(Institución)/></a>
				</td>
				<td class= (Institución)
   (Nuevo usuario)
Ayuda  | Contacto  |  Castellano English  
 

Dadun > Depósito Académico > Facultad de Ciencias > Departamento de Física y Matemática Aplicada > DA - Ciencias - Física - Artículos de Revista >

One dimensional dynamics in locally heated liquid layers
Autor(es) : Burguete, J. (J.)
Maza, D. (Diego)
Mancini, H.L. (Héctor Luis)
Fecha incorporación: 2003
Cita: J. Burguete, D. Maza, H.L. Mancini. “One dimensional dynamics in locally heated liquid layers”. Physica D, 174 p. 56-70, (2002).
Resumen
Recent results on one-dimensional patterns in locally heated experiments are presented. A fluid layer is heated locally by a nearly one-dimensional heater, and subjected to both horizontal and vertical temperature gradients. Depending on the fluid depth and on the temperature difference established across the layer different convective regimes appear. When a very small temperature gradient is applied a basic convective state appears. It consists of two big rolls parallel to the heater and filling the convective cell.Aprimary instability in the homogeneous basic flowgives rise to a one-dimensional cellular stationary pattern. For higher values of the control parameters, time-dependent patterns appear through a secondary instability. Various regimes are analyzed: oscillations, traveling waves and alternating patterns. The hydrodynamic characteristics of these patterns are provided. Local temperature measurements allows to describe the physical mechanisms responsible for the instabilities. The similarities and discrepancies of the experimental data with some theoretical models are provided.
Enlace permanente: http://hdl.handle.net/10171/1604
Aparece en las colecciones: DA - Ciencias - Física - Artículos de Revista

Ficheros en este registro:
Fichero:  2003.PhysD174.pdf
Descripción: 
Tamaño:  742,54 kB
Formato:  Adobe PDF
 Visualizar / Abrir 

Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.