Sox-2 positive neural progenitors in the primate striatum undergo dynamic changes after dopamine denervation
Keywords: 
Neural Progenitors
Dopamine Denervation
Sox-2 Positive
Issue Date: 
2013
Publisher: 
Public Library of Science
ISSN: 
1932-6203
Citation: 
Ordoñez C, Moreno-Murciano P, Hernandez M, Di Caudo C, Carril-Mundiñano I, Vazquez N, et al. Sox-2 Positive Neural Progenitors in the Primate Striatum Undergo Dynamic Changes after Dopamine Denervation. PLoS One. 2013 Jun 18;8(6):e66377.
Abstract
The existence of endogenous neural progenitors in the nigrostriatal system could represent a powerful tool for restorative therapies in Parkinson's disease. Sox-2 is a transcription factor expressed in pluripotent and adult stem cells, including neural progenitors. In the adult brain Sox-2 is expressed in the neurogenic niches. There is also widespread expression of Sox-2 in other brain regions, although the neurogenic potential outside the niches is uncertain. Here, we analyzed the presence of Sox-2+ cells in the adult primate (Macaca fascicularis) brain in naïve animals (N = 3) and in animals exposed to systemic administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine to render them parkinsonian (N = 8). Animals received bromodeoxyuridine (100 mg/kg once a day during five consecutive days) to label proliferating cells and their progeny. Using confocal and electron microscopy we analyzed the Sox-2+ cell population in the nigrostriatal system and investigated changes in the number, proliferation and neurogenic potential of Sox-2+ cells, in control conditions and at two time points after MPTP administration. We found Sox-2+ cells with self-renewal capacity in both the striatum and the substantia nigra. Importantly, only in the striatum Sox-2+ was expressed in some calretinin+ neurons. MPTP administration led to an increase in the proliferation of striatal Sox-2+ cells and to an acute, concomitant decrease in the percentage of Sox-2+/calretinin+ neurons, which recovered by 18 months. Given their potential capacity to differentiate into neurons and their responsiveness to dopamine neurotoxic insults, striatal Sox-2+ cells represent good candidates to harness endogenous repair mechanisms for regenerative approaches in Parkinson's disease

Files in This Item:
Thumbnail
File
Plos One 2013 pone.0066377.pdf
Description
Size
2.6 MB
Format
Adobe PDF


Statistics and impact
0 citas en
0 citas en

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.