<td class= (Institución)
   (Nuevo usuario)
Ayuda  | Contacto  |  Castellano English  

Dadun > Depósito Académico > Clínica Universidad de Navarra > Neurología > DA - CUN - Neurología - Artículos de revista >

Computational classifiers for predicting the short-term course of Multiple sclerosis
Autor(es) : Bejarano, B. (B.)
Bianco, M. (Mariangela)
Gonzalez-Moron, D. (Dolores)
Sepulcre, J. (Jorge)
Goñi, J. (Joaquín)
Arcocha, J. (Juan)
Soto, Ó. (Óscar)
Carro, U. (Ubaldo) del
Comi, G. (Giancarlo)
Leocani, L. (Letizia)
Villoslada, P. (Pablo)
Palabras clave : Magnetic Resonance Imaging
Multiple Sclerosis/classification/diagnosis
Neural Conduction/physiology
Fecha incorporación: 2011
Editorial : BioMed Central
Versión del editor: http://www.biomedcentral.com/content/pdf/1471-2377-11-67.pdf
ISSN: 1471-2377
Cita: Bejarano B, Bianco M, Gonzalez-Moron D, Sepulcre J, Goni J, Arcocha J, et al. Computational classifiers for predicting the short-term course of Multiple sclerosis. BMC Neurol 2011 Jun 7;11:67.
The aim of this study was to assess the diagnostic accuracy (sensitivity and specificity) of clinical, imaging and motor evoked potentials (MEP) for predicting the short-term prognosis of multiple sclerosis (MS). METHODS: We obtained clinical data, MRI and MEP from a prospective cohort of 51 patients and 20 matched controls followed for two years. Clinical end-points recorded were: 1) expanded disability status scale (EDSS), 2) disability progression, and 3) new relapses. We constructed computational classifiers (Bayesian, random decision-trees, simple logistic-linear regression-and neural networks) and calculated their accuracy by means of a 10-fold cross-validation method. We also validated our findings with a second cohort of 96 MS patients from a second center. RESULTS: We found that disability at baseline, grey matter volume and MEP were the variables that better correlated with clinical end-points, although their diagnostic accuracy was low. However, classifiers combining the most informative variables, namely baseline disability (EDSS), MRI lesion load and central motor conduction time (CMCT), were much more accurate in predicting future disability. Using the most informative variables (especially EDSS and CMCT) we developed a neural network (NNet) that attained a good performance for predicting the EDSS change. The predictive ability of the neural network was validated in an independent cohort obtaining similar accuracy (80%) for predicting the change in the EDSS two years later. CONCLUSIONS: The usefulness of clinical variables for predicting the course of MS on an individual basis is limited, despite being associated with the disease course. By training a NNet with the most informative variables we achieved a good accuracy for predicting short-term disability.
Enlace permanente: http://hdl.handle.net/10171/22776
Aparece en las colecciones: DA - CUN - Neurología - Artículos de revista

Ficheros en este registro:
Fichero:  BMC Neurology 2011 67.pdf
Tamaño:  1,04 MB
Formato:  Adobe PDF
 Visualizar / Abrir 

Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.