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Abstract

Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN
expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the
development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in
the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and
hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white
adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body
weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD.
Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as
well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the
increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose
tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3
in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency
prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in
the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited
higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the
development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.
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Introduction

Changes in lifestyle and diet have caused over the last decades a

progressive increase in the incidence of obesity, being one of the

most prevalent metabolic disorders. Obesity is associated with

increased morbi-mortality from conditions such as type 2 diabetes,

cardiovascular disease, hyperlipidemia, steatohepatitis and cancer

[1].

Osteopontin (OPN, Spp1), is a multifunctional extracellular

matrix-associated protein abundantly expressed in bone, being

also expressed in other cell types such as macrophages, smooth

muscle cells and hepatocytes [2]. OPN expression is upregulated

by proinflammatory cytokines such as tumor necrosis factor-a
(TNF-a) and transforming growth factor-b (TGF-b), as well as by

hypoxia and hyperglycemia [2]. OPN binds to integrin receptors

and CD44 mediating cell-matrix and cell-cell interactions [3].

Besides its function as a key molecule regulating bone mineral-

ization [4], OPN is also involved in the immune and inflammatory

responses, playing an active role in the development of cardio-

vascular disease, diabetes, fatty liver disease and cancer [2,3,5].

We have previously shown that OPN is produced by adipose

tissue and that OPN expression is dramatically increased in

visceral adipose tissue in obesity [6,7]. Subsequently, others have

confirmed our findings showing that OPN is heavily involved in

the obesity-associated proinflammatory state and insulin resistance

[8–14], although the mechanisms involved have not been fully

elucidated. Thus, the aim of our study was to analyze the effect of

the absence of OPN in the development of obesity induced by a
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high-fat diet (HFD) in mice to unravel the potential mechanisms

involved. Herein we report that mice lacking OPN are protected

against the development of diet-induced obesity through mecha-

nisms involving impairment of adipose tissue extracellular matrix

remodeling, reduction in fibrosis and inflammation in adipose

tissue and liver, and improvement in brown adipose tissue (BAT)

function.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

European Guidelines for the Care and Use of Laboratory Animals

and was approved by the Ethical Committee for Animal

Experimentation of the University of Navarra (071/07).

Animals and treatment
Ten-week old male wild type (C57BL/6J) (n = 18) and OPN-

knockout [Opn-/-(B6.Cg-Spp1tm1blh/J (The Jackson Laboratory)]

(n = 18) were housed with controlled temperature (2262uC),

relative humidity (50%) and lighting (12:12 h cycle of light-

darkness, lights on at 08:00 am). Half of the animals were fed for

20 weeks with a commercial HFD [fat (60%), 23 kJ/g, Product #
F3282, BioServe] and the other half with a chow diet [fat (13%),

12 kJ/g, 2014 Teklad diet, Harland Laboratories] [15]. The body

weight of the animals and the amount of food eaten were

registered every 3 days. Mice were sacrificed by CO2 inhalation

after 6 h of fasting following the 20 week experimental period.

After sacrifice, blood was obtained by cardiac puncture, body

weight was recorded and white adipose tissue from different depots

(epididymal, perirenal and subcutaneous) carefully dissected and

weighed together with that of other organs. Serum and tissues

were frozen at 280uC for subsequent experiments.

Body temperature
Body temperature was determined at the end of the study by

measuring the rectal temperature using a thermoprobe (YSI 4600

Thermometers, Yellow Springs Instruments).

Intraperitoneal glucose tolerance tests and
intraperitoneal insulin tolerance tests

The animals were fasted overnight prior to the tests. At 10:00

am glucose was measured at baseline in blood taken from the tail.

Mice given 2 g of glucose/kg body weight (intraperitoneal glucose

tolerance tests-IPGTT) or 75 of U insulin/kg body weight

(intraperitoneal insulin tolerance tests-IPITT). Blood glucose was

measured at 15, 30, 60 and 120 min.

Blood analysis
Serum glucose concentrations were measured using a sensitive-

automatic glucose sensor (Ascensia Elite, Bayer). Concentrations of

triglycerides, total cholesterol (Infinity, Thermo Electron), free

fatty acids (FFA) (WAKO Chemicals) and glycerol (Sigma) were

measured by enzymatic methods using commercially available kits.

Insulin and leptin were determined using mouse enzyme

immunoassay ELISA kits (Crystal Chem) [16]. Insulin resistance

was calculated using the HOMA index. Adiponectin (BioVendor),

testosterone (R&D Systems), osteopontin (R&D Systems), resistin

(Immuno-Biological Laboratories), corticosterone (Immuno-Bio-

logical Laboratories), ghrelin (Linco) and SAA (Biosource)

concentrations were assessed using ELISA kits. Intra- and inter-

assay coefficients of variation for measurements of the ELISA kits

ranged between 2.6–4.2% for the former, and 5.3–8.1%, for the

latter.

Thiobarbituric acid reactive substances
Determination of lipid peroxidation was measured as previously

described [17]. We used serum MDA levels as an indicator of lipid

peroxidation and oxidative stress. Briefly, 5 mL of serum or

standard (MDA) were mixed with 120 mL of diethyl thiobarbituric

acid (DETBA) 10 mmol/L and then vortexed and incubated for

1 h at 95 uC. Vials were cooled 5 min at room temperature (RT)

and 360 mL of n-butanol were added to DETBA-MDA adducts.

Samples were shaken with vortex for 1 min and centrifuged for

10 min at 1,600 g at RT. Then, 250 mL of supernatant were

read on 96-well plates on a Fluroskan Ascent (Thermo Lab-

systems) with 535 nm and 590 nm excitation and emission

wavelength, respectively.

RNA extraction and microarray experiments and analysis
RNA isolation from liver and adipose tissue was performed by

homogenization with an ULTRA-TURRAX T 25 basic (IKA

Werke GmbH) using respectively TRIzol (Invitrogen) and QIAzol

Reagent (Qiagen). Samples were purified with the RNeasy Mini

Kit and RNeasy Lipid Tissue Mini Kit (Qiagen) and treated with

DNase I (RNase-free DNase Set, Qiagen) in order to remove any

trace of genomic DNA. For first strand cDNA synthesis constant

amounts of 2 mg of total RNA were reverse transcribed in a final

volume of 40 mL using random hexamers (Roche) as primers and

400 units of M-MLV reverse transcriptase (Invitrogen) as

previously described [18].

Gene expression profile analyses were performed using the

Agilent Whole Mouse Genome array (G4121B, Agilent Technol-

ogies) as previously described [18,19]. Five animals were used per

group. Slides were scanned with a GenePix 4100A scanner (Axon

Instruments) and images and data were analyzed using GenePiX

Pro 6.0 and GeneSpring GX software v 7.3.1 (Agilent),

respectively. Functional annotation networks were generated using

the Ingenuity Pathway Analysis (IPA, Ingenuity Systems).

Real-Time PCR
RNA was extracted as described above and transcript levels

were quantified by Real-Time PCR (7300 Real Time PCR

System, Applied Biosystem). Primers and probes (Table S1) were

designed using the software Primer Express 2.0 (Applied

Biosystems) and purchased from Genosys (Sigma). Primers or

TaqMan probes covering fragments of the areas from the

extremes of two exons were designed to ensure the detection of

the corresponding transcript preventing genomic DNA amplifica-

tion. The cDNA was amplified at the following conditions: 95uC
for 10 min, followed by 45 cycles of 15 s at 95 uC and 1 min at 59

uC, using the TaqMan Universal PCR Master Mix (Applied

Biosystems). The primer and probe concentrations for gene

amplification were 300 and 200 nmol/L, respectively. The results

were normalized to the levels of the 18S rRNA (Applied

Biosystems) and relative quantification was calculated using the

DDCt formula [6,20]. Relative mRNA expression was expressed as

fold expression over the calibrator sample (average of gene

expression corresponding to the wild type group). All samples were

run in triplicate and the average values were calculated.

Western blot
Samples of epididymal white adipose tissue (EWAT) and liver

were homogenized in RIPA buffer [1 mol/L Tris-HCl pH 7.40,

150 mmol/L NaCl, 1% Triton X-100, 0.1% sodium dodecyl
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Figure 1. OPN-Deficiency prevents HFD-induced increase in body weight and adipose tissue mass. (A) Body weight evolution of the
different experimental groups and weight gain of the animals from the different experimental groups after 20 weeks under CD or HFD. The arrow
indicates the start of the HFD. *P,0.05, **P,0.01 and ***P,0.001 WT-CD vs WT-HFD. "P,0.05, ""P,0.01 and """P,0.001 WT-HFD vs OPN-HFD.
Mean 6 SEM of 8–10 animals. (B) Cumulative food intake expressed as weight of food (g) or total energy (kcal) during the 20-week experimental
period. Mean 6 SEM of 8–10 animals. (C) Adipose mass (sum of epididymal, perirenal and subcutaneous depots) of the animals from the different
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sulphate (SDS), 5 mmol/L EDTA 2H2O, 1% deoxycolate] and

supplemented with protein inhibitors (CompleteTM Mini-EDTA

free, Roche). The soluble proteins were extracted after centrifu-

gation at 16,000 g for 15 min at 4 uC. The protein concentration

was determined by the method of Bradford using bovine serum

albumin (BSA) (Sigma) as standard. Equal amounts of protein

(30 mg) were run out in 12% SDS-PAGE, subsequently transferred

to nitrocellulose membranes (Bio-Rad Laboratories) and blocked

in Tris-buffered saline (10 mmol/L Tris-HCl, 150 mmol/L NaCl,

pH 8.00) with 0.05% Tween 20 (TBS-T) containing 5% non-fat

dry milk for 1 h at RT. Blots were then incubated overnight at 4

uC with primary antibodies against AKT1-p (Ser473), AKT1

(Upstate), AMPK-p (Thr172), AMPK, ACC-p (Ser79), ACC,

FAS, ATGL (Cell Signaling), HSL-p (Ser554), HSL, MMP2,

MMP9, NOX2, ANXA2, UCP3, UCP1 (Abcam), UCP2 (Milli-

pore) and AQP7 (Santa Cruz Biotechnology). Anti b-actin

antibody (Sigma) was used for the normalization of density values.

The antigen-antibody complexes were visualized using horseradish

peroxidase-conjugated anti-goat (Zymed), anti-rabbit or anti-

mouse IgG antibodies (Amersham Biosciences) and the enhanced

chemiluminescence ECL detection system (Amersham bioscienc-

es). The intensity of the bands was determined by densitometric

analysis with the Gel DocTM gel documentation system and the

Quantity One 4.5.0 software (Bio-Rad).

Gelatin zymography
MMP2 and MMP9 gelatinolytic activities were measured as

previously described [21]. Briefly, protein extracts of 15 mg from

each sample were run in 10% SDS-PAGE containing 0.1% gelatin

(Sigma). After the electrophoresis, gels were washed in 2.5%

Triton X-100 (Sigma) for 45 min and subsequently incubated

overnight at 37 uC in enzyme development buffer (Invitrogen).

After incubation, gels were fixed in 50% (v/v), methanol and 7%

(v/v) acetic acid (Sigma) for 15 min and then stained for 1 h in

GelCode Blue Stain Reagent (Pierce). Finally, the gels were

cleared in distilled water. Mmp-9 and Mmp-2 complex were

identified based on their molecular weight and Quantity One (Bio-

Rad) was used for densitometric analysis of the zymographic

activities.

Histological analysis
EWAT (6 mm), BAT (6 mm) or liver (4 mm) sections of tissue

previously fixed in formalin and embedded in paraffin, were

deparaffinized with xylene and hydrated with decreasing concen-

trations of ethanol. Samples were stained with hematoxylin-eosin

or Sirius red. The sections were dehydrated with increasing

concentrations of ethanol and xylene, mounted in DePex

(Panreac) and observed with an optical microscope (Axiovert 40

CFL, Zeiss). The size of adipocytes and lipid droplets was

determined by analyzing the cross-sectional area of white and

brown adipose tissue with the software AxioVision 4.6 (Zeiss).

Images of five fields per section from each animal were captured

with a 200X magnification, and the adipocyte cell surface areas

(H/E) from, at least, 100 cells/section or fibrotic streaks (Sirius

red) were measured.

experimental groups after 20 weeks under CD or HFD. Mean 6 SEM of 8–10 animals. (D) Representative images of histological sections
corresponding to EWAT from mice of different groups. The sections were stained with hematoxylin-eosin (H–E). Magnification 200X. Scale bar,
100 mm. (E) Cell surface area and distribution by areas of adipocytes in EWAT determined in histological sections of the different experimental groups
after 20 weeks under the CD or HFD. Mean 6 SEM of 5 animals. Statistical differences were determined by two-way ANOVA, aP,0.05, effect of OPN
deficiency; bP,0.05 effect of diet. If an interaction was detected one-way ANOVA followed by Tukey’s HSD test was performed, *P,0.05, **P,0.01
and ***P,0.001.
doi:10.1371/journal.pone.0098398.g001

Table 1. Metabolic Characteristics of Experimental Animals.

Chow diet High-fat diet

WT OPN-KO WT OPN-KO

Glucose (mg/dL) b, c 130611 175618 243612***,{ 215617**

Insulin (ng/mL) a, b, c 0.5860.04 0.6360.15 3.9460.43***,{{{ 1.8060.39```

HOMA a, b, c 4.460.4 7.262.2 58.568.9***,{{{ 25.567.0``

Glycerol (mg/dL) b, c 0.03660.002 0.03860.003 0.04660.002*** 0.03860.002`

FFA (mmol/L) a 0.6860.06 0.6260.03 0.6460.02 0.5160.03

TG (mg/dL) b 10366 96610 9263 7465

Cholesterol (mg/dL) a, b, c 13063 11467 22266***,{{{ 153610{{,```

Leptin (ng/mL) a, b, c 3.562.4 4.865.8 35.362.0***,{{{ 19.6611.4***,{{{,```

Resistin (ng/mL) b 14.261.9 12.561.3 18.162.9 22.362.9

Adiponectin (mg/mL) a 22.061.4 17.861.1 27.461.4 17.661.6

Corticosterone (nmol/L) a, b 381631 304663 562638 347652

Testosterone (ng/mL) 0.6760.16 0.7860.20 0.9160.25 1.4260.29

Total ghrelin (ng/mL) a, b 1.6060.41 2.4260.44 0.7560.08 1.3160.19

SAA (mg/mL) 4.460.5 4.360.3 8.662.5 5.961.3

Mean 6 SEM of 8–10 animals. Statistical differences were determined by two-way ANOVA. aP,0.05, main effect of OPN-deficiency; bP,0.05, main effect of diet; cP,0.05,
interaction between factors. When interaction was detected, data were analyzed by one-way ANOVA followed by Tukey’s HSD test. **P,0.01 and ***P,0.001 vs WT on
CD; {P,0.05 and {{{P,0.001 vs OPN-KO on a CD; `P,0.05, ``P,0.01 and ``` P,0.001 vs WT on HFD.
doi:10.1371/journal.pone.0098398.t001
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Immunohistochemistry
Sections of formalin-fixed paraffin-embedded EWAT (6 mm) or

liver (4 mm) were dewaxed with xylene and hydrated in decreasing

concentrations of ethanol. Endogen peroxidase activity was

quenched using 3% H2O2 (Sigma) in absolute methanol for

20 min at RT, and washed 3 times with ethanol. Sections were

immersed in 10 mmol/L citrate buffer (pH 6.00) and heated using

a microwave oven at 800 W for 10 min to enhance antigen

retrieval. After cooling, sections were blocked for 1 h at RT in a

humidified chamber with 5% goat serum (Sigma) in TBS. Sections

were subsequently incubated with rat anti-mouse F4/80 antibody

(AbD serotec) at a dilution of 1:100 (EWAT) or 1:50 (liver) in TBS

with 2% goat serum (Sigma) in a humidified chamber overnight at

4 uC. After washing with TBS (365 min), sections were incubated

Figure 2. OPN-deficiency decreases MMP2 and MMP9 activity in adipose tissue. (A) Heat map showing changes in expression of selected
genes in EWAT. Red and green colors represent up- and down-regulated expression, respectively on a log2 scale. (B) Gene expression levels of Mmp2
and Mmp9 in EWAT. (C) Protein expression levels of MMP2 and MMP9 in EWAT. (D) Zymography analysis of MMP2 and MMP9 activity in EWAT after 20
weeks of exposure to the chow diet or HFD. Mean 6 SEM of 8–10 animals. Statistical differences were determined by two-way ANOVA, bP,0.05 effect
of diet. If an interaction was detected one-way ANOVA followed by Tukey’s HSD test was performed, *P,0.05, **P,0.01 and ***P,0.001.
doi:10.1371/journal.pone.0098398.g002
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with horseradish peroxidase-conjugated secondary anti-rat anti-

body (1:200) (Amersham Biosciences) diluted in TBS with 2% goat

serum for 1 h at RT. After washing with TBS (365 min),

localization of the antigen-antibody complexes was performed by

adding diaminobenzidine (DAB) (Amersham Biosciences). Nega-

tive control slides with omission of the primary antibodies were

included in the immunostaining procedure. The reaction was

stopped and contrasted with Harris hematoxylin solution (Sigma).

Sections were dehydrated with increasing concentrations of

ethanol and xylol, mounted in DePeX and observed with an

optical microscope (Axiovert 40 CFL). The quantification of F4/

80 positive cells in EWAT and liver, and crown-like structures

(CLS) in EWAT content in 5 samples/group were analyzed using

a double-blind protocol. The total number of F4/80 expressing

cells and the total number of cells were counted in 5 slides (original

magnification 6200 in EWAT and 6100 in liver) of each sample

using the image analysis program AxioVision 4.6. The number of

macrophages and total cells in each sample provided the

percentage of F4/80 positive cells for each section analyzed.

Intrahepatic lipid content
The hepatic triglyceride content was measured by enzymatic

methods, in accordance with previously published procedures

[22]. Briefly, tissues were homogenized and diluted in saline at a

final concentration of 50 mg/mL. Homogenates were diluted (1:1)

in 1% deoxycholate (Sigma) and incubated at 37 uC for 5 min. For

triglyceride measurements, samples were diluted 1:100 in the

reagent (Infinity Triglycerides Liquid Stable Reagent, Thermo

Electron) and incubated for 30 min at 37 uC. The resulting dye

was measured based on its absorbance at 550 nm with a Sunrise

ELISA plate reader (Tecan). Concentrations were determined

compared with a standard curve of triglycerides (Infinity

Triglycerides Standard, Thermo Electron). The protein content

of the preparations was measured by the Bradford method, using

BSA (Sigma) as standard. All assays were performed in duplicate.

Statistical analysis
Data are presented as mean 6 SEM. The analysis of differences

between experimental groups was performed by two-way ANOVA

(genotype x diet) or by one-way ANOVA followed by Tukey HSD

post-hoc tests, where appropriate. Statistical comparisons for

microarray data to identify differentially expressed genes across

different groups were performed using two-way ANOVA. The

calculations were performed using the SPSS statistical package for

Windows version 15.0.1 (SPSS). A P value less than 0.05 was

considered statistically significant.

Results

OPN-deletion prevents HFD-induced increase in body
weight and adipose tissue mass

OPN-KO mice showed significant differences compared with

WT mice in body weight since the ninth week under the HFD.

Weight gain during the 20 weeks under the HFD was significantly

lower in OPN-KO mice (Fig. 1A). OPN-deficiency influenced the

weight of most of the studied organs (Table S2). Interestingly,

OPN-KO mice exhibited a significantly higher food intake than

WT mice reported either as weight of food eaten or amount of

energy (Fig. 1B).

Serum and mRNA levels of OPN (Spp1) were, as expected,

undetectable in KO animals. No differences in serum OPN

concentrations in WT mice exposed to HFD were observed.

However, mRNA expression of Spp1 was significantly increased in

EWAT and liver (30- and 1.7-fold, respectively) from WT mice

exposed to HFD. Transcript levels of the OPN receptor Cd44

increased after the HFD in adipose tissue and liver, but remained

at normal levels in OPN-KO mice (Fig. S1).

Adipose mass (sum of epididymal, perirenal and subcutaneous

depots) was significantly lower in OPN-KO mice than in WT mice

with HFD (Fig. 1C). Furthermore, the EWAT adipocyte size was

significantly lower in animals lacking OPN than in WT mice

under HFD, which exhibited a lower percentage of large

adipocytes than WT mice (Fig. 1D–E). Exposure to the HFD

resulted in increased serum levels of leptin and corticosterone,

which were significantly reduced in mice lacking OPN (Table 1).

These results evidence that OPN is necessary for HFD-induced

adipose tissue expansion.

HFD and OPN-deficiency did not cause any disturbance in the

amount of proteins involved in lipogenesis or lipolysis, nor in Pparg

expression (Fig. S2A–G). We conclude that the changes observed

in adipose mass are unlikely to be related with alterations in

lipolysis or lipogenesis.

Lack of OPN improves insulin sensitivity in mice fed with
HFD

HFD resulted in increased serum levels of glucose, insulin and

HOMA, which were significantly reduced in mice lacking OPN

(Table 1). The IPGTT showed that mice under the HFD exhibited

increased blood glucose levels, but no differences were detected by

the lack of OPN. However, the IPITT showed that WT mice

subjected to HFD had increased blood glucose levels while glucose

concentrations of OPN-KO mice remained similar to the levels of

WT mice (Fig. S3A–B).

Microarray gene expression profiling of EWAT, showed that

OPN-deficiency prevented the HFD-induced decrease in mRNA

levels of Slc2a4 (GLUT4) and Slc2a12 (GLUT12) (Fig. 2A and

Table S3), which could be related to the improvement of glucose

metabolism. To analyze the implication of skeletal muscle in the

improvement of insulin sensitivity by the lack of OPN, gene

expression levels of Irs1, Irs2, Slc2a4 and Ucp3 in gastrocnemius

muscle were evaluated. Slc2a4 levels decreased with HFD, but no

other changes due to diet or the absence of OPN were observed

(Fig. S3C–F).

OPN-deletion decreases MMP2 and MMP9 activity in
adipose tissue

Matrix metalloproteinases (MMPs) are extracellular proteolytic

enzymes involved in adipose tissue expansion [21]. Functional

annotation network from IPA revealed an important role of

MMPs in the action of OPN in HFD-induced adipose tissue

expansion (Fig. S4). In order to assess the involvement of MMPs in

adipose tissue extracellular matrix remodeling, we studied gene

and protein expression levels as well as activity of MMP2 and

MMP9. Mmp2 mRNA increased with HFD in the WT mice while

OPN-deficiency prevented this increase (Fig. 2A–B). Protein

expression of MMP2 and MMP9 was not affected either by

HFD or OPN-deficiency (Fig. 2C). Interestingly, the gelatinase

activity of MMP2 and MMP9 was dramatically increased with

HFD, and this effect was prevented by OPN-deficiency (Fig. 2D).

These data are consistent with a deficit in extracellular matrix

remodeling in OPN-KO mice with HFD.

Lack of OPN decreases inflammation, oxidative stress and
fibrosis in adipose tissue

CLS number increased with HFD, while OPN-deficiency

blunted the increase (Fig. 3A–B). The number of macrophages

in EWAT, as evidenced by the higher number of F4/80-positive
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cells and Emr1 expression, increased with HFD and OPN-

deficiency partially prevented this increase (Fig. 3C–D). CD11c

(Itgax) gene expression, a marker of M1 macrophage proinflam-

matory polarization [23], increased with HFD in EWAT, a

phenomenon that was not observed with OPN-deficiency (Fig. 3D).

Moreover, Tnf mRNA increased with HFD and OPN-deficiency

prevented this increase. Il6 mRNA and serum levels of the acute-

phase reactant SAA showed the same trend, although the

differences were not significant (Fig. 3D and Table 1). Adipoq

mRNA decreased with HFD, and OPN-deficiency seemed to

prevent this effect (Fig. 3D).

We next examined the levels of oxidative stress. HFD

significantly increased serum TBARS concentrations, while

OPN-deficiency prevented this increase (Fig. 3E). Mice under

the HFD exhibited increased mRNA levels of Nox1 and Cybb and

NOX2 protein with OPN-deletion protecting against these

increments (Fig. 3F and G). The decreased number and

proinflammatory profile of macrophages, reduced expression of

proinflammatory cytokines and NADPH components as well as

lower lipid peroxidation indicate that OPN-deficiency protects

against HFD-induced adipose tissue inflammation and oxidative

stress.

Many studies have shown that obesity and diabetes are related

to fibrosis in adipose tissue and liver [24,25]. Whereas collagen

fiber staining with Sirius red in adipose tissue obtained from WT

mice with CD showed very thin collagen sheets surrounding

adipocytes, adipose tissue from WT mice with HFD contained

very pronounced fibrotic streaks among adipocytes. OPN-

deficiency reduced the thickness of the fibrotic streaks (Fig. 3H–

I). Gene expression of collagens Col1a1, Col6a1 and Col6a3 and

profibrotic cytokine Tgfb1 were increased with HFD, while OPN-

deficiency prevented this increase (Fig. 2A and 3J and Fig. S4).

The decrease of fibrotic streaks together with the decreased

expression of collagens and markers of fibrosis indicate that OPN-

deficiency protects against diet-induced fibrosis in adipose tissue.

Lack of OPN prevents HFD-induced liver lipid
accumulation

Liver weight increased with HFD and was significantly lower in

OPN-KO mice (Fig. 4A). Animals under HFD showed an altered

cell structure, characterized by the presence of macrovesicular

steatosis, whereas this effect was observed to a lesser extent in

OPN-KO mice (Fig. 4B). Analysis of intrahepatic TG content

showed elevated TG levels in WT mice with HFD and that OPN-

deficiency prevented this increase (Fig. 4C). Moreover, HFD

resulted in increased serum levels of glycerol and cholesterol,

which were significantly reduced in mice lacking OPN (Table 1).

Lack of OPN was associated with a decrease in mRNA levels of

the lipogenic transcription factors Pparg and Srebf1, their down-

stream target genes involved in the synthesis of FFA (Fasn), and

TG (Mogat1 and Dgat2), the formation of lipid droplets (Cidec) as

well as in the VLDL uptake (Vldlr) (Fig. 4D–F). OPN-KO mice

also reduced HFD-induced increase in AQP7 protein, an

aquaporin involved in glycerol transport [26]. On the other hand,

protein levels of UCP2 and UCP3, involved in fatty acid fuelling

for energy expenditure, were increased with the HFD and with

UCP3 being further increased in OPN-KO mice (Fig. 4G). The

differential expression of other genes involved in lipid accumula-

tion (Anxa2, Cd36, Egfr) caused by the HFD, were prevented by

OPN-deficiency (Fig. 4D and Table S4). OPN-deficiency prevents

the accumulation of intrahepatic TG and reduces the expression of

molecules involved in the onset of liver steatosis.

OPN-deletion decreases HFD-induced liver inflammation
and fibrosis

Similar to the changes observed in adipose tissue, the

macrophage number as well as F4/80 and CD11c mRNA in

the liver were increased by HFD, while OPN deficiency prevented

this increase (Fig. 5A–C). Analogously, Tnf mRNA increased with

the HFD, being normal in OPN-KO mice. Lipocalin 2 (Lcn2)

mRNA was upregulated with HFD, which was not observed in

OPN-deficient mice (Fig. 5C). Mice lacking OPN have reduced

hepatic macrophage infiltration, and Tnf and Lcn2 expression

compared to WT mice when fed a HFD. In the liver, an increase

in size or number of fibrotic streak was not evident (data not

shown). However, Col1a1, Col6a3 and Eln mRNA increased with

HFD, being normal in OPN-KO mice (Fig. 4D and 5D). a-SMA

(Acta2) mRNA and annexin 2 mRNA and protein decreased in

OPN-KO mice (Fig. 4D and 5D–E).

Lack of OPN improves BAT function
We next examined whether BAT function may explain the

protection against HFD-induced obesity observed in OPN-KO

mice. BAT weight increased by HFD, while OPN-deficiency

partially prevented this increase (Fig. 6A). WT mice under HFD

showed an altered cellular structure of BAT, characterized by the

presence of large lipid droplets, increased number of unilocular fat

cells and lower number of multilocular adipocytes (Fig. 6B–C).

This effect was observed to a lesser extent in animals lacking OPN.

Furthermore OPN-KO mice had a higher body temperature than

their wild genotype counterparts (Fig. 6D). PRDM16, PGC1a and

UCP1 are proteins involved in BAT adipocyte differentiation and

thermogenesis regulation. Prdm16 mRNA tended to increase

(P = 0.051) in OPN-KO mice. Neither diet nor genotype affected

Ppargc1a mRNA. Ucp1 mRNA as well as UCP1 and UCP3 protein

were significantly increased by the deficiency in OPN (Fig. 6E–F).

OPN-KO mice with HFD have a better structure of BAT and an

increase in body temperature and thermogenic proteins compared

to WT mice.

Discussion

In this study we provide evidence that OPN plays a major role

in the adipose tissue expansion and liver steatosis that take place in

HFD-induced obesity in mice. Furthermore, lack of OPN provides

protection against inflammation, oxidative stress and fibrosis in

both organs.

Figure 3. OPN-deficiency decreases inflammation, oxidative stress and fibrosis in adipose tissue. (A) Representative immunohisto-
chemical staining of EWAT against the specific macrophage marker F4/80. Magnification 200X. Mean 6 SEM of 5 animals. (B) CLS content determined
by F4/80 positive staining and (C) percentage of F4/80 positive cells. Mean 6 SEM of 5 animals. (D) Gene expression levels of Emr1, Cd11c (Itgax), Tnf,
Il6 and Adipoq in EWAT. Mean 6 SEM of 8–10 animals. (E–G) Oxidative stress in serum and EWAT. TBARS in serum (E), Nox1 and Nox2 (Cybb) mRNA (F)
and NOX2 protein (G) in EWAT after 20 weeks under the CD or HFD. (H–J) Fibrosis in EWAT. (H) Representative images of histological sections from
EWAT stained with Sirius red. Magnification 200X. Scale bar, 100 mm. (I) Cell surface area of fibrotic streak in EWAT determined in histological sections.
Mean 6 SEM of 5 animals. (J) Expression of Col1a1, Col6a1, Col6a3 and Tgfb1 mRNA, genes involved in fibrosis, in EWAT. Mean 6 SEM of 8–10 animals.
Statistical differences were determined by two-way ANOVA, aP,0.05, effect of OPN deficiency; bP,0.05 effect of diet. If an interaction was detected
one-way ANOVA followed by Tukey’s HSD test was performed, ***P,0.001.
doi:10.1371/journal.pone.0098398.g003
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Figure 4. Lack of OPN prevents HFD-induced liver lipid accumulation. (A) Liver weight of the animals from the different experimental
groups after 20 weeks of exposure to the chow diet or HFD. Mean 6 SEM of 8–10 animals. (B) Representative images of histological sections from the
liver of mice of different groups. The sections were stained with H–E. Magnification 100X. Scale bar, 200 mm. (C) Triglyceride content in the liver. (D)
Heat map showing changes in expression of selected genes in liver. Red and green colors represent up- and down-regulated expression, respectively
on a log2 scale. (E and F) Expression of lipogenic genes in the liver. Pparg, Srebf1, Fasn, Dgat2 (E), Mogat1, Cidec and Vldlr (F). (G) Levels of proteins
involved in liver steatosis. AQP7, UCP2, and UCP3 in liver after 20 weeks of exposure to the chow diet or HFD. Mean 6 SEM of 8–10 animals. Statistical
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Circulating OPN levels of WT mice were not changed by HFD,

which is in agreement with other reports [9,12]. Nonetheless, this

fact contrasts with data reported in obese patients [6,9,10] and

with findings observed in mice by some groups [8]. However, we

found that Spp1 mRNA expression was dramatically increased in

EWAT and liver of WT mice exposed to HFD, suggesting a more

important pathophysiological role of OPN at the autocrine/

paracrine level than systemically.

OPN binds to multiple integrin receptors and CD44, which is

one of the main OPN receptors [2]. CD44 plays a causative role in

the development of adipose tissue inflammation and insulin

resistance in mice and has been related to type 2 diabetes in

humans [27,28]. In agreement with previously published results

[28], Cd44 increased with HFD, likely aggravating the effects

triggered by OPN regarding inflammation and insulin resistance

in EWAT and liver. We expected a compensatory increase of

CD44 in OPN-KO mice, however it decreased to baseline levels

likely because OPN promotes the expression of CD44 [29].

Lack of OPN blunted the HFD-induced increase in body weight

and fat mass, despite a higher caloric intake, which agrees with

previous reports [12] but contrasts with results reported by others

[8,30]. In this sense, OPN-KO mice showed higher total ghrelin

levels and lower leptin concentrations, which could explain the

higher food intake observed, since ghrelin and leptin show

orexigenic and anorexigenic effects, respectively [31,32]. More-

over, a reduction in adipocyte size in OPN-KO mice under the

HFD was evidenced. We explored possible changes in main

proteins involved in lipogenic or lipolytic pathways to explain the

lower accumulation of adipose tissue in OPN-KO mice, but they

remained unchanged. Therefore, changes in lipolytic or lipogenic

pathways are unlikely explaining the observed effects on adipose

tissue mass.

Adipose tissue remodeling is a continuous process that is

pathologically accelerated in obesity [33]. MMP2 and MMP9

exert a pivotal role in adipose tissue remodeling that occurs during

the development of obesity [34]. Previous studies from our group

showed that gene expression of MMPs increases in obesity in

parallel with a rise in OPN expression [21]. MMP2 and MMP9

activity increased with HFD, with this effect being more evident

for MMP2, highlighting the importance of MMP2 in adipose

tissue expansion. The diet-induced MMP activity increase

occurred despite the reduction of MMP9 mRNA and the

unchanged protein expression levels. The complex regulation of

MMPs causes that levels of gene, protein and activity of MMPs,

are not always concordant [35–37]. However, OPN-deletion

prevented the increase of activity caused by HFD. It has been

reported that OPN regulates gene and protein expression of

MMP2 and MMP9 in neoplastic processes and cardiac remod-

eling [38–40]. Therefore, the decrease in adipose tissue remod-

eling via the reduction of MMPs activity may constitute a new

mechanism by which OPN-deficiency protects against adipose

tissue accretion caused by HFD.

Many studies have shown that obesity is associated with

increased oxidative stress [41]. Moreover, OPN has been related

with oxidative stress in mice and humans [42,43]. NADPH

oxidase is an enzyme that produces reactive oxygen species which

is upregulated by HFD [41]. We observed that expression of Nox1

and Cybb mRNA, and NOX2 protein levels were increased by the

HFD, while OPN-deficiency protected against this increase.

Moreover, lack of OPN prevented the increase of serum lipid

peroxidation levels caused by HFD, suggesting that OPN-

deficiency protects against systemic oxidative stress. Similar effects

have been reported to take place in the kidney of OPN-KO mice,

which are protected against aldosterone-induced oxidative stress

[43]. Our data evidence a novel mechanism by which OPN-

deletion exerts protective effects against the development of

obesity-associated oxidative stress by decreasing lipid peroxidation

and NADPH component levels.

The adipose tissue expansion that takes place in obesity is

associated with macrophage accumulation [10]. OPN represents a

potent chemoattractant and activator for macrophages [44]. Our

data show that lack of OPN partly prevented the increase of

macrophages, CLS and Tnf expression caused by HFD in EWAT,

extending previously reported data [8,45]. The decrease of Cd11c

in OPN-KO mice with HFD showed that absence of OPN

prevents the obesity-induced polarization switch of macrophages

to a M1 proinflammatory state in EWAT. These findings are

consistent with previous observations, reporting that the deletion

of CD11c causes a decrease in CLS, improving insulin sensitivity

through a decrease in inflammatory markers such as TNF-a and

IL6 [23]. Taken together, our data evidence a lower macrophage

inflammation, reduced phenotypic switch from M2 to M1

macrophages and decreased expression of proinflammatory

cytokines in the adipose tissue of OPN-KO fed a HFD.

OPN has been related to fibrosis in different tissues such as the

liver, heart, kidney and muscle [43,46,47]. Moreover, obesity has

been related to the increased expression of collagens and the

profibrotic cytokine TGF-b in adipose tissue, which has been

associated with increased fibrosis [48,49]. OPN-KO mice showed

a reduction in HFD-induced fibrotic streaks as well as a decreased

expression of collagens and Tgfb1 in EWAT, showing for the first

time that OPN-deficiency prevents the fibrosis induced by HFD in

adipose tissue. No fibrotic structures were observed in the liver,

probably due to the fact that fibrosis was still in its initial stages. In

this sense, OPN-deficiency prevented the HFD-induced increase

in extracellular matrix proteins such as Col1a1, Col6a3 and Eln.

Moreover Col6a1 and markers of liver fibrosis such as a-SMA and

annexin 2 [50] decreased by OPN-deletion regardless of diet. Our

findings suggest the OPN-deficiency may prevent liver fibrosis,

which is consistent with the observations reported by Syn and

colleagues showing that OPN drives to fibrogenesis in NASH [47].

The reduced degree of inflammation observed in EWAT and liver

of OPN-KO mice might be contributing to the lower fibrosis, since

inflammation has been reported to be involved in the development

of fibrosis in those organs [51,52].

The absence of OPN reversed HFD-induced fatty liver, as

shown by the reduction of lipogenic gene expression of Srebf1,

Mogat1 and Dgat2 and TG accumulation in the liver. Fasn

expression decreased in OPN-KO mice reflecting a reduced

synthesis of FFA. OPN-deficiency prevented the increase of Vldlr,

Cidec and Pparg caused by high-fat feeding, thus reflecting a defense

against lipid accumulation. These data are consistent with those

reported by Duval et al [53], showing that Mogat1, Vldlr and Cidec

are increased in liver of mice with a high degree of hepatic

steatosis. Reduced expression of Cidec, a protein involved in the

formation of lipid droplets, has also been shown to be related to

the protection against hepatic lipid accumulation in CD44-KO

mice [28].OPN has been previously involved in the development

of fatty liver and steatohepatitis in mice [5] and humans [54], in

parallel with an increase in lipogenic genes. In addition, UCP3

differences were determined by two-way ANOVA, aP,0.05, effect of OPN deficiency; bP,0.05 effect of diet. If an interaction was detected one-way
ANOVA followed by Tukey’s HSD test was performed, {P,0.1, *P,0.05, **P,0.01 and ***P,0.001.
doi:10.1371/journal.pone.0098398.g004
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Figure 5. OPN-deficiency decreases HFD-induced liver inflammation and fibrosis. (A and B) Representative immunohistochemical staining
of liver against the specific macrophage marker F4/80. Magnification 400X. Mean 6 SEM of 5 animals. (C) Gene expression levels of Emr1, Itgax, Tnf,
Il6, and Lcn2 in liver after 20 weeks under CD or HFD. (D) Expression of Col1a1, Col6a1, Col6a3, Eln, Tgfb1 and Acta2 genes involved in fibrosis and (E)
Annexin 2 protein. Mean 6 SEM of 8–10 animals. Statistical differences were determined by two-way ANOVA, aP,0.05, effect of OPN deficiency; bP,
0.05 effect of diet. If an interaction was detected one-way ANOVA followed by Tukey’s HSD test was performed, *P,0.05, **P,0.01 and ***P,0.001.
doi:10.1371/journal.pone.0098398.g005
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Figure 6. OPN-deficiency improves the structure and function of BAT. (A) BAT weight of the mice. Media 6 SEM of 8–10 animals. (B)
Representative images of histological sections of BAT from mice of different groups. The sections were stained with H–E. Magnification 200X. Scale
bar, 100 mm. (C) Area of the lipid droplets in BAT. Mean 6 SEM of 5 animals. (D) Rectal temperature. Mean 6 SEM of 8–10 animals. (E) Expression of
genes involved in thermogenesis, Prdm16, Pgc1a and Ucp1 mRNA and (F) protein expression levels of UCP1 and UCP3 in BAT after 20 weeks of
exposure to the chow diet or HFD. Mean 6 SEM of 8–10 animals. Statistical differences were determined by two-way ANOVA, aP,0.05, effect of OPN
deficiency. 1P = 0.051, effect of OPN deficiency. If an interaction was detected one-way ANOVA followed by Tukey’s HSD test was performed, **P,
0.01 and ***P,0.001.
doi:10.1371/journal.pone.0098398.g006
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protein increased with OPN-deletion, which is associated with a

higher rate of lipid catabolism. Furthermore, the membrane

protein AQP7, which correlates with hepatic steatosis [55], was

also decreased in OPN-KO mice. Accordingly, OPN-deficiency

improve shepatic steatosis induced by HFD.

Lack of OPN completely reversed the hepatic macrophage

recruitment caused by HFD. The absence of OPN prevented the

increase of Cd11c and Tnf mRNA showing that OPN-deficiency

protects against obesity-induced liver inflammation. LCN2 is an

early biomarker of liver damage and inflammation [56] related to

obesity [21]. Moreover, Lcn2-KO mice exhibit improved insulin

sensitivity [57]. Therefore, the decrease of Lcn2 mRNA in OPN-

KO mice may contribute to the reduced liver damage and

inflammation as well as to the higher insulin sensitivity in the liver

of these mice. The lower concentration of macrophages, together

with the decrease of Tnf and Lcn2 mRNA show that OPN-KO

mice exhibit a better hepatic inflammatory profile than WT mice

fed the HFD, similar to that observed in adipose tissue.

OPN-deletion protects against insulin resistance caused by

HFD, as evidenced by the improvement in insulin levels, HOMA

and IPITT. The lack of changes in Irs1, Irs2 and Slc2a4 in skeletal

muscle, suggest that changes in adipose and liver could have a

more important role in the improvement in insulin sensitivity

observed in OPN-KO mice [30].

The reduced adiposity despite the increased food intake led us

to hypothesize that OPN-KO mice exhibit an increased thermo-

genesis. In this respect, OPN-KO mice have a higher body

temperature than WT mice. In addition, absence of OPN

improved the brown-like phenotype of BAT in animals fed a

HFD, which are characterized by a ‘‘white-like’’ appearance of

brown fat. Moreover, OPN-deficient mice showed increased

UCP1 and UCP3, proton transporters from the mitochondrial

respiratory chain that generate heat by non-shivering thermogen-

esis and contribute to lower lipid accumulation in BAT as well as a

lower body weight [58,59]. Therefore, the increased body

temperature and the changes in BAT morphology and expression

of BAT-specific genes, identify the improvement of BAT function

as a potential new mechanism whereby OPN-deficiency improves

energy homeostasis.

In conclusion, OPN-deletion prevents the increase in body

weight and adipose tissue expansion, in addition to decreasing

macrophage infiltration, inflammation, oxidative stress, fibrosis

and insulin resistance. Therefore, our results suggest that OPN

could be an attractive target for the treatment of obesity and

associated pathologies.

Supporting Information

Figure S1 HFD increases the expression of Opn and
Cd44 in EWAT and liver of WT mice. (A) Circulating levels of

OPN in the experimental groups, (B) Opn and (C) Cd44 mRNA in

EWAT, (D) Opn and (E) Cd44 mRNA in liver of mice fed a CD or

a HFD for 20 weeks. Mean 6 SEM of 8–10 animals. Statistical

differences were determined by Student’s t test or two-way

ANOVA as appropriate. If an interaction in the two-way ANOVA

was detected, one-way ANOVA followed by Tukey’s HSD test

was performed. *P,0.05 and ***P,0.001.

(TIF)

Figure S2 The expression of proteins involved in
lipogenesis and lipolysis is not modified by OPN-
deletion. Protein kinase B (AKT1), 59 AMP-activated protein

kinase (AMPK), acetyl-coA carboxylase (ACC) and fatty acid

synthase (FAS), involved in lipogenesis, and adipose triglyceride

lipase (ATGL) and hormone-sensitive lipase (HSL), involved in

lipolysis were analyzed in order to explore whether the changes

observed in adipose mass were due to alterations in either lipolysis

or lipogenesis. (A) Active AKT1 (ratio AKT1-P/AKT1), (B) active

AMPK (ratio AMPK-P/AMPK), (C) active ACC (ratio ACC/

ACC-P), (D) total amount of ATGL protein, (E) total amount of

FAS protein, (F) active HSL (ratio HSL/HSL-P) and (G) Pparg

mRNA in EWAT after 20 weeks under the CD or HFD. Mean 6

SEM of 8-10 animals. Statistical differences were determined by

two-way ANOVA, bP,0.05 effect of diet.

(TIF)

Figure S3 Lack of OPN improves insulin sensitivity in
mice fed a HFD. (A) Serum glucose during intraperitoneal

glucose tolerance test (IPGTT) and area under the curve (AUC) of

the IPGTT, (B) serum glucose during intraperitoneal insulin

tolerance test (IPITT) and AUC of the IPITT in animals of

different experimental groups. Mean 6 SEM of 5-6 animals.

Statistical differences were determined by two-way ANOVA. bP,

0.05 effect of diet. If an interaction was detected, one-way

ANOVA followed by Tukey’s HSD test was performed. *P,0.05.

"P,0.05 WT CD vs WT HFD; #P,0.05 WT HFD vs OPN

HFD. Gene expression levels of (C) Irs1, (D) Irs2, (E) Slc2a4 and (F)

Ucp3 in gastrocnemius muscle of mice after 20 weeks of exposure

to a CD or HFD. Mean 6 SEM of 8-10 animals. Data were

analyzed by two-way ANOVA, bP,0.05 effect of diet.

(TIF)

Figure S4 Functional annotation network from IPA
(Ingenuity Pathway Analysis) reveals an important role
of MMPs and collagens in OPN’s effect on HFD-induced
adipose tissue expansion. Colored genes are differentially

expressed by OPN deletion in mice exposed to HFD. Green stands

for those genes decreased with the lack of OPN while red reflects

those genes increased with OPN deletion.

(TIF)

Table S1 Sequences of the primers and probes used in
the Real-Time PCR experiments.

(PDF)

Table S2 Sequences of the primers and probes used in
the Real-Time PCR experiments.

(PDF)

Table S3 Selected genes differentially expressed in
EWAT.

(PDF)

Table S4 Selected genes differentially expressed in the
liver.

(PDF)
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