Working Paper nº 09/05

A Consistent Diagnostic Test for Regression Models Using Projections

J. Carlos Escanciano

Facultad de Ciencias Económicas y Empresariales
Universidad de Navarra
A CONSISTENT DIAGNOSTIC TEST FOR REGRESSION MODELS USING PROJECTIONS
J. Carlos Escanciano
Working Paper No.09/05
May 2005
JEL No. C12, C14, C52.

ABSTRACT
This paper proposes a consistent test for the goodness-of-fit of parametric regression models which overcomes two important problems of the existing tests, namely, the poor empirical power and size performance of the tests due to the curse of dimensionality and the choice of subjective parameters like bandwidths, kernels or integrating measures. We overcome these problems by using a residual marked empirical process based on projections (RMPP). We study the asymptotic null distribution of the test statistic and we show that our test is able to detect local alternatives converging to the null at the parametric rate. It turns out that the asymptotic null distribution of the test statistic depends on the data generating process, so a bootstrap procedure is considered. Our bootstrap test is robust to higher order dependence, in particular to conditional heteroskedasticity. For completeness, we propose a new minimum distance estimator constructed through the same RMPP as in the testing procedure. Therefore, the new estimator inherits all the good properties of the new test. We establish the consistency and asymptotic normality of the new minimum distance estimator. Finally, we present some Monte Carlo evidence that our testing procedure can play a valuable role in econometric regression modeling.

Juan Carlos Escanciano Reyero
Universidad de Navarra, Departamento de Métodos Cuantitativos
Campus Universitario, 31080 Pamplona
jescanci@unav.es

Acknowledgments
The author thanks Carlos Velasco and Miguel A. Delgado for useful comments. The paper has also benefited from the comments of two referees and the Co-editor. Research funded by the Spanish Ministry of Education and Science reference number SEJ2004-04583/ECON and by the Universidad de Navarra reference number 16037001.
A CONSISTENT DIAGNOSTIC TEST FOR REGRESSION MODELS USING PROJECTIONS

J. CARLOS ESCANCIANO*

Universidad de Navarra

June 1, 2005

Abstract

This paper proposes a consistent test for the goodness-of-fit of parametric regression models which overcomes two important problems of the existing tests, namely, the poor empirical power and size performance of the tests due to the curse of dimensionality and the choice of subjective parameters like bandwidths, kernels or integrating measures. We overcome these problems by using a residual marked empirical process based on projections (RMPP). We study the asymptotic null distribution of the test statistic and we show that our test is able to detect local alternatives converging to the null at the parametric rate. It turns out that the asymptotic null distribution of the test statistic depends on the data generating process, so a bootstrap procedure is considered. Our bootstrap test is robust to higher order dependence, in particular to conditional heteroskedasticity. For completeness, we propose a new minimum distance estimator constructed through the same RMPP as in the testing procedure. Therefore, the new estimator inherits all the good properties of the new test. We establish the consistency and asymptotic normality of the new minimum distance estimator. Finally, we present some Monte Carlo evidence that our testing procedure can play a valuable role in econometric regression modeling.

*The author thanks Carlos Velasco and Miguel A. Delgado for useful comments. The paper has also benefited from the comments of two referees and the Co-editor. Research funded by the Spanish Ministry of Education and Science reference number SEJ2004-04583/ECON and by the Universidad de Navarra reference number 16037001. Address correspondence to: Juan Carlos Escanciano, Facultad de Economicas, Universidad de Navarra, Edificio Biblioteca (Entrada Este), Pamplona, 31080, Navarra, Spain, e-mail: jescanci@eco.uc3m.es.
1. INTRODUCTION

The purpose of the present paper is to develop a consistent, powerful and simple diagnostic test for testing the adequacy of a parametric regression model with the property of being free of any user-chosen parameter (e.g. bandwidth) and at the same time, being suitable for cases in which the covariate is of high or moderate finite dimension. Most consistent tests proposed in the literature give misleading results for this latter empirically relevant case. This problem is intrinsic and is often referred to as the “curse of dimensionality” in the regression literature, see Section 7.1 of Fan and Gijbels (1996) for some discussion on this problem. More precisely, let $(Y, X')'$ be a random vector in a $(d+1)$-dimensional Euclidean space, Y represents the real-valued dependent (or response) variable, X is the d-dimensional explanatory variable, $d \in \mathbb{N}$, and A' denotes the matrix transpose of A. Under $E |Y| < \infty$, it is well-known that the regression function $E[Y | X]$ it is well-defined and represents almost surely (a.s.) the “best” prediction of Y given X, in a mean square sense. Then, it is common in regression modeling to consider the following tautological expression

$$Y = f(X) + \varepsilon,$$

where $f(X) = E[Y | X]$ is the regression function and $\varepsilon = Y - E[Y | X]$ is, by construction, the unpredictable part of Y given X, and therefore, it satisfies

$$E[\varepsilon | X] = 0 \text{ a.s.}$$

Much of the existing literature is concerned with the parametric modeling in that f is assumed to belong to a given parametric family $\mathcal{M} = \{f(\cdot, \theta) : \theta \in \Theta \subset \mathbb{R}^p\}$ and, by analogy, one considers the following parametric regression model

$$Y = f(X, \theta) + e(\theta),$$

(1)

with $f(X, \theta)$ a parametric specification for the regression function $f(X)$, and $e(\theta)$ a random variable (r.v), disturbance of the model. Parametric regression models continue to be attractive to practitioners because these models have the appealing property that the parameter θ together with the functional form $f(\cdot, \cdot)$ describe, in a very concise way, the relation between the response Y and the explanatory variable X. Since we do not know in advance the true regression model, to prevent wrong conclusions, every statistical inference which is based on model f should be accompanied by a proper model check. As a matter of fact, proper modeling is important in model-based economic decisions and/or to interpret parameters correctly.

Note that $f \in \mathcal{M}$ is tantamount to

$$E[e(\theta_0) | X] = 0 \text{ a.s., for some } \theta_0 \in \Theta \subset \mathbb{R}^p.$$

(2)
There is a huge literature on testing consistently the correct specification of a parametric regression model. Although the idea of the proposed consistent tests is similar in all cases, namely, comparing a parametric and a (semi-) non-parametric estimation of a functional of the conditional mean in (2), they can be divided in two classes of tests. The first class of tests uses nonparametric smoothing estimators of $\mathbb{E}[e(\theta_0) \mid X]$. We called this approach the “local approach”, see Eubank and Spiegelman (1990), Eubank and Hart (1992), Wooldridge (1992), Yatchew (1992), Gozalo (1993), Härdle and Mammen (1993), Horowitz and Härdle (1994), Hong and White (1995), Zheng (1996), Li (1999), Horowitz and Spokoiny (2001) or Koul and Ni (2004) for some examples. A related methodology to the local approach is that of empirical likelihood procedures as proposed in Chen, Härdle and Li (2003) or Tripathi and Kitamura (2003). The local approach requires smoothing of the data in addition to the estimation of the finite-dimensional parameter vector and leads to less precise fits. Tests based on the local approach have standard asymptotic null distributions, but their finite sample distributions depend on the choice of a bandwidth (or similar) of the nonparametric estimator, which affects the inference procedures.

The second class of tests avoids smoothing estimation by means of reducing the conditional mean independence to an infinite (but parametric) number of unconditional orthogonality restrictions, i.e.,

$$E[e(\theta_0) \mid X] = 0 \text{ a.s.} \iff E[e(\theta_0)w(X, x)] = 0, \forall x \in \Pi,$$

where Π is a properly chosen space, and the parametric family $w(\cdot, x)$ is such that the equivalence (3) holds, see Stinchcombe and White (1998) or Bierens and Ploberger (1997) for primitive conditions on the family $w(\cdot, x)$ to satisfy this equivalence. We call the approach based on (3) the “integrated approach”, because it uses the integrated (cumulative) measures of dependence $E[e(\theta_0)w(X, x)]$. In the literature, the most frequently used weighting functions have been the exponential function, e.g. $w(X, x) = \exp(ix'X)$ in Bierens (1982, 1990), where $i = \sqrt{-1}$ denotes the imaginary unit, and the indicator function $w(X, x) = 1(X \leq x)$, see, for instance, Stute (1997), Koul and Stute (1999), Whang (2000), Li, Hsiao and Zinn (2003) or Khmaladze and Koul (2004). Different families w deliver different power properties of the integrated based tests. Most tests based on the integrated approach have non-standard asymptotic null distributions, but they can be well approximated by bootstrap methods, see, e.g., Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998).

A common problem of the local and integrated approaches, is that, when the dimension of the explanatory variable X is high or even moderate, the sparseness of the data in high-dimensional spaces leads to most of the above test statistics to suffer a considerable bias, even for large sample sizes. In particular, tests based on the local approach or tests based on the family $w(X, x) = 1(X \leq x)$ tend usually to underrejection when the dimension of the regressors is moderate and the alternative at hand is nonlinear, see Escanciano (2004) and Section 4 below. This is an important practical limi-
tation for most tests considered in the literature because is not uncommon in econometric modeling to have high order models. Some statistical theories have been developed to overcome this problem, cf. Generalized Linear Models (GLM), see, e.g., McCullagh and Nelder (1989), or Single-Index Models, see, e.g., Powell, Stock and Stoker (1989). However, these theories are semiparametric, and therefore, need of smoothing techniques. In addition, they do not cover all possible models.

Here, we propose a new consistent test within the integrated framework which overcomes the main problems affecting to the indicator and exponential weighting families, namely, the biased due to the curse of dimensionality and the subjective choice of the integrating measure on \(\Pi \), respectively.

At the same time, it is simple to compute, does not need of user-chosen parameters or high dimensional numerical integration, is robust to higher order dependence (in particular to conditional heteroskedasticity) and presents excellent empirical power properties in finite samples, see Section 4 below. Furthermore, our test procedure provides a formalization of some well-known traditional exploratory tools based on residual-fitted values plots.

The layout of the article is as follows. In Section 2 we define the residual marked process based on projections (RMPP) as the basis for our test statistic. In Section 3 we study the asymptotic null distribution and the behavior against Pitman’s local alternatives of the new test statistic. For completeness of the exposition, we consider in this section a new minimum distance estimator for the regression parameter based on the RMPP and we show its consistency and asymptotic normality under similar assumptions as in the testing procedure. Also, because the asymptotic null distribution depends on the data generating process, a bootstrap procedure to approximate the asymptotic critical values of the test statistic is proposed. In Section 4 we make a simulation exercise comparing the new proposed test with some competing tests considered in the literature. This Monte Carlo experiment shows that our new test can play a valuable role in parametric regression modeling. Proofs of the main results are deferred to Appendix A. Appendix B contains a simple algorithm to compute the new test statistic.

2. THE RESIDUAL MARKED PROCESS BASED ON PROJECTIONS (RMPP)

Let \(\{Z_i = (Y_i, X'_i)\}_i \) be a sequence of independent and identically distributed (iid) \((d+1)\)-dimensional random vectors (r.v’s) with the same distribution as \(Z = (Y, X') \)’ and with \(0 < E |Y| < \infty \). The main goal in this paper is to test the null hypothesis (2), i.e.,

\[
H_0 : E[Y | X] = f(X, \theta_0) \text{ a.s., for some } \theta_0 \in \Theta \subset \mathbb{R}^p,
\]

against the alternative

\[
H_A : P(E[Y | X] \neq f(X, \theta)) > 0 , \text{ for all } \theta \in \Theta \subset \mathbb{R}^p.
\]
As arguing above, one way to characterize H_0 is by the infinite number of parametric unconditional moment restrictions
\[E[e(\theta_0)w(X, x)] = 0, \quad \forall x \in \Pi, \] (4)
where the parametric family $w(\cdot, x)$ is such that the equivalence in (3) holds. Examples of such families are $w(X, x) = 1(X \leq x)$, $w(X, x) = \exp(ix'X)$, $w(X, x) = \sin(x'X)$ or $w(X, x) = 1/(1 + \exp(c - x'X))$ with $c \neq 0$, see Stinchcombe and White (1998) for many other families.

In view of a sample $(Z_i)_{i=1}^n$, let us define the marked empirical process
\[R_{n,w}(x, \theta) = n^{-1/2} \sum_{i=1}^n e_i(\theta)w(X_i, x). \] (5)
Define also $R_{n,w}(\cdot, \theta_0)$ and $R_{n,w}^1(\cdot, \theta_n)$, where θ_n is a \sqrt{n}-consistent estimator of θ_0. The marks in $R_{n,w}^1$ are given by the classical residuals, therefore, we call $R_{n,w}^1$ a residual marked empirical process.

Because of the equivalence (3), it is natural to base the tests on a distance from $R_{n,w}^1$ to zero, i.e., on a norm $(R_{n,w}^1)$, say. The most used norms are the Cramèr-von Mises (CvM) and Kolmogorov-Smirnov (KS) functionals
\[\text{CvM}_{n,w} = \int_{\Pi} \left| R_{n,w}^1(x) \right|^2 \Psi(dx), \] (6)
\[\text{KS}_{n,w} = \sup_{x \in \Pi} \left| R_{n,w}^1(x) \right|, \]
respectively, where $\Psi(x)$ is an integrating function satisfying some mild conditions, see A4 below. Other functionals are possible. Then, tests in the integrated approach reject the null hypothesis (2) for “large” values of $\Gamma(R_{n,w}^1)$.

The first consistent integrated test proposed in the literature was that of Bierens (1982) based on the exponential weighting family, i.e., using the residual marked process
\[R_{n,\text{exp}}^1(x) = n^{-1/2} \sum_{i=1}^n e_i(\theta_n) \exp(ix'\Phi(X_i)), \]
where $\Phi(\cdot)$ is a bounded one-to-one Borel measurable mapping from \mathbb{R}^d to \mathbb{R}^d. Bierens (1982) considered a CvM norm with integrating measures $\Psi(dx) = \Upsilon(x)dx$, with $\Upsilon(x) = 1(x \in \Pi_{i=1}^d [-\varepsilon_l, \varepsilon_l])$, where $\varepsilon_l > 0$, $l = 1, \ldots, d$, are arbitrarily chosen numbers, see Bierens (1982, p. 109), or $\Upsilon(x)$ equals to a d-variate normal density function, see Bierens (1982, p. 111).

On the other hand, Stute (1997) used the indicator family $w(X, x) = 1(X \leq x)$ in the residual marked process. The main advantage of the indicator weighting function over the exponential function is that it avoids the choice of an arbitrary integrating function Ψ, because in the indicator case this is given by the natural empirical distribution function of $(X_i)_{i=1}^n$. But on the other hand, the indicator weight has the drawback of being more affected than exponential weights by the curse of dimensionality when d is moderate or high, see Section 4 below.
In this paper we propose a new family \(\{w, \Psi\} \) of weighting and integrating functions, respectively, which preserves the good properties of the exponential and indicator based tests, and at the same time avoids their deficiencies, namely, the arbitrary choice of the integrating function or numerical integration in high dimensional spaces and the problem of the curse of dimensionality, respectively. The CvM test based on this new family presents an excellent performance in finite samples and is very simple to compute. In addition, the new family \(w \) formalizes some traditional model diagnostic tools based on residual-fitted values plots for linear models.

Our first aim is to avoid the problem of the curse of dimensionality. The following result can be viewed as a particularization of the Cramér-Wold principle to our main concern, the goodness-of-fit of the regression function. Let \(|A| \) denote the Euclidean norm of \(A \).

Lemma 1: A necessary and sufficient condition for (2) to hold is that for any vector \(\beta \in \mathbb{R}^d \) with \(|\beta| = 1 \),

\[
E[e(\theta_0) | \beta'X] = 0 \quad \text{a.s., for some } \theta_0 \in \Theta \subset \mathbb{R}^p.
\]

Lemma 1 yields that consistent tests for \(H_0 \) can be based on one-dimensional projections. In particular, we have the characterization of the null hypothesis \(H_0 \)

\[
H_0 \iff E[e(\theta_0)1(\beta'X \leq u)] = 0 \quad \text{almost everywhere (a.e.) on } (\beta, u) \in \Pi, \text{for some } \theta_0 \in \Theta \subset \mathbb{R}^p,
\]

where from now on \(\Pi = S_d \times [-\infty, \infty] \) is the nuisance parameter space with \(S_d \) the unit ball in \(\mathbb{R}^d \), i.e., \(S_d = \{ \beta \in \mathbb{R}^d : |\beta| = 1 \} \). Therefore, the test we consider here rejects the null hypothesis for “large” values of the standardized sample analogue of \(E[e(\theta_0)1(\beta'X \leq u)] \).

A related approach to our is that of Stute and Zhu (2002), who considered the weighting family \(\{1(\beta_0'X \leq u)\} \) for model checks of GLM in an iid framework. However, note that they fix the direction to \(\beta_0 \), the direction involved in the GLM, so their approach is clearly different from that considered here, because we consider all the directions \(\beta \) in \(S_d \) simultaneously. As a consequence, our test will be consistent against all alternatives, whereas Stute and Zhu’s (2002) test is only consistent against alternatives satisfying that \(E[e(\theta_0)1(\beta_0'X \leq u)] \neq 0 \) in a set with positive Lebesgue measure, where \(\theta_0 \) and \(\beta_0 \) are the probabilistic limits under the alternative of the estimators of \(\theta_0 \) and \(\beta_0 \), respectively.

For the family \(1(\beta'X \leq u) \) the residual marked empirical process is given by

\[
R_n^1(\beta, u) = n^{-1/2} \sum_{i=1}^n e_i(\theta_n)1(\beta'X_i \leq u).
\]

The marks of \(R_n^1 \) are given by the classical residuals and the “jumps” by the projected regressors. Note that for a fixed direction \(\beta \), \(R_n^1 \) is uniquely determined by the residuals and the projected
variables \(\{\beta'X_i\}_{i=1}^n \), and vice versa. Like the usual residual-regressors plot, we can plot the path of \(R_n^1 \) for different directions \(\beta \) as an exploratory diagnostic tool. In particular, in the linear model, the plot of the path of \(R_n^1(\beta_n, u) \), with \(\beta_n \) the least squares estimator, resembles the usual residual-fitted values plot. Therefore, tests based on \(R_n^1(\beta_n, u) \) provide a formalization of such traditional well-known exploratory tools.

To measure the distance from \(R_n^1 \) to zero a norm has to be chosen. From computational considerations a CvM norm is very convenient in our context. Two facts motivate our choice of the integrating measure in the CvM norm. First, notice that once the direction \(\beta \) is fixed, \(u \) lives in the projected regressor variable’s space, and secondly, in principle, all the directions are equally important, cf. Lemma 1. To define our CvM test we need some notation. Let \(F_n(u) \) be the empirical distribution function of the projected regressors \(\{\beta'X_i\}_{i=1}^n \) and \(d \beta \) the uniform density on the unit sphere. Let also \(F(\beta(u)) \) be the true cumulative probability distribution function (cdf.) of \(\beta'X \). Then, we define the new CvM test as

\[
PCvM_n = \frac{1}{\Pi} \int (R_n^1(\beta, u))^2 F_n,\beta(u)du d\beta.
\] (8)

Therefore, we reject the null hypothesis \(H_0 \) for large values of \(PCvM_n \). See Appendix B for a simple algorithm to compute \(PCvM_n \) from a given data set \(\{Z_i\}_{i=1}^n \). Next section justifies inference for \(PCvM_n \) based on asymptotic theory.

Our test statistic \(PCvM_n \) avoids the deficiencies of Bierens (1982) and Stute (1997) tests, namely, the arbitrary choice of the integrating function or numerical integration in high dimensional spaces and the problem of the curse of dimensionality, respectively. However, it is worth to mention that our test is not necessarily better than Bierens’ (1982) and Stute’s (1997) tests. In fact, using the results of Bierens and Ploberger (1997) it can be shown that all these test are asymptotically admissible, and therefore, none of them is strictly better than the others uniformly over the space of alternatives. However, in our simulations below we show that for the alternatives considered our test is the best or comparable to the best test. A simple intuition as to why our test performs so well with the alternatives considered is as follows. Under the alternative it can be shown that, uniformly in \(x \in \Pi \),

\[
n^{-1/2}R_{n,w}^1(x) \xrightarrow{P*} E[e(\theta_*)w(X,x)],
\]

where \(\theta_* \) is the probabilistic limit of \(\theta_n \) under the alternative \(H_A \). On the other hand, under the normalization \(E[m^2(X,\theta_*)] = 1 \), where \(m(\cdot, \theta_*) = E[e(\theta_*) \mid X = \cdot] \), it holds that the optimization problem

\[
\max_{w, E[e^2(I_{-1})]} \frac{1}{E[e^2(I_{-1})]} ||E[e(\theta_*)w(I_{-1})]||^2
\]

attains its optimum at \(w^*(\cdot) = m(\cdot, \theta_*) \). Therefore, as \(w(\cdot, \cdot) \) is nearer to \(m(\cdot, \cdot) \), the test based on \(w \) is expected to have better power properties. It seems that for the models considered in Section 4
$m(\cdot, \theta_*)$ can be “well approximated” by our weight function $1(\beta'X \leq u)$ and this may explain the good power properties of our test procedure.

3. ASYMPTOTIC THEORY

Now, we establish the limit distribution of R_n under the null hypothesis H_0. For the asymptotic theory, note that R_n can be viewed as a mapping from (Ω, \mathcal{A}, P), the probability space in which all the r.v’s of this paper are defined, and with values in $\ell^\infty(\Pi)$, the space of all real-valued functions that are uniformly bounded on Π. Let \Rightarrow denote weak convergence on $\ell^\infty(\Pi)$, and P^* denotes convergence in outer probability, see Definitions 1.3.3 and 1.9.1 in van der Vaart and Wellner (1996), respectively. Also, \Rightarrow_d stands for convergence in distribution of real r.v’s. To derive asymptotic results we consider the following assumptions. First, let denote by $F_Y(\cdot)$ and $F_X(\cdot)$ the marginal cdf. of Y and X, respectively. Let also $\Psi_p(\cdot)$ be the product measure of $F_\beta(\cdot)$ and the uniform distribution on S_d, i.e., $\Psi_p(d\beta, du) = F_\beta(du)d\beta$. In the sequel C is a generic constant that may change from one expression to another.

Assumption A1:

A1(a): $\{Z_i = (Y_i, X_i')\}_{i=1}^n$ is a sequence of iid random vectors with $0 < E|Y_i| < \infty$.

A1(b): $E|\varepsilon|^2 < C$.

Assumption A2: $f(\cdot, \theta)$ is twice continuously differentiable in a neighborhood of $\theta_0 \in \Theta$. The score $g(X, \theta) = (\partial/\partial \theta') f(X, \theta)$ verifies that there exists a $F_X(\cdot)$-integrable function $M(\cdot)$ with $\sup_{\theta \in \Theta} |g(\cdot, \theta)| \leq M(\cdot)$.

Assumption A3:

A3(a): The parametric space Θ is compact in \mathbb{R}^p. The true parameter θ_0 belongs to the interior of Θ. There exists a θ_* such that $|\theta_n - \theta_*| = o_P(1)$, under both, the null and the alternative.

A3(b): The estimator θ_n satisfies the following asymptotic expansion under H_0

$$\sqrt{n}(\theta_n - \theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n l(Y_i, X_i, \theta_0) + o_P(1),$$

where $l(\cdot)$ is such that $E[l(Y, X, \theta_0)] = 0$ and $L(\theta_0) = E[l(Y, X, \theta_0)'l(Y, X, \theta_0)]$ exists and is positive definite.

Assumption A4: $\Psi_p(\cdot)$ is absolutely continuous with respect to Lebesgue measure on Π.

Assumptions A1-A2 are standard in the model checks literature, see, e.g., Bierens (1990) or Stute (1997). Assumption A3 is satisfied for instance, for the nonlinear least squares estimator (NLSE) and (under further regularity assumptions) its robust modifications, see, e.g., Chapter 7 in Koul
We shall show below that A3 is also satisfied for a new minimum distance estimator based on R^1_n. A4 is only necessary for the consistency of the test.

Under A1 and (2), using a classical Central Limit Theorem (CLT) for iid sequences, we have that the finite-dimensional distributions of R_n, where R_n is the process defined in (5) with $\theta = \theta_0$ and $w(X, x) = 1(\beta'X \leq u)$, converge to those of a multivariate normal distribution with a zero mean vector and variance-covariance matrix given by the covariance function

$$K(x_1, x_2) = E[e^21(\beta'_1X \leq u_1)1(\beta'_2X \leq u_2)],$$ \hfill (9)$$

where $x_1 = (\beta'_1, u_1)'$ and $x_2 = (\beta'_2, u_2)'$. The next result is an extension of this convergence to weak convergence in the space $\ell^\infty(\Pi)$. Throughout the rest of the paper $x = (\beta', u)'$ will denote the nuisance parameter and we interchange the notation x and $(\beta', u)'$ whenever this does not create confusion.

Theorem 1: Under the null hypothesis H_0 and A1

$$R_n \Rightarrow R_\infty,$$

where $R_\infty(\cdot)$ is a continuous Gaussian process with zero mean and covariance function given by (9).

In practice, θ_0 is unknown and has to be estimated from a sample $\{Z_i\}_{i=1}^n$ by an estimator θ_n, say. Next result shows the effect of the parameter uncertainty on the asymptotic null distribution of R^1_n. To this end, let define the function $G(x, \theta_0) = G(x) = E[g(X, \theta_0)1(\beta'X \leq u)]$ and let V be a normal random vector with zero mean and variance-covariance matrix given by $L(\theta_0)$.

Theorem 2: Under the null hypothesis H_0 and Assumptions A1-A3

$$R^1_n(\cdot) \Rightarrow R_\infty(\cdot) - G'(\cdot)V \equiv R^1_\infty(\cdot),$$

where R_∞ is the same process as in Theorem 1 and

$$\text{Cov}(R_\infty(x), V) = E[e^21(Y, X, \theta_0)1(\beta'X \leq u)].$$

Next, using the last theorem and the Continuous Mapping Theorem (CMT), see, e.g., Theorem 1.3.6 in Vaart and Wellner (1996), we obtain the asymptotic null distribution of the functional $PCvM_n$.

Corollary 1: Under the assumptions of Theorem 2, for any continuous functional (with respect to the supremum norm) $\Gamma(\cdot)$

$$\Gamma(R^1_n) \xrightarrow{d} \Gamma(R^1_\infty, w).$$

Furthermore,

$$PCvM_n \xrightarrow{d} PCVM_\infty = \int (R^1_\infty(\beta, u))^2 \Psi_\mu(d\beta, du).$$
Note that the integrating measure in $PCvM_n$ is a random measure, but previous result shows that the asymptotic theory is not affected by this fact. Also note that the asymptotic null distribution of $PCvM_n$ depends in a complex way of the data generating process (DGP) and the specification under the null, so critical values have to be tabulated for each model and each DGP, making the application of these asymptotic results difficult in practice. To overcome this problem we approximate the asymptotic null distribution of continuous functionals of R^1_n by a bootstrap procedure given below.

In Assumption A3 we require that the estimator of θ_0 admits an asymptotic linear representation. For completeness of the presentation we give some mild sufficient conditions under which a minimum distance estimator, see Chapter 5 in Koul (2002) and references therein, is asymptotically linear. Motivated from Lemma 1, we have that under the null

$$\theta_0 = \arg\min_{\theta \in \Theta} \int \left| E[e(\theta)1(\beta'X \leq u)] \right|^2 \Psi_p(d\beta, du),$$

(10)

and θ_0 is the unique value that satisfies (10). Then, we propose estimating θ_0 by the sample analogue of (10), that is,

$$\theta_n = \arg\min_{\theta \in \Theta} \int \frac{1}{n} \left| R^1_n(\beta, u, \theta) \right|^2 F_{n, \beta}(du) d\beta.$$

(11)

This estimator is a minimum distance estimator and extends in some sense the Generalized Method of Moments (GMM) estimator, frequently used in econometric and statistical applications. This kind of generalizations of GMM have been considered first in Carrasco and Florens (2000). Recently, and for $w(X, x) = 1(X \leq x)$, Dominguez and Lobato (2004) have considered a similar estimator to (11) for a conditional moment restriction under time series. Also recently, Koul and Ni (2004) have proposed a minimum distance estimation for θ_0 using a L_2-distance similar to that used in Härdle and Mammen (1993) in the “local approach”. Our estimator θ_n has the advantage of being free of any user-chosen parameter (bandwidth, kernel or integrating measure) and is expected to be more robust to the problem of the curse of dimensionality than the estimating procedures based on $1(X \leq x)$ or local approaches. Now, we shall show that θ_n in (11) satisfies assumption A3. The following matrices are involved in the asymptotic variance-covariance matrix of the estimator,

$$C = \int G(\beta, u)G(\beta, u)\Psi_p(d\beta, du),$$

$$D = \int G(x)G(x)K(x, y)\Psi_p(dx)\Psi_p(dy).$$

For the consistency and asymptotic normality of the estimator we need an additional assumption.

Assumption A1′: The regression function $f(\cdot, \theta)$ satisfies that there exists a $F_X(\cdot)$-integrable function $K_f(\cdot)$ with $\sup_{\theta \in \Theta} |f(\cdot, \theta)| \leq K_f(\cdot)$.

Theorem 3: Under H_0, Assumptions A1-A2 and A1′
(i) The estimator given in (11) is consistent, i.e., $\theta_n \rightarrow \theta_0$ a.s.

(ii) If in addition, the matrix C is nonsingular, then

$$\sqrt{n}(\theta_n - \theta_0) \xrightarrow{d} N(0, C^{-1}DC^{-1}).$$

From the proof of Theorem 3 in Appendix A we have immediately the asymptotic linear expansion required in A3(b)

$$\sqrt{n}(\theta_n - \theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l(Y_i, X_i, \theta_0) + o_P(1),$$

where now

$$l(Y_i, X_i, \theta_0) = -C^{-1} \{ Y_i - f(X_i, \theta_0) \} \int \Pi G(\beta, u) 1(\beta'X \leq u) \Psi_p(d\beta, du).$$

Note that in general the estimator given in (11) is not asymptotically efficient. An asymptotically efficient estimator based on the same minimum distance principle can be constructed following the ideas of Carrasco and Florens (2000). This optimal estimator will require the choice of a regularization parameter needed to invert a covariance operator, see Carrasco and Florens (2000) for more details.

Now we study the asymptotic distribution of R_{1n} under a sequence of local alternatives converging to null at a parametric rate $n^{-1/2}$. We consider the local alternatives

$$H_{A,n} : Y_{i,n} = f(X_i, \theta_0) + a(X_i) + \varepsilon_i, \text{ a.s., } 1 \leq i \leq n, \tag{12}$$

where the random variable $a(X)$ is F_X-integrable, zero mean and satisfies $P(a(X) = 0) < 1$. To derive the next result we need the following assumption.

Assumption A3': The estimator θ_n satisfies the following asymptotic expansion under $H_{A,n}$

$$\sqrt{n}(\theta_n - \theta_0) = \xi_n + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l(Y_i, X_i, \theta_0) + o_P(1),$$

where the function $l(\cdot)$ is as in A3 and ξ_n is a vector in \mathbb{R}^p.

Remark 1: It is not difficult to show that θ_n in (11) satisfies A3' under A1-A2 and A1’ with

$$\xi_n = C^{-1} \int \Pi E[a(X)1(\beta'X \leq u)]G(\beta, u) \Psi_p(d\beta, du).$$

Theorem 4: Under the local alternatives (12), Assumptions A1, A2 and A3'

$$R_{1n}^4 \Rightarrow R_{1\infty}^4 + D_n,$$
where R_1^∞ is the process defined in Theorem 2 and the function $D_a(\cdot)$ is the determinist function

$$D_a(\beta, u) = E[a(X)1(\beta'X \leq u)] - G'(\beta, u)\xi_u.$$

For some estimators, D_a has an intuitive geometric interpretation. For instance, for the new minimum distance estimator (11) the shift function is given by

$$D_a(\beta, u) = E[a(X)1(\beta'X \leq u)] - G'(\beta, u)C^{-1} \int \Pi E[a(X)1(\beta'X \leq u)]G(\beta, u)\Psi_p(d\beta, du),$$

and represents the orthogonal projection in $L_2(\Pi, \Psi_p)$, the Hilbert space of all real-valued and Ψ_p-square integrable functions on Π, of $E[a(X)1(\beta'X \leq u)]$ parallel to $G(\beta, u)$. The next corollary is consequence of the CMT and the last theorem.

Corollary 2: Under the local alternatives (12), and Assumptions A1, A2 and A3', for any continuous functional $\Gamma(\cdot)$

$$\Gamma(R_1^1) \overset{d}{\rightarrow} \Gamma(R_1^\infty + D_a).$$

Furthermore,

$$\int_\Pi |R_1^1(\beta, u)|^2 F_n(du) d\beta \overset{d}{\rightarrow} \int_\Pi |R_1^1(\beta, u) + D_a(\beta, u)|^2 \Psi_p(d\beta, du).$$

Note that because of Lemma 1, we have that

$$D_a = 0 \ a.e. \iff a(X) = \xi_a g(X, \theta_0) \ a.s.$$

Therefore, from this result it is not difficult to show that the test based on $PCvM_n$ is able to detect asymptotically any local alternative $a(\cdot)$ not parallel to $g(\cdot, \theta_0)$. This result is not attainable for tests based on the local approach, for instance, Härdle and Mammen’s (1993) test.

We have seen before that the asymptotic null distribution of continuous functionals of R_1^1 depends in a complicated way of the DGP and the specification under the null. Therefore, critical values for the test statistics can not be tabulated for general cases. Here we propose to implement the test with the assistance of a bootstrap procedure. Resampling methods have been extensively used in the model checks literature of regression models, see, e.g., Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998) or more recently Li, Hsiao and Zinn (2003). It is shown in these papers that the most relevant bootstrap method for regression problems is the wild bootstrap (WB) introduced in Wu (1986). We approximate the asymptotic null distribution of R_1^1 by that of

$$R_1^1(x) = n^{-1/2} \sum_{i=1}^n e_i^*(\theta_n^*)1(\beta'X_i \leq u) \quad x = (\beta', u)' \in \Pi,$$

12
where the sequence \(\{e^*_i(\theta^*_n)\}_{i=1}^n \) are the fixed design wild bootstrap (FDWB) residuals computed from \(e^*_i(\theta^*_n) = Y^*_i - f(X_i, \theta^*_n) \) where \(Y^*_i = f(X_i, \theta_n) + e_i(\theta_n)V_i \), \(\theta^*_n \) is the bootstrap estimator calculated from the data \(\{(Y^*_i, X^*_i)\}_{i=1}^n \) and \(\{V_i\}_{i=1}^n \) is a sequence of iid random variables with zero mean, unit variance, bounded support and also independent of the sequence \(\{Z_i\}_{i=1}^n \). Examples of \(\{V_i\}_{i=1}^n \) sequences are iid. Bernoulli variates with

\[
P(V_i = a_1) = p_1 \quad P(V_i = a_2) = 1 - p_1, \tag{13}
\]

where \(a_1 = 0.5(1 - \sqrt{5}) \), \(a_2 = 0.5(1 + \sqrt{5}) \) and \(p_1 = (1 + \sqrt{5})/2\sqrt{5} \), used in, e.g., Li, Hsiao and Zinn (2003). For other sequences see Mammen (1993). The reader is referred to Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998) for the theoretical justification of this bootstrap approximation and the assumptions needed. The results of these authors jointly with those proved here ensure that the proposed bootstrap test has a correct asymptotic level, is consistent and is able to detect alternatives tending to the null at the parametric rate \(n^{-1/2} \). Next section shows that this bootstrap procedure provides good approximations in finite samples.

4. MONTE CARLO EVIDENCE

In this section we compare the new CvM test with some competing integrated based tests proposed in the literature. This study complements others considered in the literature, see, e.g., Miles and Mora (2003). We briefly describe our simulation setup. We denote by \(PCvM_n \) the new Cramér-von Mises test defined in (8). For the explicit computation of \(PCvM_n \) see Appendix B.

Bierens (1982, p. 111) proposed the CvM test statistic based on the exponential weight function \(w(X, x) = \exp(ix'X) \) and the \(d \)-variate normal density function as the integration function, i.e.,

\[
CvM_{n, \text{exp}} = n^{-1} \sum_{j=1}^{n} \sum_{i=1}^{n} e_i(\theta_n)c_s(\theta_n) \exp\left(-\frac{1}{2} |X_i - X_j|^2 \right).
\]

We also consider here the CvM and KS statistics defined in Stute (1997) and that are given by

\[
CV_{n} = \frac{1}{n^2} \sum_{j=1}^{n} \left[\sum_{i=1}^{n} e_i(\theta_n)1(X_i \leq X_j) \right]^2
\]

and

\[
KS_n = \max_{1 \leq j \leq n} \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_i(\theta_n)1(X_i \leq X_j) \right\},
\]

respectively. Note that, \(CV_{n} \) and \(PCvM_n \) are the same test statistics when \(d = 1 \), by definition.

Recently, Stute and Zhu (2002) have considered an innovation process transformation of \(R^1_n(\beta_n, u) \) for testing the correct specification of GLM models, where \(\beta_n \) a suitable estimator of the GLM parameter, say \(\beta_0 \). More concretely, their test statistic is the CvM test

\[
SZ_n = \frac{1}{\psi_n'(x_0)} \int_{-\infty}^{x_0} \left[T_n R^1_n(\beta_n, u) \right]^2 \sigma^2_n(\beta_n(u)) \psi_n,_{\beta}(du),
\]

where the sequence \(\{e^*_i(\theta^*_n)\}_{i=1}^n \) are the fixed design wild bootstrap (FDWB) residuals computed from \(e^*_i(\theta^*_n) = Y^*_i - f(X_i, \theta^*_n) \) where \(Y^*_i = f(X_i, \theta_n) + e_i(\theta_n)V_i \), \(\theta^*_n \) is the bootstrap estimator calculated from the data \(\{(Y^*_i, X^*_i)\}_{i=1}^n \) and \(\{V_i\}_{i=1}^n \) is a sequence of iid random variables with zero mean, unit variance, bounded support and also independent of the sequence \(\{Z_i\}_{i=1}^n \). Examples of \(\{V_i\}_{i=1}^n \) sequences are iid. Bernoulli variates with

\[
P(V_i = a_1) = p_1 \quad P(V_i = a_2) = 1 - p_1, \tag{13}
\]

where \(a_1 = 0.5(1 - \sqrt{5}) \), \(a_2 = 0.5(1 + \sqrt{5}) \) and \(p_1 = (1 + \sqrt{5})/2\sqrt{5} \), used in, e.g., Li, Hsiao and Zinn (2003). For other sequences see Mammen (1993). The reader is referred to Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998) for the theoretical justification of this bootstrap approximation and the assumptions needed. The results of these authors jointly with those proved here ensure that the proposed bootstrap test has a correct asymptotic level, is consistent and is able to detect alternatives tending to the null at the parametric rate \(n^{-1/2} \). Next section shows that this bootstrap procedure provides good approximations in finite samples.

4. MONTE CARLO EVIDENCE

In this section we compare the new CvM test with some competing integrated based tests proposed in the literature. This study complements others considered in the literature, see, e.g., Miles and Mora (2003). We briefly describe our simulation setup. We denote by \(PCvM_n \) the new Cramér-von Mises test defined in (8). For the explicit computation of \(PCvM_n \) see Appendix B.

Bierens (1982, p. 111) proposed the CvM test statistic based on the exponential weight function \(w(X, x) = \exp(ix'X) \) and the \(d \)-variate normal density function as the integration function, i.e.,

\[
CvM_{n, \text{exp}} = n^{-1} \sum_{j=1}^{n} \sum_{i=1}^{n} e_i(\theta_n)c_s(\theta_n) \exp\left(-\frac{1}{2} |X_i - X_j|^2 \right).
\]

We also consider here the CvM and KS statistics defined in Stute (1997) and that are given by

\[
CV_{n} = \frac{1}{n^2} \sum_{j=1}^{n} \left[\sum_{i=1}^{n} e_i(\theta_n)1(X_i \leq X_j) \right]^2
\]

and

\[
KS_n = \max_{1 \leq j \leq n} \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_i(\theta_n)1(X_i \leq X_j) \right\},
\]

respectively. Note that, \(CV_{n} \) and \(PCvM_n \) are the same test statistics when \(d = 1 \), by definition.

Recently, Stute and Zhu (2002) have considered an innovation process transformation of \(R^1_n(\beta_n, u) \) for testing the correct specification of GLM models, where \(\beta_n \) a suitable estimator of the GLM parameter, say \(\beta_0 \). More concretely, their test statistic is the CvM test

\[
SZ_n = \frac{1}{\psi_n'(x_0)} \int_{-\infty}^{x_0} \left[T_n R^1_n(\beta_n, u) \right]^2 \sigma^2_n(\beta_n(u)) \psi_n,_{\beta}(du),
\]

where the sequence \(\{e^*_i(\theta^*_n)\}_{i=1}^n \) are the fixed design wild bootstrap (FDWB) residuals computed from \(e^*_i(\theta^*_n) = Y^*_i - f(X_i, \theta^*_n) \) where \(Y^*_i = f(X_i, \theta_n) + e_i(\theta_n)V_i \), \(\theta^*_n \) is the bootstrap estimator calculated from the data \(\{(Y^*_i, X^*_i)\}_{i=1}^n \) and \(\{V_i\}_{i=1}^n \) is a sequence of iid random variables with zero mean, unit variance, bounded support and also independent of the sequence \(\{Z_i\}_{i=1}^n \). Examples of \(\{V_i\}_{i=1}^n \) sequences are iid. Bernoulli variates with

\[
P(V_i = a_1) = p_1 \quad P(V_i = a_2) = 1 - p_1, \tag{13}
\]

where \(a_1 = 0.5(1 - \sqrt{5}) \), \(a_2 = 0.5(1 + \sqrt{5}) \) and \(p_1 = (1 + \sqrt{5})/2\sqrt{5} \), used in, e.g., Li, Hsiao and Zinn (2003). For other sequences see Mammen (1993). The reader is referred to Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998) for the theoretical justification of this bootstrap approximation and the assumptions needed. The results of these authors jointly with those proved here ensure that the proposed bootstrap test has a correct asymptotic level, is consistent and is able to detect alternatives tending to the null at the parametric rate \(n^{-1/2} \). Next section shows that this bootstrap procedure provides good approximations in finite samples.
where

\[T_n f(u) = f(u) - \int_{-\infty}^{u} a_{n, \beta_n}^1(v) A_n^{-1}(v) \int_{-\infty}^{\infty} a_{n, \beta_n}(y) \sigma_{n, \beta_n}^{-2}(y) f(dy) F_{n, \beta_n}(dv), \]

\[A_n(u) = \int_{-\infty}^{u} a_{n, \beta_n}(v) a_{n, \beta_n}^1(u) \sigma_{n, \beta_n}^{-2}(v) F_{n, \beta_n}(dv), \]

\(a_{n, \beta_n}(u) \) and \(\sigma_{n, \beta_n}^{-2}(u) \) are Nadaraya-Watson estimators of \(a_{\beta_n}(u) = E[g(X, \theta_0)/\beta_0']X = u \) and \(\sigma_{\beta_0}^{-2}(u) = E[\varepsilon^2 | \beta_0'X = u] \), respectively, \(\psi_{n, \beta_n}(u) = n^{-1} \sum_{i=1}^{n} \xi_i^2(\theta_n)1(\beta_n'X_i \leq u) \) and \(x_0 \) is the 99% quantile of \(F_{n, \beta_n} \). Under the correct specification of the GLM and some additional assumptions

\[\frac{SZ_n}{\lambda} \xrightarrow{d} \frac{1}{1} \int B^2(\cdot) d\mu, \]

where \(B(\cdot) \) a standard Brownian motion on \([0, 1]\), see Stute and Zhu (2002) for further details. For the nonparametric estimators we have chosen a Gaussian kernel with bandwidth \(h = 0.5n^{-1/2} \), see Stute and Zhu (2002).

We consider the same FDWB for the version of the exponential Bieren’s test and for the Stute’s (1997) tests as for our Cramér-von Mises test \(PCvM_n \). For \(SZ_n \) we consider empirical critical values based on 10000 simulations on the first null model in each block of models. In the sequel, \(\varepsilon_i \sim iid \ N(0, 1) \) and \(\nu_i \sim iid \ exp(1) \) are standard Gaussian and centered exponential noises, respectively. We consider in the simulations two blocks of models. In the first block, the null model is:

\[Y_i = a + bX_{1i} + cX_{2i} + \varepsilon_i, \]

where \(X_{1i} = (W_i + W_{1i})/2 \) and \(X_{2i} = (W_i + W_{2i})/2 \). \(W_i, W_{1i} \) and \(W_{2i} \) are iid \(U[0, 2\pi] \), independent of \(\varepsilon_i \), \(1 \leq i \leq n \). We examine the adequacy of this model under the following DGP:

1. **DGP1**: \(Y_i = 1 + X_{1i} + X_{2i} + \varepsilon_i \equiv X_i'\alpha_0 + \varepsilon_i. \)
2. **DGP1-EXP**: \(Y_i = 1 + X_{1i} + X_{2i} + \nu_i = X_i'\alpha_0 + \nu_i. \)
3. **DGP2**: \(Y_i = X_i'\alpha_0 + 0.1(W_{1i} - \pi)(W_{2i} - \pi) + \varepsilon_i. \)
4. **DGP3**: \(Y_i = X_i'\alpha_0 + X_i'\alpha_0 \exp \{-0.01(X_i'\alpha_0)^2\} + \varepsilon_i. \)
5. **DGP4**: \(Y_i = X_i'\alpha_0 + \cos(0.6\pi X_i'\alpha_0) + \varepsilon_i. \)

DGP1 and DGP2 are considered in Hong and White (1995). DGP3 is similar to their DGP3, see also Koul and Stute (1999). DGP4 is similar to that considered in Eubank and Hart (1992). DGP1-EXP is considered here to show the robustness of the tests against fatter-tailed error distributions. For the first block of models we consider a sample size of \(n = 50, 100 \) and 300. The number of Monte Carlo experiments is 1000 and the number of bootstrap replications is \(B = 500 \). For the bootstrap
approximation we employ the sequence \(\{V_i\}_{i=1}^n \) of iid Bernoulli variates given in (13). We estimate the null model by the usual least squares estimator (LSE). The nominal levels are 10\%, 5\% and 1\%.

In Table 1 we show the empirical rejection probabilities (RP) associated to models DGP1 and DGP1-EXP. The empirical levels of the test statistics are close to the nominal level, even for as small sample sizes as 50. The empirical levels for DGP1-EXP are less accurate than for DGP1 but are reasonable, showing that the tests are robust to fat-tailed error distributions.

Please, insert Table 1 about here.

In Table 2 we report the empirical power against the DGP2. It increases with the sample size \(n \) for all test statistics, as expected. It is shown that the new Cramér-von Mises test \(PCvM_n \) has the best empirical power in all cases. The empirical power for \(CvM_{n,exp} \) is reasonable and less than \(CvM_n \) and \(KS_n \) for \(n = 50 \), but better for \(n = 100 \) and 300. Stute and Shu’s (2002) test, \(SZ_n \), is the worst against this alternative. The rejection probabilities of \(PCvM_n \) are comparable to the best test in Hong and White (1995) against this alternative. In Table 3 we show the RP for DGP3. For this alternative \(SZ_n \) and our test statistic, \(PCvM_n \), have the best empirical powers, \(SZ_n \) performing slightly better than \(PCvM_n \). Bierens’ test \(CVM_{n,exp} \) has good power properties for this alternative. Stute’s test \(CvM_n \) performs similar to \(CVM_{n,exp} \), whereas \(KS_n \) presents the worst results, with a moderate power. For DGP4, \(PCvM_n \) and \(CVM_{n,exp} \) have excellent empirical powers. Stute’s tests, \(CvM_n \) and \(KS_n \), and Stute and Zhu’s (2002) test, \(SZ_n \), have low power against this “high-frequency” alternative.

Please, insert Tables 2, 3 and 4 about here.

The second block of models are taken from Zhu (2003). The null model is

\[
Y_i = X'_i \gamma_0 + \varepsilon_i,
\]

whereas the DGP’s considered are

\[
Y_i = X'_i \gamma_0 + b(X'_i \beta_0)^2 + \varepsilon_i
\]

where \(X'_i \) is a random \(d \)-dimensional covariate with iid \(U[0, 2\pi] \) marginal components, \(d = 3 \) and 6. When \(d = 3 \), \(\gamma_0 = (1, 1, 2)' \) and \(\beta_0 = (2, 1, 1)' \) and when \(d = 6 \), \(\gamma_0 = (1, 2, 3, 4, 5, 6)' \) and \(\beta_0 = (6, 5, 4, 3, 2, 1)' \). Furthermore, let \(b = 0.01, 0.02, \ldots, 0.1 \) when \(d = 3 \) and \(b = 0.001, 0.002, \ldots, 0.01 \) when \(d = 6 \). This experiment provides us evidence of the power performance of the tests under local alternatives (\(b = 0 \) corresponds to the null hypothesis). The sample size is \(n = 25 \), the rest of Monte Carlo parameters are as before.

We show the RP for these models in Figure 1. We see that in both cases, \(d = 3 \) and 6, our new test statistic \(PCvM_n \) and \(SZ_n \) have the best empirical power for all values of \(b \). None of them is
superior to the other for all values of \(b\) and for both models. For \(d = 3\), \(SZ_n\) performs slightly better than \(PCvM_n\). They are followed by \(CvM_n,\exp\). For \(d = 6\), \(PCvM_n\) has the best power for \(d \leq 0.006\), whereas \(SZ_n\) is the best for \(d > 0.006\). \(CvM_n,\exp\), \(CvM_n\) and \(KS_n\) have very low empirical power against this alternative.

Please, insert Figure 1 about here.

Summarizing, these two Monte Carlo experiments show that our test possesses an excellent power performance in finite samples for the alternatives considered. In all cases, our test has the best empirical power or it is comparable to the best test among the tests proposed by Bierens (1982), Stute (1997) or Stute and Zhu (2002). In our Monte Carlo experiments we have focused on the integrated based tests. Miles and Mora (2003) have compared through simulations some local and integrated based tests. These authors conclude that for one-dimensional regressors, the integrated based tests perform slightly better than the smoothing based ones, specially Bierens’ statistic. When the number of regressors is greater than one, some of the smoothing tests considered by these authors perform better. Therefore, should be important to compare our new test with the smooth-based tests considered by these authors, specially for the case of multivariate regressors. This study is beyond the scope of this paper and is deferred for future research. Our test has the advantage that no bandwidth selection is required, though its implementation requires the use of a bootstrap procedure. Our Monte Carlo experiments show that our test should be considered as a reasonable competent test to the best local-based test and a valuable diagnostic procedure for regression modeling.

NOTES

1. During the revision process one of the referees has suggested a modification of our test that might have better finite sample performance. Based on the inequality

\[
\int_{-\infty}^{\infty} (E[\mathbf{1}(\beta'X \leq u)]^2 F_\beta(du)) \leq \left(E[\mathbf{1} \sqrt{1 - F_\beta(\beta'X)}] \right)^2,
\]

which follows from simple algebra, the modified test statistic is

\[
\int_{\mathbb{R}_d} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_i(\theta_n) \sqrt{1 - F_{n,\beta}(\beta'X_i)} \right)^2 d\beta.
\]

However, contrary to \(PCvM_n\) the latter test statistic involves numerical integration and is much more difficult to compute.

REFERENCES

APPENDIX A: PROOFS

Proof of Lemma 1: Follows easily from Part I of Theorem 1 in Bierens (1982). □

Proof of Theorem 1: By a classical CLT we can show that the finite dimensional distributions of R_n converge to those of the Gaussian process R_∞. The asymptotic equicontinuity of R_n follows by a direct application of Theorem 2.5.2 in Vaart and Wellner (1996), see also their problem 14 on p.152. □

Proof of Theorem 2: Applying the classical mean value theorem argument we have

$$ R^1_n(x) = R_n(x) - n^{-1/2} \sum_{i=1}^{n} \{ f(X_i, \tilde{\theta}_n) - f(X_i, \theta_0) \} 1(\beta'X_i \leq u) $$

$$ = R_n(x) - I - II - III $$

where

$$ I = n^{1/2}(\theta_n - \theta_0) \frac{1}{n} \sum_{i=1}^{n} \{ g(X_i, \tilde{\theta}_n) - g(X_i, \theta_0) \} 1(\beta'X_i \leq u), $$

$$ II = n^{1/2}(\theta_n - \theta_0) \frac{1}{n} \sum_{i=1}^{n} [g(X_i, \theta_0) 1(\beta'X_i \leq u) - G(x, \theta_0)] $$

and

$$ III = n^{1/2}(\theta_n - \theta_0) G(x, \theta_0), $$

and where $\tilde{\theta}_n$ satisfies $|\tilde{\theta}_n - \theta_0| \leq |\theta_n - \theta_0|$ a.s. By A1-A3, the generalization by Wolfowitz (1954) of the Glivenko-Cantelli’s Theorem, and the uniform law of large numbers (ULLN) of Jennrich (1969), it is easy to show that $I = o_p(1)$ and $II = o_p(1)$ uniformly in $x \in \Pi$. So, the theorem follows from Theorem 1 and A3. □

Proof of Corollary 1: For a non-random continuous functional, the result follows from the Continuous Mapping Theorem and Theorem 2. For PCvM$_n$ the result follows because under the conditions of the Theorem 2 we have that R^1_n is asymptotically tight, and hence, Lemma 3.1 in Chang (1990) applies. □

Proof of Theorem 3: The proof follows exactly the same steps as the proof of Theorems 1 and 2 in Dominguez and Lobato (2004) and then, it is omitted. □

Proof of Theorem 4: Under the local alternatives (12) write

$$ R^1_n(x) = n^{-1/2} \sum_{i=1}^{n} \{ f(X_i, \theta_0) + a(X_i) \frac{a(X_i)}{n^{1/2}} + \tilde{\varepsilon}_i - f(X_i, \theta_0) \} 1(\beta'X_i \leq u) $$

$$ = R_n(x) + A_1 + A_2, $$

with

$$ A_1 = n^{-1/2} \sum_{i=1}^{n} \{ f(X_i, \theta_0) - f(X_i, \theta_0) \} 1(\beta'X_i \leq u) $$

and

$$ A_2 = n^{-1} \sum_{i=1}^{n} a(X_i) 1(\beta'X_i \leq u). $$
Using A3' as in Theorem 2, we obtain
\[|A_1 + n^{1/2}(\theta_n - \theta_0)G(x, \theta_0)| = o_P(1) \]
uniformly in \(x \in \Pi \). On the other hand, using the results of Wolfowitz (1954), we have uniformly in \(x \in \Pi \),
\[|A_2 - E[a(X)1(\beta' X \leq u)]| = o_P(1) \]
Using the preceding equations and (14), the theorem holds from Theorem 1 and A3'.

APPENDIX B: COMPUTATION OF THE TEST STATISTIC.

By simple algebra
\[
PCvM_n = \int_\Pi \left| R_n^1(\beta, u) \right|^2 F_{n,\beta}(du) d\beta
\]
\[
= n^{-1} \sum_{i=1}^n \sum_{j=1}^n c_i(\theta_n)c_j(\theta_n) \int_\Pi 1(\beta' X_i \leq u)1(\beta' X_j \leq u) F_{n,\beta}(du) d\beta.
\]
\[
= n^{-2} \sum_{i=1}^n \sum_{j=1}^n \sum_{r=1}^n c_i(\theta_n)c_j(\theta_n) \int_{S_d} 1(\beta' X_i \leq \beta' X_r)1(\beta' X_j \leq \beta' X_r) d\beta
\]
\[
= n^{-2} \sum_{i=1}^n \sum_{j=1}^n \sum_{r=1}^n c_i(\theta_n)c_j(\theta_n) A_{ijr}.
\]

For \(d > 1 \), note that the integral \(A_{ijr} \) is proportional to the volume of a spherical wedge, and hence we can compute them from the formula
\[
A_{ijr} = A_{ijr}^{(0)} \frac{\pi^{d-1}}{\Gamma(\frac{d}{2} + 1)}
\]
where \(A_{ijr}^{(0)} \) is the complementary angle between the vectors \((X_i - X_r)\) and \((X_j - X_r)\) measured in radians and \(\Gamma(\cdot) \) is the gamma function. Thus, \(A_{ijr}^{(0)} \) is given by
\[
A_{ijr}^{(0)} = \left| \pi - ar\cos \left(\frac{(X_i - X_r)'(X_j - X_r)}{||X_i - X_r|| ||X_j - X_r||} \right) \right|.
\]

Hence, the computation of these integrals is simple. In addition, there are some restrictions on the integrals \(A_{ijr} \) which make simpler the computation, for instance if \(X_i = X_j \) and \(X_i \neq X_r \) then \(A_{ijr}^{(0)} = \pi \), whereas if \(X_i = X_j \) and \(X_i = X_r \) then \(A_{ijr}^{(0)} = 2\pi \). If \(X_i \neq X_j \) and \(X_i = X_r \) or \(X_j = X_r \), we have that \(A_{ijr}^{(0)} = \pi \). Also, the symmetric property \(A_{ijr} = A_{jir} \) holds.
TABLES

Table 1. Empirical size of tests.

<table>
<thead>
<tr>
<th></th>
<th>DGP1</th>
<th>DGP1-EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=50</td>
<td>n=100</td>
</tr>
<tr>
<td>PCvM<sub>n</sub></td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>CvM<sub>n,exp</sub></td>
<td>9.3</td>
<td>5.2</td>
</tr>
<tr>
<td>CvM<sub>n</sub></td>
<td>9.5</td>
<td>4.8</td>
</tr>
<tr>
<td>KS<sub>n</sub></td>
<td>11.0</td>
<td>5.3</td>
</tr>
<tr>
<td>SZ<sub>n</sub></td>
<td>11.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>10.3</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Table 2. Empirical power of tests.

<table>
<thead>
<tr>
<th></th>
<th>DGP2</th>
<th>DGP1-EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=50</td>
<td>n=100</td>
</tr>
<tr>
<td>PCvM<sub>n</sub></td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>CvM<sub>n,exp</sub></td>
<td>23.3</td>
<td>13.0</td>
</tr>
<tr>
<td>CvM<sub>n</sub></td>
<td>21.1</td>
<td>11.5</td>
</tr>
<tr>
<td>KS<sub>n</sub></td>
<td>20.7</td>
<td>11.1</td>
</tr>
<tr>
<td>SZ<sub>n</sub></td>
<td>18.4</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Table 3. Empirical power of tests.

<table>
<thead>
<tr>
<th></th>
<th>DGP3</th>
<th>DGP1-EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=50</td>
<td>n=100</td>
</tr>
<tr>
<td>PCvM<sub>n</sub></td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>CvM<sub>n,exp</sub></td>
<td>72.7</td>
<td>61.8</td>
</tr>
<tr>
<td>CvM<sub>n</sub></td>
<td>68.4</td>
<td>56.6</td>
</tr>
<tr>
<td>KS<sub>n</sub></td>
<td>66.7</td>
<td>52.0</td>
</tr>
<tr>
<td>SZ<sub>n</sub></td>
<td>43.0</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>72.4</td>
<td>56.4</td>
</tr>
</tbody>
</table>
Table 4. Empirical power of tests.

<table>
<thead>
<tr>
<th></th>
<th>DGP4</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=50</td>
<td>n=100</td>
<td>n=300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCvM_n</td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>24.1</td>
<td>13.6</td>
<td>2.5</td>
<td>48.3</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.9</td>
<td>98.9</td>
</tr>
<tr>
<td>CvM_n</td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>24.6</td>
<td>13.3</td>
<td>2.7</td>
<td>51.2</td>
<td>29.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.8</td>
<td>97.9</td>
</tr>
<tr>
<td>CvM_n,exp</td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>5.5</td>
<td>1.0</td>
<td>14.8</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.7</td>
<td>25.3</td>
</tr>
<tr>
<td>KS_n</td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>4.8</td>
<td>0.4</td>
<td>15.7</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.5</td>
<td>25.4</td>
</tr>
<tr>
<td>SZ_n</td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>5.4</td>
<td>1.1</td>
<td>16.6</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.6</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Figure 1. Rejection probabilities plots for \(d = 3 \) and 6. The solid, solid-star, dot, dash and dash-dot lines are, respectively, for the empirical power of \(PCvM_n, SZ_n, CvM_{n,exp}, CvM_n \) and \(KS_n \).