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SYNOPSIS 

Objectives: The aim of this study was to investigate different hydrophobic gentamicin 

formulations: gentamicin-bis(2-ethylhexyl) sulfosuccinate (GEN-AOT), microstructured GEN-AOT 

(PCA GEN-AOT) and GEN-AOT loaded poly(lactid-co-glycolic) acid (PLGA) nanoparticles (NPs) 

in view of improving its therapeutic index against intracellular bacteria. The intracellular 

accumulation, subcellular distribution and intracellular activity of GEN-AOT and NPs in different 

monocytic-macrophagic cell lines were studied.  

Methods: Human THP-1 and murine J774 phagocytic cells were incubated with GEN-AOT 

formulations at relevant extracellular concentrations (from 1 X MIC to 18 mg/L [human Cmax]), 

and their intracellular accumulation, subcellular distribution and toxicity were evaluated and 

compared with those of conventional unmodified gentamicin. Intracellular activity of the 

formulations was determined against bacteria showing different subcellular localizations, namely 

Staphylococcus aureus (phagolysosomes) and Listeria monocytogenes (cytosol).  

Results: GEN-AOT formulations accumulated 2- (GEN-AOT) to 8- fold (GEN-AOT NP) more 

than gentamicin in phagocytic cells, with a predominant subcellular localization in the soluble 

fraction (cytosol) and with no significant cellular toxicity. NP formulations allowed gentamicin to 

exert its intracellular activity after shorter incubation time and/or at lower concentrations. With an 

extracellular concentration of 10 X MIC, a 1 log10 decrease in S. aureus intracellular inoculum 

was obtained after 12 h instead of 24h for NPs vs. free gentamicin, and a static effect was 

observed against L. monocytogenes at 24 h with NPs while free gentamicin was ineffective.  

Conclusions: GEN-AOT formulations yielded a high cellular accumulation, especially in the 

cytosol, which resulted in an improved efficacy against both intracellular S. aureus and 

L  monocytogenes. 



 

INTRODUCTION  

Despite their high bactericidal character, aminoglycoside antibiotics are considered as poorly 

active against intracellular bacteria,1, 2 which has been attributed to their inappropriate cellular 

pharmacokinetic profile. Because of their high hydrophilicity, aminoglycosides only penetrate 

slowly cells and, once inside them, remain confined in the lysosomal compartment, where their 

activity is reduced by the acidic pH.3 Considerable efforts are therefore made to enhance their 

cellular concentration. 

Drug delivery system (DDS)-based approaches are being explored in this context.4 Although 

they have shown very promising results, in vivo stability and drug loading efficiency in the 

carriers remain however important issues. A new approach consists in the chemical modification 

of gentamicin with the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) 

(GEN-AOT) and its micronization by precipitation through a compressed fluid-based 

methodology (Precipitation with a Compressed Antisolvent, PCA) to obtain a microstructured 

GEN-AOT (PCA GEN-AOT), or incorporation in poly(lactid-co-glycolic) (PLGA) nanoparticles 

(NPs) with a very high encapsulation efficiency.5 

We have compared here the cellular pharmacokinetics and pharmacodynamics of these new 

formulations using bacteria sojourning in different intracellular locations, namely Staphylococcus 

aureus (phagolysosomal) and Listeria monocytogenes (cytoplasmic).  

 

MATERIALS AND METHODS  

Materials 

Gentamicin sulphate and Bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA) and PLGA 502H (Resomer® RG 502H, PLGA 50:50, 

13.7 kDa) and 752H (Resomer® RG 752H, PLGA 75:25, 17 kDa) were supplied by Boehringer 

Ingelheim (Ingelheim, Germany). Reagents for cell culture were from Invitrogen Inc. (Carlsbad, 

CA, USA) and bacterial culture medium from Becton Dickinson (Franklin Lakes, NJ, USA). Other 

reagents were obtained from Sigma-Aldrich or Merck (Madrid, Spain). 

 

Preparation of gentamicin-AOT, microstructured gentamicin-AOT and gentamicin-AOT 

nanoparticles  



 

All gentamicin formulations were prepared as previously described. The ionic complex of 

gentamicin and the anionic surfactant AOT was obtained by the hydrophobic ion pairing (HIP) 

method6 and was either micronized by Precipitation with a Compressed Antisolvent (PCA) 

technology5 or encapsulated into PLGA 502H or 752H nanoparticles (NPs) by the oil-in-water 

emulsion solvent evaporation method5 (nominal drug loading of 20 mg per 200 mg of polymer).  

 

Cell culture conditions and viability assessment 

J774 macrophage cell line (ATCC TIB-67) and human THP-1 monocytes (ATCC TIB-202) were 

maintained in RPMI 1640 medium supplemented with 10 % foetal calf serum at 37 ºC in a 

humidified 5% CO2 atmosphere. Differentiation of the THP-1 cells into adherent macrophages 

(A-THP-1) was obtained by incubation of the cells with 75 ng/mL phorbol 12-myristate 13-

acetate (PMA) in complete RPMI medium for 48 h. Cell viability was checked in cells exposed for 

24 h to 18 mg/L gentamicin formulations (see Figure 1 in Supplemental Material; assays used: 

release of the cytoplasmic enzyme lactate dehydrogenase in the culture medium (LDH assay)7 

and formation of blue formazan crystals by mitochondrial dehydrogenases in metabolically-active 

cells (MTT assay)8).  

 

Cellular accumulation and fractionation studies 

The cellular accumulation of the antibiotic formulations was studied in THP-1 cells, A-THP-1 

cells and J774 cells as previously reported.9, 10 Their subcellular distribution was studied in J774 

cells after 24 h of incubation using the cell fractionation procedure described previously.11 

Gentamicin content was quantified by microbiological assay using antibiotic medium 11 and 

Bacillus subtilis ATCC 6633 as test organism (limit of detection 0.125 mg/L, linear response 

between 0.125 and 64 mg/L, R2 0.989)7 and expressed by reference to the total cell protein 

content (determined by the Lowry method). Cellular accumulation was estimated using a 

conversion factor of 5 μL cell volume/mg of cell protein.12, 13  

 

Bacterial strains, susceptibility testing and cell infection studies 

Minimal inhibitory (MIC) and bactericidal concentrations (MBC) were determined in Mueller-

Hinton broth (for methicillin-sensitive S. aureus strain ATCC 25923, methicillin-resistant strain 



 

ATCC 33591 and P. aeruginosa strain PAO1) or Trypticase Soy broth (for L. monocytogenes 

serotype 1/2a strains EGD and 5614) by broth microdilution, according to the Clinical and 

Laboratory Standards Institute15 recommendations. MICs for S. aureus ATCC 25923 were also 

determined with Mueller-Hinton broth adjusted to different pHs.  

Antibiotic intracellular activity was evaluated in  J774 cells infected with S. aureus ATCC 25923 

(bacteria/cell ratio of 4) or L. monocytogenes strain 56 (bacteria/cell ratio 5) using fully-validated 

procedures (described in details in ref. 1, 2) Intracellular growth of the bacteria was evaluated 

after 12 h or 24 h incubation in control conditions (gentamicin at 0.5 x MIC to prevent 

extracellular bacterial growth) or in the presence of antibiotic formulations. 

 

Statistical analysis 

Data analysis and graphical presentation were performed using GraphPad Prism version 5.00 

(GraphPad Software, San Diego, CA, USA). Statistical comparison between different groups 

was performed using Mann-Whitney U test.  

 

RESULTS AND DISCUSSION 

Micronized gentamicin-AOT and gentamicin-AOT polymeric nanoparticles (NP) 

Micronization of GEN-AOT (PCA GEN-AOT) resulted in a powdered solid with a mean diameter 

of 1 μm and a zeta potential of around -1 mV. GEN-AOT loaded PLGA 502H and PLGA 752H 

NPs presented mean diameters of 263 ± 10 nm and 269 ± 24 nm and a zeta potential of -3.3 ± 

0.5 mV and -3.5 ± 0.9 mV, respectively. Encapsulation efficiencies of 100 % were achieved for 

both NP formulations with drug loadings of 21.9 ± 0.5 and 22.7 ± 0.7 μg gentamicin/mg of NP for 

PLGA 502H and PLGA 752H NPs, respectively. 

 

Kinetics of cellular accumulation  

The cellular uptake of gentamicin has been extensively studied in different cell lines and 

conditions,3 and was found to be low in phagocytic cells.16 We therefore firstly exposed cells for 

24 h to an extracellular concentration of each formulation corresponding to 18 mg/L gentamicin 

(human Cmax after conventional dose).17 Macrophages accumulated more antibiotic than 

monocytes (see Figure S.2 [supplementary material]) and were therefore used them for kinetic 



 

experiments (Figure 1). Gentamicin accumulation proceeded in a slow and linear fashion (r2 = 

0.988) (Figure 1, panel C) to reach an apparent cellular to extracellular concentration ratio of 1.5 

at 24 h with no appearance of a plateau (Figure 1, panels A and B). This compares very well 

with the rate of uptake of horseradish peroxydase, a fluid phase endocytosis tracer, in J774 

macrophages10 and is coherent with the mechanism of pinocytosis proposed to explain 

gentamicin slow accumulation.13, 18 Non-encapsulated GEN-AOT also followed a linear kinetics 

of accumulation. Yet, its rate of uptake was 1.5 to 2-fold higher (Figure 1, panel C). This could be 

attributed to the lower charge of the ion pair, which would increase the partition coefficient of 

gentamicin, as reported for cisplatin19 and for antibiotics such as ampicillin and erythromycin.20-22 

The grossly linear kinetics of uptake of GEN-AOT could fit with this model, but could also result 

from a slow endocytic process for which the plateau of accumulation has not yet been reached, 

as is the case for gentamicin. Incorporation of GEN-AOT into polymeric NPs further increased 

both antibiotic uptake rate and efficiency, especially for NPs formulated with 752H, the more 

hydrophobic PLGA copolymer. It is known that uptake of particles by phagocytic cells is critically 

dependent on their physico-chemical properties.23 For PLGA particles, it is inversely related to 

polymer hydrophilicity.24, 25 GEN-AOT 752H NPs allowed gentamicin to accumulate more than 

10-fold in both macrophage cell lines (see Figure 2 in supplemental material for accumulation 

factors of the different formulations at 24h). This rate of uptake remains about 10 times lower 

than that of the lipoglycopeptide antibiotic oritavancin, which is thought to enter cells by 

adsorptive endocytosis,10 suggesting that binding at the cell surface are probably different.  

 

Subcellular distribution of gentamicin and gentamicin-AOT formulations 

Cellular accumulation per se is not always predictive of antibiotic intracellular efficacy notably 

because the drug also needs to reach in sufficient amount the infected compartment.26, 27 Figure 

2 shows the subcellular distribution of the formulations together with those of the marker 

enzymes cytochrome c oxidase (for mitochondria), N-acetyl-β-glucosaminidase (for lysosomes) 

and lactate dehydrogenase (for soluble proteins) in the control cells. No differences were found 

in subcellular distribution profile of the markers in non-treated and treated J774 cells, indicating 

that the treatments did not affect the biophysical properties and integrity of the studied 

organelles or the distribution of the soluble proteins (data not shown). As expected from its 



 

lysosomotropic nature, gentamicin showed a subcellular distribution that was very close to that 

of N-acetyl-β-glucosaminidase, predominantly localized in the granular fraction (77% of cell-

associated drug). This intracellular disposition is not specific to macrophages as it is also 

reported in other non-phagocytic cell lines,28-31 and is thought to be, together with the decreased 

activity of gentamicin at acidic pH, the responsible of the its low efficacy against a number of 

intracellular bacteria.1, 32, 33 Interestingly, ion pairing and encapsulation processes altered the 

distribution profile of gentamicin inside the cells and allowed for a higher accumulation in their 

soluble fraction (containing the cytosol and the soluble proteins). Thus, in cells incubated with 

GEN-AOT, 45% of cell-associated drug was recovered in the soluble fraction, leading to a 25-

fold increase in gentamicin accumulation in this fraction. Again, this could be explained by the 

non-ionized character of GEN-AOT, which could facilitate the translocation of the drug from the 

lysosomes to the cytoplasm or its diffusion through the pericellular membrane. In cells incubated 

with PLGA 502H and 752H NPs, the accumulation of gentamicin was 2 to 3-fold higher in the 

organelles and 74 to 124-fold higher in the soluble fraction than in cell exposed to free 

gentamicin. It has been proposed that the acidic pH of lysosomes may cause an inversion of NP 

surface charge, which may favour the interaction of NP with the lysosomal membrane and 

facilitate their escape into cytosol.34, 35  

 

Antibiotic susceptibility studies and effect of acidic pH  

MIC and MBC values of gentamicin and its formulations are shown in Table S.1 (supplementary 

material). No marked differences (one dilution above or below) were found between values 

measured for gentamicin and the different formulations, confirming that AOT coupling and 

encapsulation into polymeric NPs did not affect antibiotic potency or bactericidal character. 

Noteworthy, the intrinsic activity of all GEN-AOT formulations against S. aureus was less 

affected by acidic pH than that of gentamicin itself (2-3 log2 dilutions increase between pH 7.4 

and 5.0 instead of 5 dilutions; see Figure S.3 [Supplementary material). The masking of the 

cationic amino-groups of gentamicin after ion pairing could prevent, at least partially, the 

protonation of the antibiotic at low pH, and therefore result in a smaller loss of antibacterial 

activity. 

 



 

Intracellular activity of the antibiotic against S. aureus and L. monocytogenes  

Because aminoglycosides are concentration-dependent antibiotics, the dramatic increase in 

cellular concentration may contribute to improve their intracellular activity, especially against 

cytosolic bacteria. We therefore examined the activity of gentamicin and its formulations using in 

comparison S. aureus (phagolysosomial) and  L. monocytogenes (cytosolic). In a first 

experiment, intracellular activity was evaluated at fixed extracellular concentration (18 mg/L) and 

incubation time (12 hours for L. monocytogenes and 24 hours for S. aureus). These conditions 

allowed to achieve in both cases a similar intracellular proliferation (approx. 1.5 log10-unit 

increase in CFU/mg of protein) and, therefore, to compare activity towards similar inocula 

(Figure 3, left panels). In these conditions, all formulations yielded similar intracellular reduction 

of the S. aureus infection (1.1 to 1.45 log10-unit reduction). This corresponds to the maximal 

effect that can be achieved in cells exposed to gentamicin extracellular concentrations > 10 mg/L 

(50 x MIC),36 so that a further increase in its intracellular concentration does not add much to the 

intracellular effect. On the contrary, GEN-AOT treatments improved gentamicin intracellular 

activity against L. monocytogenes. GEN-AOT and PCA GEN-AOT significantly decreased the 

intracellular bacterial growth compared to the control cells or cells incubated with gentamicin 

alone. GEN-AOT 502H NPs allowed to reach a static effect, and GEN-AOT 752H NPs caused  a 

slight decrease in intracellular inoculum. These data nicely correlate with the commensurate 

increase in gentamicin concentration observed in the soluble fraction of cells incubated with 

these formulations.  

In a next experiment, we followed activity over time and upon incubation with increasing 

concentrations of either free gentamicin or GEN-AOT 752H NPs. Against intracellular S. aureus, 

gentamicin was bacteriostatic at 2 X MIC and reached its maximal effect at 24 h already at 10 x 

MIC. In contrast, a significant decrease in intracellular inoculum was already observed when 

cells were incubated 12 h with NPs. Against L. monocytogenes, gentamicin was inactive 

whatever the time of incubation or the concentration used. On the contrary, NPs markedly 

reduced intracellular growth for an extracellular concentration of 10 x MIC. These data confirm 

the time- and concentration-dependent character of gentamicin activity.2, 36, 37 They also suggest 

that NPs can improve its activity not only against L. monocytogenes, but also against S. aureus, 



 

allowing it to control intracellular growth al lower concentrations and already for shorter 

incubation times.  

The right panels of Figure 3 illustrate the correlation between the intracellular activity and the 

relative concentration of gentamicin in the infected subcellular fraction after 24 h of incubation 

with the different formulations. To better evidence the interest of formulations in increasing 

antibiotic concentration and activity, subcellular concentrations are expressed as the ratio to the 

value measured in cells incubated with 18 mg/L free gentamicin. Against both bacteria, data 

fitted sigmoidal regression allowing us to calculate intracellular static concentration, i.e. 

gentamicin concentration in the infected fraction needed to prevent bacterial growth. Against 

S. aureus, the figure shows that most of the concentration effect takes place for lysosomal 

gentamicin concentrations that are 100-10X lower that obtained in cells incubated with 18 mg/L 

free gentamicin, with the static effect obtained for cells incubated with 1 mg/L. If considering that 

lysosomes may represent about 2 % of cell volume, and using accumulation data from Figure 2, 

this would correspond to a drug concentration in these organelles of approx. 50 mg/L (12 X MIC 

at pH 5.4).a Against L. monocytogenes, the effect of concentration is manifest in the range of 

cytosolic concentrations obtained upon incubation with NPs at increasing concentrations, while 

free gentamicin is clearly suboptimal in the range of concentrations tested. Accordingly, a static 

effect is observed for a cytosolic concentration that is 6-fold higher than what can be obtained 

upon incubation with gentamicin at its Cmax. If considering that the cytosol represents about 

70 % of the cell volume, this means that a concentration of 18 mg/L (18 X MIC at pH 7.4) is 

needed to prevent Listeria growth. These data therefore suggest that the intracellular medium 

defeats the activity of gentamicin and/or that bacterial responsiveness is reduced in the 

intracellular environment, making gentamicin 10 X less potent than extracellularly. By increasing 

gentamicin concentration, NP compensate for this loss of potency.  

 

                                                 
a Calculated as (gentamicin concentration in the considered fraction [in µg/mg prot]) x (cell volume [in 
ml/mg prot])-1 x % of cell volume represented by the considered fraction x Cstat [in ratio to the concentration 
of gentamicin in the fraction for cells incubated with 18 mg/L), with cell volume estimated to 0.005 mL/mg 
prot, gentamicin concentration in the considered fraction obtained from data in Figure 2, % of cell volume 
estimated to 2 % for lysosomes and 70 % for cytosol, and Cstat interpolated from the sigmoidal regression 
presented in the right panels in Figure 3 (highlighted by the vertical dotted lines)  
 



 

To conclude, although not designed to evaluate the therapeutic potential of new formulations of 

gentamicin, the results presented here indicate that GEN-AOT and its polymeric nanocarriers, 

especially GEN-AOT 752H NPs, allow gentamicin to accumulate to higher levels inside the cells 

and to distribute in both lysosomal and cytosolic compartments, which results in an improved 

intracellular activity against intracellular bacteria thriving in the cytosol, such as Listeria 

monocytogenes and those sojourning in the lysosomes, as S. aureus. These NPs may therefore 

make it possible to reduce both the required dose and the administration frequency of 

gentamicin, with potential subsequent reduction of its toxicity. 
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Figures: 

Figure 1: Accumulation kinetics of 18 mg/L of gentamicin (GEN), gentamicin-AOT (GEN-AOT) 

and its microstructured (PCA GEN-AOT) and encapsulated forms (502H NP and 752H NP) in A-

THP-1 cells (A) and J774 cells (B) over 24 hours. Data are expressed as internalized drug 

micrograms per milligrams of cell protein. Lower panel (C) shows the rates of uptake of 

gentamicin and its formulations in A-THP-1 and J774 cells. Calculations were made based on 

mathematical regressions of the data presented. All values are expressed as accumulation 

factor per hour ([Cc/Ce]/h), see Figure S.2 in supplemental material for accumulation factors at 

24 h). a slope of the linear regression correlating gentamicin accumulation with time (0-24h time 

points); b slope of the linear regression correlating gentamicin accumulation with time during the 

linear phase of the uptake (0-3 h time points); c calculated from one phase exponential 

association (0-24h time points) 

 



 

 

Figure 2: Subcellular distribution of gentamicin (GEN), gentamicin-AOT (GEN-AOT), 

microstructured gentamicin-AOT (PCA GEN-AOT) and gentamicin-AOT loaded PLGA 

nanoparticles (NP) in J774 cells after 24 h incubation. The left panel shows the drug content in 

the different fractions expressed as µg/mg of cell protein in the unfractionated homogenate. 

Total cellular accumulation of the drug, expressed as the cellular-to-extracellular drug 

concentration (Cc/Ce), is also indicated on the top of each bar. The panel on the right shows the 

distribution of the marker enzymes lactate dehydrogenase (LDH), N-acetyl-β-glucosaminidase 

(NABGase for lysosomes) and cytochrome c oxidase (CytOx for mitochondria) in non-treated 

J774 cells. Enzymes were assayed for each fractionation experiment but as no substantial 

changes were found only one set of data is shown.  



 

 

Figure 3: Activity of gentamicin and its different formulations against intracellular S. aureus 

ATCC 25923 (top) or intracellular L. monocytogenes strain 56 (bottom). Activity is expressed as 

the change in the number of cfu per mg of cell protein from the initial inoculum. Data are mean 

and standard deviation of at least four independent determinations.  

Left panel: infected cells were exposed to a fixed concentration of 18mg/L gentamicin during 24h 

(S. aureus) or 12h (L. monocytogenes). Statistical analysis: * = p < 0.05 or ** = p < 0.01 when 

compared with the untreated control; a = p < 0.05 or b = p < 0.01 when compared with GEN; c = 

p < 0.01 when compared to GEN-AOT. 

Middle panel: infected cells were exposed to increasing extracellular concentrations of free 

gentamicin or of GEN-AOT 752H NP during 12 or 24 h. Statistical analysis: * = p < 0.05 for 

gentamicin-AOT PLGA 752H nanoparticles when compared with gentamicin at the same 

concentration and exposure time conditions. 



 

Right panel: correlation between the activity of gentamicin and its different formulations at 24 h 

and the concentration of gentamicin reached in the infected compartment. Concentrations are 

expressed as the ratio to the concentration reached in cells incubated with gentamicin in the 

granules fraction (MLP fraction) for S. aureus and in the soluble fraction (S fraction) for 

L. monocytogenes, as calculated from the data presented in figure 2 (log scale; 0 corresponds to 

the subcellular concentration of gentamicin after 24 h incubation with 18 mg/L of the free drug 

[highlighted by the arrow]). The horizontal dotted line shows a static effect; the vertical dotted 

line shows the subcellular concentration needed to reach this static effect. The data were fitted 

to sigmoidal regressions; R2: 0.8726 for S. aureus and 0.9715 for L. monocytogenes. 

Abbreviations: 502H NP = non-loaded PLGA 502H nanoparticles, 752H NP = non-loaded PLGA 

752H nanoparticles, GEN= gentamicin, GEN-AOT = gentamicin-AOT, PCA GEN-AOT = 

microstructured gentamicin-AOT, GEN-AOT 502H NP = gentamicin-AOT loaded PLGA 502H 

nanoparticles, GEN-AOT 752H NP = gentamicin-AOT loaded PLGA 752H nanoparticles. 



 

Supplementary material: 

 

Table S.1: Minimal inhibitory (MIC) and bactericidal (MBC) concentrations (mg/L) of gentamicin 

(GEN) and different gentamicin-AOT (GEN-AOT) formulations against various bacterial isolates.  

aMSSA, methicillin-sensitive Staphylococcus aureus obtained from American Tissue Cell 
Collection (Manassas, VA, USA) 
bMRSA, methicillin-resistant Staphylococcus aureus obtained from American Tissue Cell 
Collection (Manassas, VA, USA) 
cObtained from American Tissue Cell Collection (Manassas, VA, USA) 
dProvided by P. Berche (Hôpital Necker, Paris, France) 
eProvided by Dr I. García-Jalón (Department of. Microbiology, University of Navarra, Pamplona, 
Spain) 

S. aureus  
ATCC 25923  
(MSSA)a 

S. aureus  
ATCC 33591  
(MRSA)b 

P. aeruginosa 
PAO1 c 

L. monocytogenes 
EGD d 

L. monocytogenes 
56 e 

Antimicrobial 

MIC  MBC  MIC  MBC  MIC MBC  MIC  MBC  MIC  MBC  

GEN 0.25 1 2 4-8 0.5 2 0.5 1 1-2 4 

GEN-AOT 0.125 0.5 1 2 0.25-0.5 1 0.25-0.5 0.5 1 2-4 

PCA  
GEN-AOT 0.125-0.25 0.5 1-2 2-4 0.25-0.5 1-2 0.25-0.5 0.5 1 2-4 

GEN-AOT 
502H NP 0.25 0.5 1 2 0.25-0.5 1 0.25-0.5 0.5 1 2-4 

GEN-AOT 
752H NP 0.25 0.5 1 2 0.25-0.5 1 0.25-0.5 0.5 1 2-4 

502H NP >32 >32 >32 >32 >32 >32 >32 >32 >32 >32 

752H NP >32 >32 >32 >32 >32 >32 >32 >32 >32 >32 

AOT 32 >32 >32 >32 32 >32 32 >32 >32 >32 



 

 
Figure S.1: Effect of 18 mg/L of gentamicin (GEN) and the different gentamicin-AOT (GEN-

AOT) formulations on the viability of human THP-1 monocytes, A-THP-1 cells and murine J774 

macrophages as determined by the lactate dehydrogenase (LDH) release assay (top) and MTT 

cytotoxicity assay (bottom) after 24 h incubation. Data are expressed as mean and standard 

deviations of three independent determinations. Abbreviations: GEN = gentamicin, GEN-AOT = 

gentamicin-AOT, PCA GEN-AOT = microstructured gentamicin-AOT, GEN-AOT 502H NP = 

gentamicin-AOT loaded PLGA 502H nanoparticles, GEN-AOT 752H NP = gentamicin-AOT 

loaded PLGA 752H nanoparticles, 502H NP = non-loaded PLGA 502H nanoparticles, 752H NP 

= non-loaded PLGA 752H nanoparticles, MeOH = methanol.  



 

 

Figure S.2: Cellular accumulation of gentamicin in THP-1, A-THP-1 or J774 cells incubated 

during 24 h with 18 mg/L gentamicin or the formulations containing the same antibiotic 

concentration. Data are expressed as the mean and standard deviations of three independent 

determinations. Statistical analysis: * = p < 0.05 or ** = p < 0.01 when compared with gentamicin 

(GEN); a = p < 0.05 when compared with gentamicin-AOT (GEN-AOT); b = p < 0.05 when 

compared to gentamicin-AOT loaded PLGA 502H nanoparticles (GEN-AOT 502H NP); ns = no 

significant differences between the different cell lines for the same gentamicin treatment. 

Abbreviations: GEN= gentamicin, GEN-AOT= gentamicin-AOT, PCA GEN-AOT = 

microstructured gentamicin-AOT, GEN-AOT 502H NP = gentamicin-AOT loaded PLGA 502H 

nanoparticles, GEN-AOT 752H NP = gentamicin-AOT loaded PLGA 752H nanoparticles. 



 

 

 

Figure S.3: Effect of pH on the minimal inhibitory concentrations (MIC) of gentamicin (GEN) and 

gentamicin-AOT (GEN-AOT) treatments against Staphylococcus aureus strain ATCC 25923. 

Results are expressed as the MIC in mg/L of antibiotic. 


