Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats
Palabras clave : 
Maternal deprivation
Adolescent chronic unpredictable stress
Synaptic plasticity
Memory
Sex hormones
Sexual dimorphisms
Fecha de publicación : 
2011
Editorial : 
Blackwell Publishing
ISSN : 
1365-2826
Cita: 
Llorente R, Miguel-Blanco C, Aisa B, Lachize S, Borcel E, Meijer OC, et al. Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats. J Neuroendocrinol 2011 Apr;23(4):329-344.
Resumen
We have analysed the long-term psychoneuroendocrine effects of maternal deprivation (MD) [24 h at postnatal day (PND) 9] and/or exposure to chronic unpredictable stress (CUS) during the periadolescent period (PND 28 to PND 43) in male and female Wistar rats. Animals were tested in the elevated plus maze (EPM, anxiety) at PND 44 and in two memory tests, spontaneous alternation and novel object recognition (NOT) in adulthood. The expression of hippocampal glucocorticoid (GR) and mineralocorticoid (MR) receptors, as well as of synaptophysin, neural cell adhesion molecule and brain-derived neurotrophic factor, was analysed by in situ hybridisation in selected hippocampal regions. Endocrine determinations of leptin, testosterone and oestradiol plasma levels were carried out by radioimmunoassay. Young CUS animals showed decreased anxiety behaviour in the EPM (increased percentage of time and entries in the open arms) irrespective of neonatal treatment. Memory impairments were induced by the two stressful treatments as was revealed by the NOT, with males being most clearly affected. Although each stressful procedure, when considered separately, induced different (always decrements) effects on the three synaptic molecules analysed and affected males and females differently, the combination of MD and CUS induced an unique disruptive effect on the three synaptic plasticity players. MD induced a long-term significant decrease in hippocampal GR only in males, whereas CUS tended to increase MR in males and decrease MR in females. Both neonatal MD and periadolescent CUS induced marked reductions in testosterone and oestradiol in males, whereas MD male animals also showed significantly decreased leptin levels. By contrast, in females, none of the hormones analysed was altered by any of the stressful procedures. Taking our data together in support of the 'two-hit' hypothesis, MD during neonatal life and/or exposure to CUS during the periadolescent period induced a permanent deficit in memory, which was accompanied by a decrement in markers for hippocampal plasticity. The long-term effects on body weight and hormone levels, particularly among males, might reflect sex-dependent lasting metabolic alterations as well as an impaired reproductive function.

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Estadísticas e impacto
0 citas en
0 citas en

Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.