Trap model for clogging and unclogging in granular hopper flows
Palabras clave : 
Física
Granular flows
Clogs
Fecha de publicación : 
2018
ISSN : 
0031-9007
Cita: 
Nicolas, A.; Garcimartín-Montero, Á. (Ángel); Zuriguel-Ballaz, I. (Iker). "Trap model for clogging and unclogging in granular hopper flows". Physical Review Letters. 120 (19), 2018, 198002
Resumen
Granular flows through narrow outlets may be interrupted by the formation of arches or vaults that clog the exit. These clogs may be destroyed by vibrations. A feature which remains elusive is the broad distribution pð¿Þ of clog lifetimes ¿ measured under constant vibrations. Here, we propose a simple model for arch breaking, in which the vibrations are formally equivalent to thermal fluctuations in a Langevin equation; the rupture of an arch corresponds to the escape from an energy trap. We infer the distribution of trap depths from experiments made in two-dimensional hoppers. Using this distribution, we show that the model captures the empirically observed heavy tails in pð¿Þ. These heavy tails flatten at large ¿, consistently with experimental observations under weak vibrations. But, here, we find that this flattening is systematic, which casts doubt on the ability of gentle vibrations to restore a finite outflow forever. The trap model also replicates recent results on the effect of increasing gravity on the statistics of clog formation in a static silo. Therefore, the proposed framework points to a common physical underpinning to the processes of clogging and unclogging, despite their different statistics.

Ficheros en este ítem:
Vista previa
Fichero
pdf.pdf
Descripción
Tamaño
474.28 kB
Formato
Adobe PDF


Estadísticas e impacto

Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.