reduction regarding the required computational times 
compared to traditional physics- based model MPC solutions (from 

hours to minutes). 

5. Conclusions 

This paper introduced an enhanced version of the IDM concept, 
achieved through co-simulation. The approach involved coupling met
amodels of buildings with a DH infrastructure Modelica model, resulting 
in an energy prediction engine for district MPC solutions with integrated 
supply/demand side modeling, improved generalization capacity, and 
reduced computational costs. 

The developed metamodels provided energy behavior predictions for 
individual cases of residential and educational buildings, yielding 
satisfactory levels of accuracy for 24-hour prediction horizons. This 
achievement was accomplished by effectively leveraging the devised 
recursive predictive process. All evaluated ML algorithms, except for 
KNN, exhibited notable performance with R2 values of up to 0.975 and 
0.94 for residential and educational buildings respectively. Boosting 
methods displayed remarkable potential, generally outperforming other 
algorithms. Based on the acquired results, the suggested feature space, 
formulated by leveraging the concepts of building equivalent tempera
ture and heating setpoint temperature, led to a reduction in computation 
times while exerting only a moderate influence on model accuracy. 

The process was expanded to encompass further generalization, 
resulting in three sets of generic metamodels capable of replicating the 
behavior of any residential building instance with rectangular or L shape 
floor plans. Furthermore, an incremental procedure was defined to 
enable the utilization of building simulation models from previous 
projects for metamodel training, enhancing their accuracy potential. 
Based on the attained results, the number of buildings available for the 
development of metamodels (up to 9 after implementing the incre
mental procedure) proved suboptimal in achieving a sufficiently precise 
definition of the solution space, hindering the complete realization of 
metamodels’ potential in terms of precision. Nevertheless, the devel
oped metamodels managed to generate reasonably accurate 24 hour 
ahead heating demand predictions. Notably, all algorithms considered, 
except for KNNs, showcased more than acceptable performance levels. 
Boosting methods, in particular, exhibited substantial potential, gener
ally surpassing the performance of other algorithms with R2 values of up 
to 0.959. The inclusion of even a small number of additional models for 
training yielded notable enhancements in metamodels performance. 

Finally, dedicated metamodels were created for residential building 
6L, with the necessary generalization capability to predict the effects on 
the building’s energy behavior resulting from optimal utilization of its 
own flexibility. The best performance was delivered by a combination of 
XGBoost heating demand metamodel (R2 = 0.978) and a nested Ada
boost (R2 = 0.995) temperature metamodel. The implemented testbed 
enabled the seamless integration of the metamodels with optimization 
algorithms based on NSGA-II, and the successful identification of the 
optimum daily heating setpoint hourly profiles with a 24-hour predic
tion horizon, leading to daily cost savings ranging from 5 % to 10 %. 
While additional efforts are still required to enhance the accuracy of the 
metamodels for certain specific regions within the solution space, they 

Fig. 17. Building 6L. Baseline heating SP temperature daily profile (left). Actual vs predicted heating demand (right). January 10th.  
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successfully facilitated the effective determination of optimized control 
commands. 

To further enhance the described developments, the authors are 
working on refining the metamodels for the considered residential ty
pologies. To accomplish this, an adequate number of building models 
will be utilized to facilitate an optimal delineation of the solution spaces 
essential for metamodel training. Additionally, as previously mentioned, 
the authors are actively involved in assessing at a district-scale the po
tential of the IDM as a predictive engine for MPC solutions in district 
systems. 
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