Gentamicin-loaded microspheres for reducing the intracellular Brucella abortus load in infected monocytes
Keywords: 
Biodegradable microspheres
Drug delivery systems
Brucella-infected monocytes
Issue Date: 
2004
Publisher: 
Oxford University Press
ISSN: 
0305-7453
Citation: 
Prior S, Gander B, Lecaroz C, Irache JM, Gamazo C. Gentamicin-loaded microspheres for reducing the intracellular brucella abortus load in infected monocytes. J Antimicrob Chemother. 2004 Jun;53(6):981-8.
Abstract
Objectives: The intracellular antibiotic efficiency of gentamicin-loaded microspheres in the context of Brucella-infected murine monocytes was examined in vitro with a view to developing improved therapies for the treatment of brucellosis. Methods: Biodegradable microspheres made of end-group capped and uncapped poly(lactide-co-glycolide) 50:50 (PLGA 50:50 and PLGA 50:50H) and containing gentamicin sulphate were used to target Brucella abortus-infected J774 monocyte-macrophages. The infected cells were treated with 15 µg of free or microencapsulated gentamicin and the efficacy of the treatments was measured after 24 h. Results: The particle sizes were below 8 µm and in vitro release of gentamicin from the microspheres followed a continuous (PLGA 50:50H) or a multiphasic (PLGA 50:50) pattern over 50 days. Treatment with gentamicin microencapsulated into the end-group uncapped PLGA 50:50H microspheres, decreased significantly the number of intracellular bacteria (typically by 2 log10) in comparison with untreated infected cells. Addition of 2% poloxamer 188 to the microsphere dispersion medium further reduced the infection (3.5 log10). Opsonization of the particles with non-immune mouse serum had no effect on the antibacterial efficacy of the microspheres. End-group capped PLGA 50:50 type microspheres containing the antibiotic were less effective at reducing intracellular bacteria (∼1 log10 reduction), although addition of poloxamer 188 to the dispersion medium again enhanced their intracellular antibacterial activity. Placebo PLGA 50:50 and PLGA 50:50H microspheres had no bactericidal activity. Conclusions: The results indicate that PLGA 50:50-microencapsulated gentamicin sulphate may be suitable for efficient drug targeting and delivery to reduce intracellular Brucella infections.

Files in This Item:
Thumbnail
File
IracheJAntChem200453.pdf
Description
Size
206.59 kB
Format
Adobe PDF


Statistics and impact

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.