Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus
Keywords: 
IGM
Vectors
Rhesus-monkeys
Nonhuman-primates
Transgene expression
Complement activation
In-vivo
Natural antibodies
Immune-response
Kupffer cells leads
Issue Date: 
2014
ISSN: 
1932-6203
Citation: 
Unzu C, Melero I, Morales-Kastresana A, Sampedro A, Serrano-Mendioroz I, Azpilikueta A, et al. Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus. PLoS One 2014 Jan 21;9(1):e85432.
Abstract
The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors.

Files in This Item:
File: 
pdf.pdf
Description: 
Size: 
1,59 MB
Format: 
Adobe PDF


Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.