Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release
Keywords: 
Cholinergic lesion
Dopaminergic system
Glutamatergic system
In vitro release
Rat
Issue Date: 
2006
Publisher: 
Blackwell Publishing
ISSN: 
1460-9568
Citation: 
Marcos B, Gil-Bea FJ, Hirst WD, Garcia-Alloza M, Ramirez MJ. Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release. Eur J Neurosci 2006 Sep;24(5):1299-1306.
Abstract
The involvement of the cholinergic system in learning and memory together with the cognitive enhancing properties of 5-HT6 receptor antagonists led us to study the relationship between 5-HT6 receptors and cholinergic neurotransmission. A selective cholinergic lesion, induced by injection of the immunotoxin 192-IgG-Saporin into the nucleus basalis magnocellularis, failed to alter the density of 5-HT6 receptor mRNA or protein expression in the deafferentated frontal cortex, suggesting that 5-HT6 receptors are not located on cholinergic neurons. The 5-HT6 receptor antagonist SB-357134 (0.001-1 microM) induced a concentration-dependant K+-evoked [3H]acetylcholine (ACh) release in vitro in rat cortical and striatal slices, which was blocked by tetrodotoxin. SB-357134, up to 1 microM, stimulated glutamate release in cortical and striatal slices. In the cortex, riluzole (1 microM) blocked the SB-357134-induced K+-stimulated [3H]ACh release, and simultaneous administration of MK-801 (1 microM) and SB-357134 (0.05 microM) elicited an increase in K+-evoked ACh release. In the striatum, SB-357134, 1 microM, decreased dopamine release, and the increase in K+-evoked [3H]ACh release induced by 5-HT6 receptor blockade was reversed by the D1 receptor antagonist, SCH23390 (1 microM). In both the frontal cortex and striatum, bicuculline, 1 microM, showed no effect on SB-357134-evoked [3H]ACh. These results are discussed in terms of neurochemical mechanisms involved in 5-HT6 receptor functions.

Files in This Item:
There are no files associated with this item.


Statistics and impact
0 citas en
0 citas en

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.