<td class= Dadun
   (New user)
Help  | Contact  |  Castellano English  

Dadun > Depósito Académico > Facultad de Farmacia > Departamento de Ciencias de la Alimentación, Fisiología y Toxicología > DA - Farmacia - CAFT - Artículos de revista >

Effects of Trecadrine, a beta3-adrenergic agonist, on leptin secretion, glucose and lipid metabolism in isolated rat adipocytes
Authors: Moreno-Aliaga, M.J. (María Jesús)
Martinez, J.A. (José Alfredo)
Stanhope, K.L. (K.L.)
Fernandez-Otero, M.P. (María Pilar)
Havel, P.J. (P. J.)
Keywords: Beta3-adrenoceptor
Insulin-mediated glucose metabolism
Issue Date: 2002
Publisher: Nature Publishing Group
Publisher version:
ISSN: 0307-0565
Citation: Moreno-Aliaga MJ, Martinez JA, Stanhope KL, Fernandez-Otero MP, Havel PJ. Effects of Trecadrine, a beta3-adrenergic agonist, on leptin secretion, glucose and lipid metabolism in isolated rat adipocytes. Int J Obes Relat Metab Disord 2002 Jul;26(7):912-919.
Objective: Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure. beta-Adrenergic agonists have been shown to inhibit leptin gene expression and leptin secretion. The mechanisms underlying the inhibitory effects of beta-adrenergic agonists have not been established. In this study, we examined the effects of TrecadrineÒ, a novel beta3-adrenergic agonist, on basal and insulin-stimulated leptin secretion in isolated rat adipocytes. Because insulin-stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of Trecadrine on indices of adipocyte metabolism were also examined. Measurements: Isolated adipocytes were incubated with Trecadrine (10-8-10-4 M) in the absence or presence of insulin (1.6 nM). Leptin secretion, glucose utilization, lactate production, glucose incorporation into CO2 and triglyceride, as well as lipolysis (glycerol release) were determined. Results: Trecadrine induced a concentration-dependent inhibition of basal leptin secretion. Trecadrine also decreased insulin-stimulated leptin secretion; however, the effect was not as pronounced as in the absence of insulin. Treatment of adipocytes with Trecadrine increased basal glucose utilization and produced a further increase in insulin-stimulated glucose utilization. Basal lactate production was also increased by Trecadrine; however, the proportion (percentage) of glucose carbon released as lactate was unaffected. In the presence of insulin, absolute lactate production was unaffected by Trecadrine at 96 h. However, the percentage of glucose carbon released as lactate was significantly decreased by insulin treatment, and was further decreased by the co-treatment with Trecadrine. Trecadrine induced a dose-dependent increase of the absolute amount of glucose incorporated into triglyceride. However, the percentage of glucose utilized that was incorporated into triglyceride was unaffected by Trecadrine. Trecadrine did not modify the proportion of glucose utilized that was oxidized to CO2. Trecadrine increased glycerol release after 96 h of treatment. Glycerol release was negatively correlated with leptin secretion. Conclusions: These results suggest that alterations of glucose metabolism are not directly involved in the effects of beta3-adrenergic agonists to inhibit leptin expression and secretion. The inverse relationship between leptin secretion and the increase of glycerol levels, which is an index of the activation of cAMP-dependent protein kinases, suggests that activation of the cAMP signaling pathway mediates the inhibitory effects of Trecadrine on leptin gene expression and secretion.
Permanent link:
Appears in Collections:DA - Farmacia - CAFT - Artículos de revista

Files in This Item:
File:  IntJObesRelatMetabDisord.2002Jul.pdf
Size:  352,25 kB
Format:  Adobe PDF
 View / Open 

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.