Stability of hexagonal patterns in Bénard-Marangoni convection
Palabras clave : 
Materias Investigacion::Física
Fecha de publicación: 
2001
ISSN: 
1539-3755
Cita: 
Phys Rev E, 63, pp. 066307
Resumen
Hexagonal patterns in Bénard-Marangoni BM convection are studied within the framework of amplitude equations. Near threshold they can be described with Ginzburg-Landau equations that include spatial quadratic terms. The planform selection problem between hexagons and rolls is investigated by explicitly calculating the coefficients of the Ginzburg-Landau equations in terms of the parameters of the fluid. The results are compared with previous studies and with recent experiments. In particular, steady hexagons that arise near onset can become unstable as a result of long-wave instabilities. Within weakly nonlinear theory, a two-dimensional phase equation for long-wave perturbations is derived. This equation allows us to find stability regions for hexagon patterns in BM convection.

Ficheros en este registro:
Fichero: 
2001.PRE63.066307.pdf
Descripción: 
Tamaño: 
233,67 kB
Formato: 
Adobe PDF


Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.