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Obesity and immune function relationships

lysate virus and tumour-bearing cells. On the other hand,

acquired or adaptive immunity comes into play because of

previous contact and memory, which is usually assigned to

two broad categories: (i) humoral immunity, in which B-

lymphocytes synthesize and release specific antibodies con-

sisting of five different immunoglobulin subtypes and (ii)

cell-mediated immunity that depends on various thymus-

processed lymphocyte subsets (T-lymphocytes) and their

products: the lymphokines, which are efficient against a

number of antigens. Sub-populations of T-lymphocytes can

be functionally ascribed as helper T lymphocytes (Th) or

cytotoxic/suppressor T-lymphocytes (Tc) depending of the

cluster of differentiation expression (CD4+ and CD8+,

respectively).

In this context, T-lymphocytes specifically destroy those

cells releasing antigens because they are infected by virus
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Summary
The immunological processes involved in the collaborative defence of organisms

are affected by nutritional status. Thus, a positive chronic imbalance between

energy intake and expenditure leads to situations of obesity, which may influence

unspecific and specific immune responses mediated by humoral and cell mediated

mechanisms. Furthermore, several lines of evidence have supported a link between

adipose tissue and immunocompetent cells. This interaction is illustrated in

obesity, where excess adiposity and impaired immune function have been

described in both humans and genetically obese rodents. However, limited and

often controversial information exist comparing immunity in obese and non-obese

subjects as well as about the cellular and molecular mechanisms implicated. In

general terms, clinical and epidemiological data support the evidence that the 

incidence and severity of specific types of infectious illnesses are higher in obese

persons as compared to lean individuals together with the occurrence of poor anti-

body responses to antigens in overweight subjects. Leptin might play a key role in

linking nutritional status with T-cell function. The complexities and heterogeneity

of the host defences concerning the immune response in different nutritional cir-

cumstances affecting the energy balance require an integral study of the immuno-

competent cells, their subsets and products as well as specific and unspecific

inducer/regulator systems. In this context, more research is needed to clarify the

clinical implications of the alterations induced by obesity on the immune function.
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Introduction

The immune system protects the individual through differ-

ent cellular and molecular mechanisms, which are designed

to identify its own cells and substances, but also to detect

and destroy/block foreign organisms and their products

(1,2).

There are two principal branches of the immune

response (2), which are categorized as innate (unspecific)

or acquired (specific). Innate or natural immunity does 

not require previous exposure and includes the following

components: physical barriers and mucous membranes; 

the complement system, antimicrobial substances such as

lisozyme and other inflammation mediators as well as

phagocytes (neutrophyls and macrophages) and other leu-

cocytes such as natural killer (NK) cells, which are able to



or other intracellular micro-organisms, while humoral

immunity is the major defence mechanism against extra-

cellular micro-organisms and their toxins (3).

The two tiers of the immunocompetence system are not

isolated, but they function within a co-ordinated model in

order to develop an integrated defence against undesirable

infections, cell damage or pathogenetic mechanisms (3).

Good examples of this interaction are the stimulation of T

helper lymphocytes by an antigen to produce lymphokines,

which promote the proliferation and differentiation of

macrophages as well as the interplay between Th and B

lymphocytes (CD19+), which lead to immunoglobulin 

production by inducing B cells to change to antibody-

producing plasma cells. Furthermore, antigen presenting cells

(e.g. macrophages) facilitate the introduction of antigen to

both T and B-cells, while delayed cutaneous hypersensitivity

response both to recall or new antigens arisen by the skin

is another response mediated by lymphocytes. A practical

corollary of the integral defence of the living organism is

the collaborative involvement of different immunological

mechanisms in order to protect the individual (Fig. 1).

Nutrition, immunity and disease

The mutual interactions among nutrition, immune function

and the pathological condition (Fig. 2) are multifactorial

(4,5). Thus, nutrient intake and nutritional status influence
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host immunocompetence and the body’s response to illness

or infection; immune impairments bring about detrimental

effects on nutrient utilization and affect the outcome to

disease and infections challenges, and some pathogenic

micro-organisms or sicknesses may induce malnutrition

and immunodeficiency. Hence, anthropometric and bio-

chemical determinations have been correlated with dietary

intake and clinical examinations, but also with immuno-

logical measurements (6,7).

In this context, clinical and epidemiological evidences

have demonstrated that immunocompetence depends upon

the nutritional status, since malnutrition is involved in

impaired immune responses and an increased prevalence of

infection (8). Excessive intake of certain nutrients may

enhance the immunocompetence, but also may induce

some immunodeficiencies (4,9). Also, the qualitative and

quantitative nutrient composition of the dietary intake

have been involved in the regulation of the immune

response (10,11). Lymphoid tissues, with a rapid turnover

appear to be extremely vulnerable to nutrient imbalances

affecting metabolic pathways and functions implicated in

the immune defence. Furthermore, infections are associated

to a decreased food intake, intestinal catabolic stress and

increased losses of nutrients through faeces, urine and

sweat, which are accompanied by impaired protein syn-

thesis (immunoglobulins) and cell proliferation demands

(12).

Figure 1 Development and interactions
between humoral and cell-mediated
immunity.



The assessment of the nutritional status may be accom-

plished through a number of immunological measurements

such as leucocytes and lymphocytes sub-populations

counts, lymphoblastic proliferation stimulated by different

antigens, leucocyte migration and phagocyte function,

delayed hypersensitivity reactions, plasma concentration of

different immunoglobulins (antibodies) and production or

activity of complement components, cytokine and other

mediators including interferon (a, b, g) . . . , interleukins,

B-cell differention factors, monokines, etc. (3). In any case,

cutaneous assays as well as lymphocyte counting and func-

tional determinations are the most commonly applied tests

in nutritional evaluation (13).

Energy balance, adipose tissue and 
immunity interactions

Energy balance and body composition depend upon energy

intake and expenditure (14,15), which appears to be under

control on an axis with three components; (i) food intake;

(ii) fuel utilization and thermogenesis and (iii) adipocyte

metabolism. In this context, obesity is a pathological condi-

tion accompanied by an excessive fat deposition as com-

pared to the expected values for a given stature, sex and age,

which is often estimated by a body mass index (kg/m2)

higher than 30 (16,17). This alteration of energy homeo-

stasis has been attributed to a number of causes such as 

neuroendocrine factors, metabolic disturbances and genetic

traits as well as to psychological influences or changes in

lifestyle such as excessive energy intake or reduced physical

activity (18,19). Occasionally, the hypothesis linking obesity

with an infectious agent has attracted some attention (20).

Obesity has been related to hypertension, hypercholes-

terolaemia, certain tumours and cardiovascular diseases

(21), but also to immune dysfunction (22,23), which are

accompanied by a higher rate of infections and increased

risk of delayed wound healing (24,25). Also, some reports

have linked to a lower production of antibodies after

hepatitis B vaccination in obese patients (26), while other

studies conducted in animals showed that obesity produced

impairments in the immune response (27,28). Furthermore,

results from Gottschlich and co-workers (29) revealed that

the incidence and severity of infectious diseases were higher

in burn obese patients, than in burn lean men. Thus, bac-

teriaemia and clinical sepsis occurred more concomitant

with obesity (9 out 15 patients) as compared with non-

obese controls (2 out 15), while the antibiotic therapy was

required for more than twice as many days in the obese

group than in the control group, although this trend did

not reach statistical significance (Fig. 3). Compared with

normal-weight burn subjects, obese-burn patients had

markedly lower a-2 macroglobulin levels through the study

period. On the other hand, certain studies have focused on

the immune response in some situations, in which the

adipose tissue is depleted such as bulimia (30) anorexia

nervosa (31), and ADIS (32) patients and the results are

controversial. Thus, some reports have shown functional

cellular abnormalities, while others have found normal 

above T-lymphocyte populations and proliferative respon-

siveness to mitogenic stimulation.

Adipose tissue is not only an energy store, but it 

is involved in a number of functions as an endocrine 

organ (33). Thus, immune-related proteins produced by

adipocytes include adipsin, acylation stimulation protein,

adipocyte complement related protein, tumour necrosis

factor a (TNF-a), leptin, etc. Also, leucocytes are believed

to contribute to the adipose tissue metabolism for their

ability to influence fat deposition. Furthermore, some
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Figure 2 Interaction between nutritional
status, host immunodefence and disease.



results suggest that preadipocytes could function as

macrophage-like cells and raise the possibility of a poten-

tial direct participation of adipose tissue in inflammatory

processes (34). Also, the macrophage migration inhibitory

factor (MIF), the first T-cell-derived soluble lymphokine to

be identified, is expressed in adipocytes, which suggests its

involvement in various biological events such as wound

healing, atopic dermatitis, and possibly, diabetes/obesity

(35).The recent description of the mahogany mouse 

mutation provided further links between obesity and the

immune system (36). The peroxisome proliferator activated

receptor (PPARg), which is highly expressed in adipose

tissue, appears to be a key modulator of adipogenesis, but

also appears to be involved in macrophage function (37).

Further evidence of fat metabolism and immunity inter-

actions comes from the fact that the fatty acid composition

of phospholipids from splenocyte membranes are affected

by dietary lipid manipulation, and these differences influ-

enced lymphocyte functions (4,11). Thus, increased levels

of linoleic acid in spleen lymphocytes correlated negatively

with interleukin-2 receptor a-chain expression and with

the cell proliferation index. Furthermore, immunosuppres-

sive effects induced by polyunsaturated fatty acids could be

due to an increase of linoleic acid or a decrease of oleic

acid modifying many components of plasma membrane-

associated events involved in lymphocyte activation (11).

Interestingly, immune function and energy balance have

been related in functionally beneficial ways to fat content

and distribution (38), which contrasts with some other

current evidence.

Leptin and immune function

Leptin is a 167 a polypeptide mainly secreted by the

adipose tissue, which act as an endocrine signal in differ-

ent tissues (39). Leptin receptors, which are widely dis-

tributed in the Central Nervous System, are involved in the
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control of food intake and energy expenditure (40).

However, leptin may play other physiological functions,

mediated by at least six different receptors isoforms in

haematopoiesis, gastrointestinal activity, placenta trans-

port, etc. (39,40).

In this context, leptin seems to participate in a number

of immune-related responses such as proinflamatory

responses (41), proliferation and development of myel-

oid cells (42) and other blood-borne cells (43,44), produc-

tion of lymphokines by T-lymphocytes (45), recovery of

depressed immunocompetence induced by fasting (46), and

a protective role against TNF-a in systemic inflammatory

responses (47). Furthermore, it has been demonstrated that

leptin can stimulate the activity of macrophage and neu-

trophyl colony-forming cells, thus improving the immune

response (43). Also, leptin deficiency produces disturbances

in lymphoid tissue development (42).

Moreover, leptin appears to have specific effects on

helper T-lymphocytes function, through the regulation of

the proliferation of cells involved in both innate and

acquired immune responses. Thus, leptin increases the pro-

duction of proinflammatory lymphokines such as IL-2 and

interferon g, while it inhibits the secretion of IL-4 from the

lymphoid cells (45). The interferon g is involved in the sti-

mulation of the phagocytic response from macrophages,

while IL-2 promotes the proliferation and differentiation

of CD8+ T cells. Some of these effects appear to be medi-

ated by leptin receptors, since the occurrence of the leptin

receptor in these blood-borne cells, has been demonstrated

by a RT-PCR approach (48). Likewise, the addition of

leptin to isolated CD4+ T cells from ob/ob mice, which

scarcely produce interferon and IL-4, induced an increase

in interferon levels, accompanied by a dose-dependent 

inhibition of IL-4. Furthermore, it seems that T cells from

ob/ob mice are more sensitive to leptin than T-cells from

lean mice, while in vitro assays have shown that the expres-

sion of some integrins (VLA-2, CD49b) and their ligands

(ICAM-1, CD54) in CD4+ cells are induced by leptin,

although no effects were found for other adhesion mole-

cules such as CD49a,c,d, CD50 and CD62L (45). Interac-

tions of leptin, which belongs structurally to the long-chain

helical cytokine family of IL-2, have been found with 

IL-6 (49) and other cytokines in situation of infection or

anorexia (50,51), while IL-1 appears to increase serum

leptin levels in humans (52).

Furthermore, restricted-energy diets reduce plasma leptin

levels, while hyperleptinaemia is commonly found in obese

individuals, which suggests that this hormone may play a

role as a peripheral signal in order to maintain fuel supply

for essential functions (39,40). Thus, in starved mice the

immunocompetence is reduced as well as the delayed cuta-

neous hypersensitivity response (53). The administration of

leptin to fasted mice reversed the immunosuppressive

effects of acute starvation (45). Thus, it has been postu-

Figure 3 Clinical outcome related to incidence of infection in obese
and non-obese individuals (Adapted from Gottschlich et al. 1993(29)).
*P < 0.05.



lated that malnutrition may lead to a higher rate of infec-

tion and that leptin may promote the immunocompetence

recovery (46), leptin being the link between the nutritional

status and the immune function (Fig. 4).

Moreover, leptin appears to have a specific effect on T-

lymphocyte responses by differentially regulating the pro-

liferation of naive and memory T cells (45). Specifically,

leptin increased Th1 and suppressed Th2 cytokine produc-

tion (53). These findings further support a role for leptin

in linking nutritional status to cognate cellular immune

function and provide some light to account for the immune

dysfunction in starvation (Fig. 4). According to the pre-

vious views, leptin might represent an important target 

for immune interactions in a variety of pathophysiological

conditions (53).

An important and novel function for leptin is the up-

regulation of inflammatory immune responses, which 

may provide a common pathogenetic mechanism that con-

tributes to several of the major complications of obesity

(41). Furthermore, it has been reported that leptin expres-

sion is under partial regulatory control of TNF-a in 

peritonitis, but anorexia appears not to be related to an

increased leptin production (54).

Immune function in obese animal models

Several studies in genetic animal models suggest that

obesity and being overweight are associated with immuno-

competence alterations (27,28). Indeed, obese leptin-

deficient ob/ob mice display low body temperature, hyper-

phagia, infertility and evidence of immune defects with

lymphoid organ atrophy, mainly affecting thymic size and

cellularity (55,56). Thus, ob/ob mice, which are unable to

synthesize leptin, show some immune disturbances such as

a reduced thymus proportion, lower lymphocyte and NK

cell numbers as well as decreased cytotoxic activity. Situa-

tions of hyperlipidaemia and hyperglycaemia are com-

monly found in those animals as well as changes in insulin,

glucagon, cortisol and ACTH, which might explain some

of the abnormalities observed in the ob/ob mice immune

response (58).

Genetically obese strains have a lower phagocyte 

activity by macrophages and a lower expression of 

proinflammatory-related cytokines (53). Thus, macrophages

obtained either from ob/ob mice or from db/db mice

(animals lacking leptin receptors) are less active in destroy-

ing Candida than those isolated from control lean animals,

suggesting a role for leptin in the phagocytic process (41).

On the other hand, recombinant leptin intraperitoneally

administered to ob/ob mice appears to contribute to the

improvement of some immune functions and also to the

release of a monocyte stimulating factor (41). The impair-

ment in the phagocytic activity from macrophages of genet-

ically obese animals may be associated with the high levels

of TNF-a, which are known to alter cytokines production

(54).

Consistent with this concept, another detailed study

identifies several phenotypic abnormalities in macrophages

from ob/ob mice (57), including decreased steady-state

levels of uncoupling protein-2 mRNA, increased mito-

chondrial production of superoxide and hydrogen perox-

ide, induced constitutive activation of CCAAT enhancer

binding protein (C/–EBP)-b target genes, and increased

cyclooxigenase-2 dependent production of PGE2. Given

the importance of macrophages in the general regulation

of inflammation and immunity, it has been postulated 

that these alterations in macrophage function may con-

tribute to obesity-related pathophysiology (57). Leptin
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Figure 4 Leptin involvement in
immunoregulation as affected by overfeeding
and fasting.



administration protects mice from starvation, as well as

induced lymphoid atrophy and increased thymic cellularity

in ob/ob mice (59).

Zucker rats, which are genetically obese animals due to

the lack of the leptin receptor, showed lymphopenia (low

levels of CD4+ and CD8+) in the thymus and the spleen

and in the peripheral blood (27). A lower phagocytosis

capacity has also been reported in these animals. The pro-

liferative response of spleen cells to mitogen is decreased,

which has been associated to a lower glucose uptake 

mediated by the GLUT-1 transporter (60). Some of these

disturbances have been ameliorated by increasing the 

physical activity of these obese animals (61). Also UCP2

knocks out these animals, whereas wild animals, which

have not developed an obese genotype, appear to be more

resistant to infections (62).

Immune function in obese individuals

Scientific literature contain only a few studies compar-

ing the immune response between lean and obese indi-

viduals. Additionally, most experimental trials include 

only a limited number of subjects and immunological 

determinations.

Chandra and co-workers (63) have found that 38% of

obese children and adolescents showed a variable impair-

ment of cell-mediated immune responses such as delayed

cutaneous hypersensitivity, abnormal lymphoproliferative

responses to mitogens and a reduction in intracellular bac-

terial killing capacity by polymorphonuclear leucocytes.

This latter finding was also reported in adults suffering

from morbid obesity as compared with non-obese controls

(64). Additionally, obesity seems to reduce lymphocyte

immune functions and NK cell activity in persons older

than 60 years. Therefore ageing is considered as an addi-

tional risk factor for obese humans concerning immuno-

competence (65). Thus, in elderly women a negative

correlation between body fat content and NK cell activity

was reported (66), although the mechanisms involved

remain still unclear.

Another experimental trial concerning the influence of

obesity on immune response in an adult population (67)

indicates that obesity is related to elevated leucocyte and

lymphocyte subsets counts (unless for NK and cytotoxic/

suppressor T-cells), lower T and B-cell mitogen-induced

lymphocyte proliferation (Fig. 5), which were accompanied

by higher monocyte and granulocyte phagocytosis as well

as by oxidative burst activity, but normal function of NK

cells. The authors of this study suggest that serum choles-

terol, triglycerides and glucose levels may be related to

impairments in several aspects of immunity, although body

mass index (BMI) emerged as the most important correlate

factor. In this context, a positive correlation between BMI

and total leucocyte was obtained.
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Some data from other researchers indicate that the mod-

erate immune stimulation observed in obese individuals

may play a role in the development of insulin resistance,

where an influence of TNF-a seems to be probable (68) as

well as of melanocortin peptides (69). In this context, Type

2 (non-insulin-dependent) diabetes mellitus is associated

with an increase of the main cytokine mediator of 

the acute-phase response, IL-6. Through the action of

cytokines on the adipose tissue and elsewhere, this process

could be a major contributor to the biochemical and clin-

ical features of the metabolic syndrome and central obesity

(70).

A further study carried out by Nieman and co-workers

(71) in obese and non-obese women revealed that body fat

mass is positively correlated with total leucocyte, neutro-

phyl, monocyte and lymphocyte counts. However, they

were unable to establish any impairment of some immune

functions in the obese subjects, becasue T-cell function

(PHA and Con A-stimulated lymphocyte proliferation) was

comparable between obese and non-obese women, while B

function (PWM-stimulated lymphocyte proliferation) was

about 50% higher in the obese group. Furthermore, mono-

cyte and granulocyte phagocytosis was not influenced by

obesity, while basal and activated monocyte and basal

granulocyte oxidative bursts were higher in the obese sub-

jects. The data of the obese patients (71), after following a

weight loss period, were consistent with the viewpoint that

a moderate energy restriction (1200–1390kcald-1 for

12 weeks) is associated with decreases in mitogen-

stimulated proliferation responses (Fig. 6) and significant

decreases in monocyte oxidative bursts as well as of NK

cells counts, but not of T and B cells counts, which were

mainly attributed to the energy drain rather than to

reduced micronutrient intake. Contrary to this, other pre-

vious studies claim that underlying immune impairments in

responsiveness of lymphocytes found in obese people are

reversible with adequate weight reduction (72).

Kelley and co-workers (73) have found that a lower

number of NK cells and immunoglobulins occurred in

overweight women following an energy restricted diet

(50% reduction) for 84 days, which was accompanied by

7–9kg weight loss. Likewise, Scanga and co-workers (74)

pointed out that obese women consuming a restricted diet

(950kcald-1) combined with a supervized programme of

light to moderate intensity aerobic activity and resistance

training offsets the apparent decrement in NK cell cyto-

toxicity as well as other distortions associated to weight

loss, such as reductions in CD2+ cells expressing IL-2Ra.

These results are in agreement with data of Pomeroy and

co-workers (75), who reported that levels of complement

C3 and the alternative haemolytic activity (AP50) are deter-

mined, in part, by factors influencing weight changes. Fur-

thermore, surgically induced weight reduction produced a

significant decrease in IL-3 and TNF-a, which could be



responsible for some alterations in the immune function

(76).

The safety of weight loss on the immune system was

assessed by a programme consisting of a 7–24-week very

low calorie dieat (VLCD) period, in which the numbers of

circulating leucocytes, neutrophils, basophils, monocytes,

CD3+, CD4+, CD8+, and NK cells did not change signifi-

cantly, although a decrease in the Ig M serum concentra-

tions during the programme was noted (77). These authors

suggest that a VLCD programme appears to be suitable for

preoperative weight reduction in morbid obesity and seems

not to compromise the immune system.

Remarkably, acute nutritional deprivation and short-

term fast periods occur frequently in individuals suffering
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Figure 5 Lymphocyte counts (A) and
proliferative responses to mitogens (B) in
obese and nonobese subjects (Adapted
from Nieman et al. 1999(67)). *P < 0.05.

Figure 6 Lymphocyte count and proliferative
responses to mitogen in obese individuals as
affected by a moderate energy restriction (Adapted
from Nieman et al. 1996(71)). *P < 0.05.



from obesity, which affects the immunocompetence (78).

Blood monocyte bactericidal activity and natural killer cell

cytolytic activity were enhanced by fasting. Thus, mono-

cyte killing capacity increased in 12 out of 14 subjects and

natural killer cell activity increased an average of 24% in

13 obese subjects tested. Starvation also enhanced para-

meters of humoral immunity as evidenced by increases in

serum concentrations of IgG, IgA and IgM. By contrast,

lymphocyte blastogenic responses to the mitogen PHA

were modestly decreased, while peripheral blood leucocyte

counts, including neutrophils, T cells and B cells, did not

decrease significantly. The results indicate that fasting has

differential influences on immune function rather than 

a uniformly deleterious effect (Fig. 7). Of potential im-

portance, this nutritional alteration appears to actually

enhance certain effector functions of the host defence

system in the obese patient.

Conclusions and applications

Summing up, the immunological mechanisms involved in

the collaborative defence of the organism are challenged by

under-nutrition and overeating. Thus, obesity as well as

food allergies (80,81) influence unspecific immune func-

tions and specific immunity responses mediated by humoral

and cell-mediated mechanisms. Several lines of evidence

have supported a link between adipose tissue and immuno-

competent cells. The interaction is illustrated in obesity,

where excess adiposity and impaired immune function have

been described in both humans and genetically obese

rodents. In general terms, clinical and epidemiological data

support the evidence that the incidence and severity of 

specific types of infectious illnesses are higher in obese

persons as compared to lean individuals, as well as poor

antibody responses to vaccinations in overweight subjects.

The adipocyte-derived hormone leptin may act as a link

between the nutritional status and T cell function. More-

over, there is evidence that hyperleptinaemia induced by
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cytokines is an integral part of the acute phase response

and necessary for comprehensive immunocompetence. It

remains to be seen whether or not leptin will be a useful

molecule in the treatment of immunodepressed individuals.

The involvement of CNS and the endocrine system, as 

well as their interrelationships with immune system alter-

ations and dietary behaviour, require further investiga-

tions (82). In this context, more research is also needed 

to clarify the clinical implications of the alterations 

induced by obesity in immunity and by various interven-

tions such as weight loss (74), exercise and (79) nutrient

supplementation (83).

Future key developments in this area are likely to 

involve the raising of cytotoxic antibodies to adipocytes or

immunoglobulins promoting growth and fat deposition.

Leptin immunoneutralization, leptin production by extra-

adipose tissues through gene transfer or even immunolog-

ical yielding of anti-idiotypes mimicking leptin or other

molecule actions could also be expected to participate in

the treatment of obesity and immune disturbances.
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