PHYSICAL REVIEW E

VOLUME 48, NUMBER 6

DECEMBER 1993

Spatiotemporal structure of hydrothermal waves in Marangoni convection
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When a liquid layer is laterally heated, the basic flow loses stability in the form of hydrothermal
waves. They can be visualized by means of the shadowgraph technique. The characteristics of these
waves are studied by performing the Fourier transform on a spatiotemporal diagram. The frequency and
the wave number inside the range of instability are studied, and the corresponding dispersion relation is
determined. Some other two-dimensional features of the waves have also been observed, such as the
dependence of the wave-front shape on the thermal characteristics of the lateral walls. Finally, a
Ginzburg-Landau equation is proposed to describe these waves, and several coefficients in this equation

are estimated from the experimental data.

PACS number(s): 47.35.+1, 47.20.Dr

I. INTRODUCTION

The investigation of propagative patterns in far-from-
equilibrium systems has attracted considerable attention
in recent years [1]. Such patterns appear in many
different situations, for example, in hydrodynamic insta-
bilities, lasers, chemical reactions, etc. Moreover, they
may be regarded as a first state in the transition to spa-
tiotemporal complexity and to turbulence in those sys-
tems. The characterization of hydrothermal waves is also
interesting because they appear in crystal growth when
using the floating-zone method [2] and are important for
the transport of impurities and mixing processes.

In a previous paper [3] we showed experimentally the
existence of hydrothermal waves in a nonhomogeneously
heated device. Measurements of the threshold of these
waves and their characteristic frequency, wave number,
and velocity of propagation were carried out in a cylin-
drical liquid layer.

In these experiments some indications showed that the
waves could also be observed in a system with lateral
heating. Here we report further experiments on the
spatio-temporal evolution of these waves in a laterally
heated container. Wave formation is preceded by a glo-
bal circulation between the cold and the hot regions,
called return flow [see Fig. 1(a)], with a velocity propor-
tional to the lateral temperature gradient, which com-
pletely fills the container (zero wave number). This sys-
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tem has therefore some of the features of open flows: the
waves are entrained by the global flow. When the tem-
perature gradient exceeds a certain threshold, spontane-
ous hydrothermal waves traveling downstream can be ob-
served. Schwabe et al. [4] have studied surface waves at
large Marangoni numbers (Ma~10% in cavities of
different shapes, but they only report waves traveling az-
imuthally near the heater. These waves seem to be the
so-called surface waves, described by Smith and Davis
[5,6]. Another form of secondary instability concerning
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FIG. 1. (a) Sketch of the basic return flow (after [5]) in the
middle of the cavity, showing the choice of coordinates. The
analytical solution is v, =0.75z2—0.5z. The waves travel from
the hot end to the cold end. (b) Sketch of the cavity. A4, adia-
batic walls; H, copper heaters, M, metal bottom and walls; W,
Nichrome wire. In some runs, piece M was changed for another
made of Plexiglas.
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surface waves in a different (quasi-one-dimensional)
geometry has been studied recently [7].

One important question at this point is whether the ap-
pearance of waves is the result of absolute or convective
instability [8]. When waves propagate in a boundary lay-
er or on an inclined plane their amplitude grows down
the flow. Such flows can be considered to be distributed
disturbance amplifiers and near the threshold the instabil-
ity has a convective nature. The velocity field is confined
by lateral walls and mass transport in every cross section
is equal to zero. In such a situation it is not obvious that
propagative waves, even near the threshold, should ap-
pear as a result of convective rather than absolute insta-
bility. To check this point we studied the evolution of
artificially imposed perturbations on the basic flow and
examined their development. Such an approach is quite
common for investigating hydrodynamic instabilities.
Experiments with external perturbations are made for
Tollmien-Schlichting waves in boundary layers [9] and
more recently for surface waves in a film falling down an
inclined plane [10]. Thus the main aim of the present
work can be summarized as the description of the spa-
tiotemporal organization of the hydrothermal waves.

The outline of the paper is as follows. Experimental
procedure and data processing techniques are described
in Sec. II. In Sec. III the spatiotemporal behavior of the
waves is presented as observed in the experiments. We
discuss our results and draw a comparison with theoreti-
cal models in Sec. IV.

II. EXPERIMENTAL PROCEDURE

In the experiment we intend to set the conditions close
to the assumptions for which theoretical studies of insta-
bilities in laterally heated containers predict propagating
waves [5,6]. We therefore use a long channel wide
enough for the basic return flow [see Fig. 1(a)] to be two
dimensional in the central part. The inner dimensions of
this rectangular container are 5X7 cm? while the typical
wavelength is about 5 mm. This setup makes it possible
to investigate geometrical features of the waves, such as
the shape of the wave fronts. (In the circular geometry
we used before [3] that information was hidden by the cy-
lindrical divergence of the waves.) We carried out the ex-
periments described here in two different kinds of con-
tainers. One type is made of Plexiglas walls (which can
be considered adiabatic) and a transparent insulating bot-
tom. The other type of container is made of metal, and
so both the walls and the bottom are good thermal con-
ductors. Two copper heaters are placed at the two ends of
the container as shown in Fig. 1(b). The temperature at
each end is set by water coming from two thermal baths
that is made to circulate inside the copper heaters, where
the temperature is stabilized within 0.1 °C.

The liquid we use is 5 ¢St silicon oil, its relevant prop-
erties being listed in [3]. For most purposes the Prandtl
number Pr can be considered infinite. In different runs
we experimented with depths ranging from 1.2 to 3.1
mm. Near the walls a meniscus forms and so the obser-
vation must be restricted to the central part of the cavity,
to a zone of about 3 X5 cm?.
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To introduce a perturbation we use a periodically heat-
ed Nichrome wire [Fig. 1(b)]. This wire is submerged in
the liquid and stretched between two holders that keep it
straight even when heated. It was leveled parallel to the
bottom and placed close to the hot end of the cavity. The
wire diameter is 0.12 mm and its electrical resistance is
2.4 Q. We apply to it a sinusoidal current to obtain
periodic thermal perturbation in the lateral heating by
the Joule effect.

To visualize the hydrothermal waves we use the sha-
dowgraph technique described elsewhere [3,11]. When
we investigate the waves in the Plexiglas cavity we place
a mirror under the transparent bottom. In this case the
image contrast is due to the propagation of light through
a liquid where temperature fluctuations exist. These are
large enough to allow good image processing. To ob-
serve the waves in the metallic cavities the reflection from
the surface is collected. Small surface deflections are visi-
ble as bright and dark regions depending on whether they
are concave or convex. The image and data processing
system consists of a standard charge-coupled-device
(CCD) camera and a video recorder connected to a com-
puter.

Before describing the experimental results we will
briefly explain how to relate the contrast of the shadow-
graph to some characteristics of the hydrothermal waves.
Suppose that we have a liquid layer with temperature dis-
turbances in the form of traveling waves:

T(x,z,t)= A (x,t)T(z)cos(wt —kx) , (1)

where z stands for the vertical coordinate inside the
liquid layer and x for the coordinate down the flow,  is
te frequency, and k is the wave number of the waves.
A (x,t) is the slowly varying amplitude.

Now consider a light beam propagating perpendicular-
ly to the liquid surface and reflecting in a mirror at the
bottom of the cavity. If we neglect the reflection from
the surface, the intensity of the light beam passing
through the liquid and reflected from the bottom may be
written as [11]

Al d d?
T =2 [ Stz . )
Here d is the depth of the layer and » is tne reiractive in-

dex, which in first approximation depends on tempera-
ture disturbances as

n=ny+aTl . (3)
For small temperature fluctuations we have
& sdakcosiot—kx) [Tz . @
I 0 ng

Thus the intensity variations of the shadowgraph are pro-
portional to the temperature fluctuations, averaged over
the depth. From (4) it can be seen that the main charac-
teristics of the waves can be obtained from these varia-
tions.

III. EXPERIMENTAL RESULTS

For sufficiently small temperature differences a single
convective cell with streamlines going from the heating



4416

end to the colder one and back [Fig. 1(a)] can be ob-
served. This is the so-called return flow. For a larger
temperature difference some waves begin to propagate su-
perimposed on the return flow. A shadowgraph picture
for a liquid depth d =3.1 mm is shown in Fig. 2. The
temperature at the hot end of the cavity is T =67°C and
at the cold end it is T=41°C. In this experiment we
have not covered the whole range of parameters (depth,
temperature difference) explored in our previous work
[3], but we can assert that for the values in this experi-
ment the temperature threshold and the frequency are
roughly the same. Moreover, there is no reason to think
that the characteristics of hydrothermal waves should
change with geometry in large-aspect-ratio experiments.
From Fig. 2 one can notice that these waves appear clear-
ly at some distance from the hot wall and they disappear
before reaching the cold side. The wave fronts are not
regular and some defects are visible. The first fact sug-
gests that perturbations grow near the hot end and satu-
rate downflow. The second feature is probably due to the
fact that the wave is not generated in phase along the
heating wall. It should be noted that this instability is
very different to the Bénard-Marangoni convection
(which appears when a liquid layer is heated from below)
in which, for the type of liquid used in these experiments,
stationary hexagonal cells would be obtained. It is also
different from convection in vertical layers [12]. The
problem we are dealing with combines lateral heating in-
stability and the Marangoni effect. On one hand, the
sidewall heating induces a destabilization of the lateral
thermal boundary layer, giving rise to the convective cell
that sets up the return flow. On the other hand, the sur-
face tension variations are responsible for the destabiliza-
tion of the interface, reinforcing the return flow, and
making surface motions possible. However, as stressed in
a previous article [3] the nature of the waves observed in
this system is not yet well established.

Hydrothermal waves grow naturally in the system.

FIG. 2. Shadowgraph of hydrothermal waves. The image
covers only a zone of the cavity of 3.7X 3.2 cm?.
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The relevant dimensionless parameter is the horizontal
Marangoni number, defined as
T,—T
Ma= . (5)

e

Here do /dT is the coefficient of variation of surface ten-
sion with temperature, / is the length between the hot and
cold sides, p is the viscosity of the liquid, Pr is the
Prandtl number, and p is the oil density. In our experi-
ment, the Marangoni number turns out to be typically
Ma=1200.

To improve the coherence of the waves we artificially
perturb the basic flow with periodic heating as described
in Sec. II. The spatial structure (Fig. 3) becomes more
regular, almost without defects. These shadowgraphs
correspond to a perturbation frequency f,=1.7 Hz and
an amplitude V' =0.3 V.

It is possible to obtain information on the behavior of
the wave amplitude along the flow by performing a
Fourier transform. This is done in the following way. A
line of pixels parallel to the basic flow (x direction) and
close to the center of the cell is recorded at regular time
intervals (typically 0.1 s) and stacked, thus giving an x-¢
diagram such as the one shown in Fig. 4. Waves appear
as dark and bright stripes of nearly constant velocity.
From this image vertical lines (x =const) are taken at reg-
ular space intervals (typically 1 mm) and the power spec-
trum of each line is calculated. To reduce the noise, the
background brightness is subtracted and the lines are
windowed. (Instead of calculating the Fourier transform
of a whole line, the fast Fourier transform of a portion, or
window, of the line is carried out. Then the window is
moved, and after sweeping the whole line the resulting
power spectra are averaged.) The Fourier transforms are
then displayed in a three-dimensional graph (Fig. 5)
where the power is plotted versus frequency and distance
along the container. We have also used the same method
to investigate the behavior of the wave number, in this
case by computing the Fourier transform of horizontal
lines (t=const).

It can be seen in Fig. 5(a) that the instability range
spans from 1 to 2 Hz. At the beginning of the flow high-
frequency fluctuations predominate; down the flow low-
frequencies dominate and at the end of flow all distur-
bances decay. By means of the heating wire, a perturba-
tion with a frequency f, inside or close to the range of in-
stability in introduced and its behavior downflow is ex-
amined. In Fig. 5(b) we show a typical picture obtained
for a forcing frequency within the range of instability.
Near the wire only a decrease in perturbations is ob-
served. This decrease can be explained as follows. When
heating the wire with a sinusoidal current, periodically
heated regions are created in the flow. These distur-
bances are not eigenmodes of the flow and decay, but
they transfer their energy to unstable modes that grow
downflow.

Cross sections of the spectra S (x, ;) are shown in Fig.
6. The amplitude of the external forcing was the same
for all frequencies. It can be seen that there is an increase
of amplitude only in the first third of the cavity. In an in-
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termediate region the amplitude of the instability seems
to saturate. Near the cold wall the waves disappear. We
performed some control experiments to determine the
origin of these effects. First, the external forcing ampli-
tude is increased. The dependence of amplitude on x for
different amplitudes of excitation (¥ =0.3, 0.5, and 0.7
V) is shown in Fig. 7. Second, we measured the tempera-
ture distribution along the flow. Five thermocouples are
introduced on the bottom near the middle of the cavity.
The distribution of temperature is shown in Fig. 7. In the
first third of the cavity we have a large temperature gra-
dient. Therefore, Ma is not uniform, but varies
downflow: it is approximately linear and positive only
near the heating wall. [If we recalculate Eq. (5), the local

(a)

(b)

FIG. 3. Hydrothermal waves with external excitation (a) in a
Plexiglas cavity and (b) in a metal cavity. The perturbation is a
pulse of frequency f,=1.7 Hz and ¥=0.3 V. Both images
display the same zone as in Fig. 2.
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value of the Marangoni number in that region is about 3
times greater than the average.] It is in this region where
we observe an amplification of temperature perturba-
tions. Near the cooling wall the temperature gradient de-
creases. This means that the observed behavior of the
amplitude is connected with temperature profile and the
fact that Ma(x) decreases downflow.

The evolution of the waves strongly depends on the ap-
plied perturbation frequencies. When a perturbation
with a frequency close to the left edge of instability is ap-
plied, some peaks appear in the spectra wave at the right
of f,. For frequencies close to the right edge, the peaks
appear at the left of f, [see Fig. 5(b)]. Frequencies close
to the center of the instability range lead to the suppres-
sion of other frequencies [Fig. 5(c)]. An increase in the
amplitude of excitation leads to still more suppression
[Fig. 5(d)]. In our opinion, this is the displaying of non-
linear wave competition. The appearance of such peaks
[Figs. 5(b) and 5(c)] means that energy is being
transferred from the disturbances to modes with a larger
temporal growth factor. If this process takes place in

ITIXIITII I I TSI TXI LY.
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s

FIG. 4. x-t diagram obtained by recording a line of the sha-
dowgraph image over a certain time. The horizontal axis is 3.5
cm long and the vertical axis covers 51.2 sec.
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such as we describe above. But three types of wave front
may be considered to be the preferred configurations un-
der definite boundary conditions and in the absence of
external disturbances. Second, the different inclination of
fronts is not connected with the meniscus formed near
the walls because the contact angle of the silicon oil is
similar for both materials.

IV. COMPARISON WITH SOME THEORETICAL
MODELS

Smith and Davis [5,6] considered propagating waves of
two possible origins in a laterally heated liquid, namely

4000
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units)

2000
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S (arb.

sl ey gy

o

10 20 30
distance ( mm)

FIG. 7. Cross sections of the power spectral density (S) for
different amplitudes of excitation (0.3, 0.5, and 0.7 V) and
fo=1.7 Hz (top) and the temperature difference—taking as
reference the cold end—along the bottom of the cavity (bot-
tom).

SPATIOTEMPORAL STRUCTURE OF HYDROTHERMAL WAVES. ..

4
distance (mm)

4419

1.3 Hz

40

distance (mm)

FIG. 6. Cross sections of the power spectral
density (S). The cross sections were taken at
the frequency of excitation for an amplitude
V'=0.3 V. All the graphs are drawn to the
same scale.

1.7 Hz

2.4 Hz

N

40
distance (mm)

those arising from hydrothermal instability (hydro-
thermal waves) and those coming from capillary defor-
mations (surface waves). The physical mechanism re-
sponsible for these two instabilities is very different. Sur-
face waves arise from a shear instability of the velocity
field. If the return flow were established without a tem-
perature field, surface waves would nevertheless be
present. Thus the temperature gradient is only relevant
in setting the fluid in motion. Hydrothermal waves, on
the other hand, have a thermal origin. If we assume that
a disturbance creates a hot line in the surface perpendicu-
lar to the flow direction, a net force arises due to the vari-
ation of surface tension with temperature. As for most
liquids, surface tension decreases with temperature (and
indeed, this is the case for silicon oil), this force would
drag the hot line towards the colder zone. The same
could be said if the hot line were created below the sur-
face, because buoyancy would then establish a local
closed circulation that would result in an increase in the
surface temperature above the disturbance, and the hot
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FIG. 8. Frequency vs wave number for Ma=1200. The fit is
f=0.73+0.29k +0.14k>
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FIG. 9. Shadowgraph of hydrothermal waves in a cavity with
one metal wall and one wall of Plexiglas. The area covered by
the photograph is 3.7X3.2 cm?.

line would be carried away as well. The temperature gra-
dient is thus necessary for hydrothermal waves to exist.

The propagating waves we observe have a hydro-
thermal origin. The following arguments may be put for-
ward to corroborate this proposition.

(i) In most parts of the cavity the surface velocity of
the return flow is approximately the same, but the in-
crease in wave amplitude is observed only in the region
where a significant horizontal temperature gradient ex-
ists.

(ii) The waves observed are sensitive to thermal condi-
tions on the lateral walls. Wave structures in cavities
with metal and Plexiglas walls are quite different.

(iii) In the experiment we actually have a dimensionless
wave number k =2-4. Surface waves with this k would
be unstable only for a Reynolds number greater than 200
[6]. Usually the Reynolds number in our experiment is
smaller than 20 when waves appear [3]. For the surface
wave instability the dimensionless wave number is
k=0.1-0.2 [6]. The wavelength in our experiment
should therefore be A=30-60d. (This length is larger
than the cavity.) The surface wave mechanism must then
be discarded.

Some difficulties arise when comparing our experimen-
tal results with the calculations of Smith and Davis [5,6].
These authors discuss some simplifying hypotheses which
are a long way removed from the experimental situation.
The main difference concerns the propagation direction
of the waves, which is the opposite of that predicted in
those studies.

Although we have no linear theory for these waves, we
can nevertheless try to use a general nonlinear framework
for propagating waves in our system. It is well known
that, under very general conditions, this kind of wave can
be described by a complex Ginzburg-Landau equation for
the slow varying complex amplitude A4 of the distur-
bances [Eq. (1)] [14]. Taking into account the symmetries
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observed in the experiment one can propose an amplitude
equation in the form

94 _ 94 . 0%4
ot =0 A Ug ax +(B1+l/32) ax2
., 0%°4 , 2
+(8,+i8,)—5 —(p+ip) | 4|* 4. (7

ay

(Notice that the term with v, cannot be removed by
Galilean variance because the boundary conditions are
spatially fixed.) On the right-hand side we have a linearly
unstable term, an advection term, diffusive (real part) and
dispersive (imaginary part) terms, and nonlinear satura-
tion (real part) and frequency shift (imaginary part)
terms.

This equation has been used to describe, among other
situations, the uniform two-dimensional flow past a sym-
metric body. An example of such a flow is the von
Karman vortex street behind a circular cylinder at low
Reynolds numbers [15-17]. There the consequences of a
Ginzburg-Landau model where the control parameter o
is spatially dependent are discussed. It is also interesting
to attempt to define the nature of this instability: What
conditions are necessary for convective or absolute insta-
bility? From this kind of model one can deduce that the
system is convectively unstable in the range [18]

2
UgBI

0 —_—
DTy

(8)

The convective character can be determined if a per-
turbation grows when traveling but does not saturate in
the same place where it originates. Figure 6 suggests that
in our system the instability is convective. We must
stress that, as in the von Karman problem, the
Ginzburg-Landau equation is set as a model, but it is not
deduced from hydrodynamic equations. In this experi-
ment a detailed comparison between the basic equations
and Eq. (7) is far from trivial. However, under suitable
conditions, it can describe the features observed in exper-
iments quite well.

From the results in Sec. II it is possible to estimate
some coefficients in Eq. (7). The group velocity of waves
and the dispersion parameter can be inferred from Eq.
(6): v,=V+2kB and [3,=B. (The values of these
coefficients are given in Fig. 8.) o can be estimated from
the growth rate of the amplitude along the flow where the
instability begins to develop. The dependence of o on k
is shown in Fig. 10.

It is also possible to estimate the coefficient p;, which is
responsible for nonlinear damping of waves. Taking into
consideration the results presented in Figs. 10 and 7,
p1=0/ A} can be calculated. We are not able to estimate
the other coefficients in Eq. (7). The degree of accuracy is
not sufficient to calculate p,, which describes the non-
linear shift of frequency. Our impression is that p, is
much smaller than p;. We have no information about 8,
and §,, which describe the behavior of the slowly varying
amplitude in the transverse direction.

Although we do not have all the coefficients in (6), we
can try to use it to explain our results concerning the
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shape of wave fronts in cavities with different walls.
Studying the wave behavior we conclude that there is no
indication of Eckhaus or Benjamin-Feir instability. Nor
did we observe zigzag instability: It can be seen in the
photographs (Fig. 3) that the wave fronts are slightly
curved, but there is no periodic structure in the trans-
verse direction.

The complex amplitude A can be written as 4 =Qe?.
The absence of amplitude instabilities allows us to consid-
er the case of constant Q and phase variations only. For
¢ we have

by — v, =814, —8,($,)* . ©)

One of the steady solutions of this equation may be
written as [19,20]

b(x )=ﬁ _ﬁwii
Y 2 VT, 2
8 8, |9+—q-
+-4 R
an cosh 5, > (y —cx)
(10)

where ¢ =8,(q 4 +q_)/v,. This solution connects two
branches of different inclinations

¢i(x,y):‘1¢J’+U_‘Ii . (11)
g
The angles of inclination with respect to the flow velocity
near the walls are
8,
tanq)i:—‘qi . (12)
v
g
Using solution (11), it is possible to describe three types
of patterns observed in the experiment. We obtain a
wave-front structure similar to that observed in the ex-
periment with adiabatic walls if we set 8,9 . >0,8,9_ <O.
Accordingly, for isothermal walls we set 8,9,
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<0,8,9_ >0, and for the case of different walls §,q, <0
(adiabatic) and 8, _ <O (metallic).

It is not clear how such boundary conditions derive
from the physical boundary conditions and whether
another steady solutions, similar to (10), can exist. The
situation here is quite similar to some experiments on
wakes behind a circular cylinder [21,22]. Different
shapes of the vortex behind the cylinder were observed.
The axis of the vortex may be curved, and it is also possi-
ble to observe oblique shedding. As it was shown experi-
mentally [21] it was possible to exert some control over
the vortex structure behind the cylinder. This may be
done by placing two cylinders with their axes perpendicu-
lar to the plane of the wake in front of the first cylinder.
By changing the diameter and the distance between the
control cylinders it was possible to achieve different
shapes of vortex in the wake. As was pointed out [21]
such an arrangement may be regarded as a definite
boundary condition for the phase of the wake. These
conditions seem to be very difficult to calculate from the
basic equations, as are the boundary conditions for the
angle of inclination of hydrothermal wave fronts in our
system.

V. CONCLUSIONS

In the present paper thermal waves in a convective sys-
tem with lateral heating have been described. These
waves appear as perturbations superimposed on the re-
turn flow and propagate in the same direction as this
flow. Their amplitude increases near the heating wall,
then saturates, and later decreases. This can be explained
by the nonlinearity in the surface temperature distribu-
tion and therefore by nonuniform distribution of the
Marangoni number.

The spontaneous waves have frequencies in the range
1-2 Hz. They are observed in a convective (not absolute)
regime. The waves are perturbed by a periodically heated
wire placed near the bottom and close to the heating wall.
This device makes it possible to obtain quite regular wave
patterns when the frequency of this external perturbation
is inside the instability range. The applied perturbation
decays very rapidly, but its energy is transferred to some
unstable mode that grows in some region of the con-
tainer.

When using materials with different thermal properties
in the bottom and in the sidewalls perpendicular to the
return flow, a different curvature of the wave fronts is ob-
served.

One of the main conclusions in this work is that the
waves in question are hydrothermal waves. We discuss
their structure with a Ginzburg-Landau equation. Some
of the coefficients of this equation can be inferred from
the experiments.

Further experiments and theoretical developments are
needed to clarify and complete the description of hydro-
thermal waves. It would be interesting to take into ac-
count gravity effects and non-Boussinesq effects (varia-
tions of the viscosity and the thermal expansion
coefficient with temperature) in theoretical analyses and
in numerical simulations. The puzzling question of the
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direction of propagation of waves (which is observed to
be other than that predicted) still remains. From the ex-
perimental angle, the velocity profile should be measured
and compared with the theoretical one. In particular, it
would be interesting to determine the surface velocity
and its relationship to the velocity of the waves [23]. Fi-
nally, these experiments should also be extended to low-
Pr fluids (which have received ample attention in numeri-
cal and theoretical studies).
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FIG. 2. Shadowgraph of hydrothermal waves. The image
covers only a zone of the cavity of 3.7X 3.2 em?.
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FIG. 3. Hydrothermal waves with external excitation (a) in a
Plexiglas cavity and (b) in a metal cavity. The perturbation is a
pulse of frequency f,=1.7 Hz and V=0.3 V. Both images
display the same zone as in Fig. 2.



FIG. 4. x-t diagram obtained by recording a line of the sha-
dowgraph image over a certain time. The horizontal axis is 3.5
cm long and the vertical axis covers 51.2 sec.



FIG. 9. Shadowgraph of hydrothermal waves in a cavity with
one metal wall and one wall of Plexiglas. The area covered by
the photograph is 3.7X 3.2 cm?.



