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Abstract

Background: Deregulated miRNA expression plays a crucial role in carcinogenesis. Recent studies show different
mechanisms leading to miRNA deregulation in cancer; however, alterations affecting miRNAs by DNA copy number
variations (CNV) remain poorly studied.

Results: Our integrative analysis including data from high resolution SNPs arrays, mRNA expression arrays, and miRNAs
expression profiles in 16 myeloid cell lines highlights that CNV are alternative mechanisms to deregulate the expression of
miRNAs in acute myeloid leukemia (AML), and represent a novel approach to identify novel candidate genes involved in
AML. We found association between the expression levels of 19 miRNAs and CNVs affecting their loci. Functional analysis
showed that NF1 is a direct target of miR-370, and that overexpression of miR-370 has similar effects that NF1 inactivation,
increasing proliferation and colony formation in AML cells. Moreover, real time RT-PCR showed that NF1 downregulation is a
recurrent event in AML (30.8%), and western blot analysis confirmed this result. MiR-370 overexpression and deletions
affecting the NF1 locus were identified as alternative mechanisms to downregulate NF1.

Conclusions: NF1 downregulation is a common event in AML, and both deletions in the NF1 locus and overexpression of
miR-370 are alternative mechanisms to downregulate NF1 in this disease. Our results suggest a leukemogenic role of miR-
370 through NF1 downregulation in AML cells. Since NF1 deficiency leads to RAS activation, patients with AML and
overexpression of miR-370 may potentially benefit from additional treatment with either RAS or mTOR inhibitors.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous clonal

disease characterized by enhanced proliferation and impaired

differentiation of early progenitors. Its heterogeneity is caused by a

variety of genetic and epigenetic aberrations that, acting in

combination, contribute to the initiation and progression of this

disease. In addition, it has recently been reported the implication

of specific microRNAs (miRNAs) in the pathogenesis of AML [1].

MiRNAs are small, non-coding RNAs that bind to the 39-

untranslated region of target genes, negatively regulating their

expression levels by translation repression or mRNA degradation.

MiRNAs are essential in key biological functions, such as cellular

differentiation, development, stress response, apoptosis and cell

growth [2]. In addition, miRNAs play important roles in normal

hematopoiesis regulating hematopoietic differentiation, and their

aberrant expression has been associated with hematological

malignancies [1,3]. Several mechanisms are reported to lead to

miRNA deregulation: mutations, chromosomal translocations,

epigenetic alterations, or a defective miRNA biogenesis; however,

little is known about the mechanisms of miRNA deregulation in

AML [2].

MiRNA microarrays in large series of AML cases have

identified miRNA signatures associated with several cytogenetic

and molecular groups [1]. Furthermore, functional effects of some

miRNA alterations have also been reported. For example, miR-

155, which shows leukemogenic properties, has been found up-

regulated in AML patients with FLT3-ITD [4]. In the same way,

upregulation of miR-181a and miR-335 has been associated with

CEBPA mutations and consequently, implicated in the regulation

of several genes involved in erythroid differentiation in cytogenet-

ically normal AML (CN-AML) [1]. Interestingly, higher miR-181a

expression has been significantly associated with better outcome in

CN-AML patients [5].
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Analysis of human and mouse genomes reveals that miRNAs

are frequently located at fragile sites and regions affected by copy

number variations (CNVs) associated with cancer, suggesting that

genomic instability could be an important mechanism of miRNA

deregulation in cancer [6]. Recently, Starczynowsky et al.

identified 18 miRNAs implicated in cellular processes relevant to

AML, which map to common leukemia-associated genomic

alterations in AML [7]. Here, we analyzed 16 myeloid cell lines

using SNP and mRNA arrays, and quantified the expression of

250 mature miRNAs by real-time PCR (QRT-PCR). We

identified 19 miRNAs with a significant association between their

expression and the CNV of the corresponding genomic region in

which the miRNAs were located. This integrative approach,

together with bioinformatics and functional studies, allowed us to

find that miR-370, located in a recurrent amplified region, was

upregulated and that its target gene was the tumor suppressor

NF1. Interestingly, functional analysis showed that overexpression

of miR-370 has similar effects that NF1 inactivation, increasing

proliferation and colony formation in AML cells. Finally,

overexpression of miR-370 and deletions affecting the NF1 locus

were identified as contributing mechanisms to NF1 downregula-

tion in AML.

Results

Deregulation of miRNAs by gene copy number
alterations in AML cell lines

To identify miRNAs deregulated by gene copy number

alterations in AML cells, we first performed a SNP array analysis

of 16 myeloid cell lines (Table S1 and Table S2). We next

analyzed by QRT-PCR the expression profile of 250 miRNAs in

these cell lines, evaluating whether the miRNAs located within the

amplified or deleted regions identified by the genome-wide

analysis were up- or downregulated. Of the 250 miRNAs, 19

showed a significant association between their expression and the

CNV of the genomic region in which they were located, and were

validated (P,0.05). Sixteen miRNAs were upregulated and

located in two genomic regions of amplification (11q24.1 and

14q32.31), and 3 miRNAs were downregulated and located in

regions with genomic deletions (9p21.32) (Figure S1 and Table 1).

Altogether, these results indicate that CNVs are mechanisms that

could lead to miRNA deregulation in AML cells.

Identification of the tumor suppressor NF1 as a target of
miR-370

These results prompted us to determine the potential target

genes for those 19 miRNAs whose expression were associated with

CN alterations. For this purpose, we performed a whole genome

expression analysis in the myeloid cell lines (Affymetrix Human

Genome-U133 Plus-2.0). We observed that 4 out of these 19

miRNAs (miR-370, miR-379, miR-432 and miR-494) had NF1 as

a potential target gene (Table S3). Results were validated by

QRT-PCR. Therefore, we decided to analyze whether these four

miRNAs, all located on 14q32.31, could regulate NF1. The AML

cell line HL-60, with low expression of the miRNAs and

expression of NF1, was chosen as a cellular model for miRNA

overexpression experiments. QRT-PCR confirmed overexpression

of miR-370, miR-379, and miR-494 after transfection with the

corresponding pre-miRNAs (Figure 1A). Transfection of premiR-

432 could not be optimized. Western blot analysis showed that

NF1 levels decreased after miR-370 overexpression (Figure 1B and

Figure 2A). No changes in NF1 levels were observed after ectopic

expression of miR-379 and miR-494 (data not shown). Transfec-

tion of pRL-NF1(39UTR) in cells ectopically expressing miR-370

showed decreased luciferase reporter activity, indicating that miR-

370 binds to the 39UTR of NF1, negatively regulating its

expression. Analysis using the same construct with the seed region

of miR-370 mutated showed no changes in luciferase activity,

confirming that miR-370 directly binds to NF1 (Figure 1C).

MiR-370 enhances oncogenic potential of AML cells
It has been reported that NF1 directly influences AML blast

proliferation/growth [14]. Therefore, we first evaluated the

functional effects of the transient downregulation of NF1. As

expected, we found that NF1 knockdown by siRNA increased cell

growth and number of colonies of TF-1 cells as compared to

controls (Figure S2). To determine the effects of miR-370 in AML

cells, we performed cell growth and colony formation analysis in

TF-1 cells transfected with pre- and anti-miR-370. Downregula-

tion of NF1 by miR-370 and upregulation by anti-miR-370 in

these cells were confirmed by western blot (Figure 2A). We first

analyzed the effects on cell growth of miR-370 and anti-miR-370

using a MTS assay. Consistent with the tumor suppressor activity

of NF1, there was increased proliferation in TF-1 cells transfected

with pre-miR-370 in comparison with control cells (Figure 2B).

Overexpression of miR-370 was confirmed by QRT-PCR.

Conversely, ectopic expression of anti-miR-370 significantly

reduced cell growth of these cells (Figure 2B). To further confirm

the importance of miR-370 as regulator of AML cell proliferation,

we determined the effects on colony-forming ability of miR-370 in

AML cells. Pre-miR-370-transfected TF-1 cells formed signifi-

cantly higher number of colonies than controls, while anti-miR-

370 reduced the number of colonies (Figure 2C). It was not

possible to confirm these results in HL-60 because this cell line has

an activating mutation in NRAS. Altogether, these results would

suggest a leukemogenic role of miR-370 through NF1 downreg-

ulation in AML cells.

NF1 downregulation is a recurrent event in AML
To further evaluate the clinical relevance of NF1 in AML, we

quantified NF1 expression by QRT-PCR in a series of 68 patients

with AML at diagnosis. Patient characteristics are shown in

Table 2. NF1 was downregulated in 30.8% cases (21/68). Levels of

miR-370 could be determined in 50 out of these 68 patients, and

we observed that miR-370 was overexpressed in 12% cases (6/50).

NF1 was downregulated in all the 6 cases with miR-370

overexpression, indicating a good association between both

aberrations (Figure S3 and Table S4). To investigate other

mechanisms involved in NF1 downregulation, we analyzed the

copy number at the NF1 locus by Q-PCR in 55 out of the 68 cases.

We found that 13 patient samples had deletions affecting NF1 (13/

55, 23.6%) (Table 2 and Table S4). These findings indicate that

copy number changes involving the NF1 locus represent a

mechanism contributing to NF1 deregulation in AML cells.

Interestingly, 5 out of the 6 cases with overexpression of miR-

370 had normal number of copies of NF1 (Table S4), indicating

that they are alternative mechanisms of NF1 downregulation in

AML. Altogether, these results suggest that NF1 downregulation is

a recurrent event in AML, and that both miR-370 overexpression

and submicroscopic deletions of the NF1 locus may represent

important mechanisms to downregulate NF1 expression in AML

patients.

To confirm these results at protein level, we analyzed NF1 by

western blot in 14 cases with AML at diagnosis: 9 had NF1

downregulation and 5 normal mRNA levels of NF1 (Figure 3).

Patient characteristics are included in Table S5. NF1 protein was

not detected in any of the 9 cases with NF1 downregulation,

including the 3 cases with miR-370 overexpression (P4, P7, and
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P14). Moreover, one of the five patients with normal mRNA levels

of NF1 had no protein (case P8), and other two cases had reduced

expression of the NF1 protein (cases P9 and P10).

Discussion

Although the association of miRNA expression profiles with

cytogenetic or molecular aberrations has been widely investigated

in AML [1,20], the relevance of copy number changes affecting

genomic regions that include miRNAs remains poorly explored. In

this study, we show that CNVs are alternative mechanisms that

regulate the levels of some miRNAs, which, in turn, modulate the

expression of target genes with importance in AML development.

Using an integrative analysis based in SNP, mRNA arrays and

expression profile of 250 mature miRNAs, together with

bioinformatics and functional studies, we found that miR-370,

located in a recurrent amplified region, was upregulated and that

its target gene was the tumor suppressor NF1. Interestingly,

functional analysis showed that overexpression of miR-370 has

similar effects that NF1 inactivation, suggesting a leukemogenic

role of miR-370 through NF1 downregulation in AML cells.

Besides, our results show that NF1 downregulation is a common

event in AML, and that both deletions in the NF1 locus and

overexpression of miR-370 are mechanisms involved in this

downregulation.

Two recent studies in series of AML patients showed that

microdeletions of NF1 are common events in this disease, leading

to reduction of NF1 expression [14,21]. Importantly, we describe

here a novel regulatory mechanism by which miR-370 modulates

NF1 expression by directly binding to its 39-UTR. Germline loss-

of-function mutations of NF1 lead to neurofibromatosis type 1, a

dominant autosomal genetic disorder clinically characterized by

neurofibromas, cafe-au-lait spots, and a high risk to develop

juvenile myelomonocytic leukemia (JMML) [22]. The NF1 gene

protein product, neurofibromin, is a GTPase-activating protein

(GAP) that inhibits RAS signaling by hydrolysis of active RAS-

GTP into inactive RAS-GDP; therefore, NF1 deficiencies act as

functional equivalents of activating mutations in RAS. The finding

that the wild-type allele was lost in the bone marrow of children

with JMML affected by neurofibromatosis type 1 established NF1

as a tumor suppressor gene [23]. In fact, somatic inactivation of

NF1 in hematopoietic cells results in a progressive myeloprolifer-

ative disorder in mice, with elevated levels of RAS-GTP [24],

although secondary genetic events are required to the develop-

ment of AML. Recently it was shown that NF1 downregulation in

AML blasts caused a substantial and significant increase in AML

blast colony formation in methylcellulose, confirming that NF1

directly influences AML blast proliferation/growth [14]. Our

functional studies confirmed these results and showed that

Table 1. MicroRNA deregulated by copy number variations in 16 myeloid cell lines.

MicroRNA Cytoband Start End
Copy number
value (mean)

MicroRNA expression
(QRT-PCR) Myeloid cell lines

miR-7 9q21.32 85774483 85774592 0.9596 low EOL-1, NOMO1, F36P,
K562, KYO

miR-15a 13q14.2 50623255 50623337 1.071 low F36P, K562

miR-16-1 13q14.2 50623109 50623197 1.071 low F36P, K562

miR-192 11q13.1 64415185 64415294 3.365 high KAS-1, OCI-AML2, F36P,
HEL, K562, KU812, KYO,
MEG01

miR-194 11q13.1 64415403 64415487 3.365 high KAS-1, F36P, HEL, KG-1,
K562, KU812, MEG01

miR-100 11q24.1 121528147 121528226 3.099 high HEL, TF-1, KU812, KYO

miR-125b 11q24.1 121475675 121475762 3.099 high HEL, TF-1, KU812, KYO,
MEG01

miR-370 14q32.31 121528127 121528246 3.671 high TF-1, KU812, K562,
MEG01

miR-127 14q32.31 100419069 100419165 3.671 high TF-1, KU812, K562,
MEG01

miR-134 14q32.31 100590777 100590849 3.671 high TF-1, KU812, MEG01

miR-154 14q32.31 100595845 100595928 3.671 high TF-1, KU812, K562,
MEG01

miR-376 14q32.31 100576872 100576939 3.671 high KU812, MEG01

miR-379 14q32.31 100558156 100558222 3.671 high KU812, MEG01

miR-382 14q32.31 100590396 100590471 3.671 high TF-1, KU812, MEG01

miR-409-5p 14q32.31 100601390 100601468 3.671 high TF-1, KU812, MEG01

miR-432 14q32.31 100420573 100590471 3.671 high TF-1, KU812, K562,
MEG01

miR-433 14q32.31 100417976 100418068 3.671 high TF-1, KU812, K562,
MEG01

miR-485-5p 14q32.31 100558156 100558222 3.671 high TF-1, KU812, MEG01

miR-494 14q32.31 100565724 100565804 3.671 high TF-1, KU812, MEG01

Amp: amplification; Del: deletion.
doi:10.1371/journal.pone.0047717.t001
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overexpression of miR-370 promoted cell growth and colony

forming potential of AML cells, the same effects that NF1

downregulation. Altogether, these data strongly suggest that

overexpression of miR-370 represents a novel mechanism of

NF1 inactivation in AML, and that this microRNA plays a

relevant role in AML proliferation by downregulating NF1

expression. It has been reported that miR-370 is overexpressed

in acute promyelocitic leukemia [25] and gastric carcinomas [26].

However, contradictory results have been described about the

functional role of this microRNA. Meng et al. found that miR-370

is a methylation-dependent miRNA regulated by interleukin-6 (IL-

6), and that overexpression of miR-370 reduced the growth of

cholagiocarcinoma cells by targeting the oncogene mitogen-

activated protein kinase 8 (MAP3K8) [27]. In contrast, Lo et al.

described that miR-370 enhanced the oncogenic potential of

gastric carcinoma (GC) [26]. However, although they found that

the increased in mobility induced by miR-370 in GC cells was via

targeting transforming growth factor-b receptor II (TGFb-RII),

they did not observe any influence of the TGFb pathway in the

enhanced tumor cell growth elicited by miR-370 in GC cells.

According to our results, it is possible that the enhanced growth

after overexpressing miR-370 in GC cells observed by these

authors was mediated by downregulation of NF1. The opposite

roles of miRNA-370 in different malignancies could be explained

considering that microRNAs are able to regulate the expression of

multiple genes. Therefore, it is possible that miR-370 modulates

the expression of all these targets; however, the dominant event

may depend on cell type or cellular contexts [28]. Although miR-

370 is likely to target other genes in addition to NF1,

downregulation of NF1 appears to play a critical role in enhanced

tumorigenicity associated with overexpression of miR-370 in

AML.

Quantification of the expression of NF1 in our collection of 68

samples of patients with AML at diagnosis showed that NF1

downregulation is a recurrent event in AML, accounting for

30.8% cases. Parkin et al. have also analyzed NF1 expression by

QRT-PCR in AML cases, and showed in their Figure 2 the high

frequency of NF1 downregulation in patients with one as well as

with two copies of NF1; however, they did not indicate the number

of cases with this downregulation [14]. Therefore, our results

showed for the first time the prevalence of NF1 downregulation in

AML by QRT-PCR. Further studies in larger series of cases are

needed to establish the prevalence of NF1 downregulation in

AML. Deletions or/and mutations affecting NF1 have been

described as genetic aberrations responsible for NF1 inactivation in

adult AML, although inactivation mutations of NF1 are rare

events in de novo AML. Parkin et al. reported a detailed

investigation in 95 AML patients and showed that 10 out of 95

(10.5%) had heterozygous deletions of the NF1 locus, a lower

percentage than our study (13/55, 26.5%)[14]. Since we used the

same technique reported by this group, these results would

indicate that additional studies are required to determine the real

prevalence of NF1 submicroscopic deletions in AML. In addition,

in a recent study, Haferlach et al. showed that the prevalence of

NF1 mutations in AML is 2% (19/889) [21]. In our study, we

found 21 cases with reduced NF1 at mRNA level: 5 had NF1

Figure 1. Functional analysis showing that miR-370 regulates NF1. (A) miRNAs expression analysis by real-time PCR after transfection with
pre-miRs-370, 2379, 2432 and 2494. (B) Western blot showing NF1 after transfection with pre-miR-370. (C) Luciferase assay showing changes in
luciferase activity after transfection with pre-miR– (negative control) or pre-miR-370 in cells expressing the 39UTR region of NF1 that includes the miR-
370 seed region [pRL-NF1(39UTR)wt]. Transfection with the 39UTR region of NF1 including a mutated seed region for miR-370 was used as control.
doi:10.1371/journal.pone.0047717.g001
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deletions, 6 miR-370 overexpression, and 11 none of these

aberrations (one case had both NF1 deletion and overexpression of

miR-370). Therefore, our results confirm the studies that showed

that CNV could be one of the causes of NF1 downregulation in

AML [14,21], identify overexpression of miR-370 as a new

mechanism of NF1 downregulation in AML, and suggest that

there are other unknown mechanisms involved in NF1 downreg-

ulation. Therefore, it is possible that the altered expression of miR-

370 could explain the 3 cases identified by Parkin et al. with

normal copy number and null NF1 expression [14].

Furthermore, in this study we have analyzed for the first time the

status of NF1 protein in 14 AML patient samples, showing that the

finding of null NF1 is frequent in AML. Lu et al. (2003) had

previously reported decreased bone marrow levels of the NF1

protein in 30% cases with AML (20/66) (24), a prevalence similar to

that observed in this study at mRNA level (30.8%) (Table 2). The

authors used solid-phase RIA to measure the NF1 protein because

they were not able to detect NF1 by western blot in bone marrow

samples from normal individuals. We could detect the NF1 protein

in normal controls, suggesting that our results in AML cases with

downregulation of Nf1 at protein level are reliable. Importantly, our

results show that all patients with NF1 downregulation, including 3

cases with overexpression of miR-370, have no protein at all.

Moreover, we identified a case with normal levels of both NF1

mRNA and miR-370 and no protein, confirming the complex

regulation of NF1, and showing that there are other mechanisms of

NF1 regulation at post-transcriptional level. Parkin at al. have shown

that complete NF1 loss is required to Ras activation, and that

heterozygous NF1 states that preserve some NF1 expression are not

sufficient for robust Ras activation [14]. Of note, AML blasts

without functional NF1 were substantially and significantly more

sensitive to mTOR inhibition than NF1 wild-type blasts or blasts

with one preserved NF1 copy and retained NF1 expression [14].

Therefore, our results would point out to a new group of patients

susceptible of receiving these therapies.

In summary, our integrative analysis including data from high

resolution SNPs arrays, mRNA expression arrays, and miRNAs

expression profiles in 16 myeloid cell lines highlights that copy

number alterations are alternative mechanisms to deregulate the

expression of miRNAs in AML, and represent a novel approach to

identify novel candidate genes involved in AML. Of note,

functional studies identified NF1 as a target of the miR-370 and,

Figure 2. Effects of miR-370 on AML cell proliferation. (A) NF1 expression after transfection with pre-miR-370 and anti-miR-370 in TF-1 cells. (B)
Cell growth of TF1 cells after transfection with pre-miR-370, anti-miR-370 or miR-Control. Bars represent the mean 6 SD of three independent
experiments. *P,0.05 determined using t-student test. (C) Colony forming ability of TF-1 cells transfected with miR-Control, pre-miR-370 or anti-miR-
370. Bars represent the mean 6 SD, experiments were done in triplicate. *P,0.05 determined using t-student test.
doi:10.1371/journal.pone.0047717.g002
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in agreement with the tumor suppressor activity of NF1, we found

that overexpression of miR-370 enhanced the tumorigenic

potential of AML cells. Finally, QRT-PCR and western blot

analyses showed that NF1 downregulation is a common event in

AML, and that both deletions in the NF1 locus and overexpression

of miR-370 represent two alternative mechanisms to downregulate

NF1 in this disease. Since NF1 deficiency leads to the activation of

the RAS signaling pathway, patients with AML and overexpres-

sion of miR-370 may potentially benefit from additional treatment

with either RAS or mTOR inhibitors. Further studies are required

to identify other mechanisms leading to NF1 deficiency and to

decipher the prognostic impact of NF1 inactivation in AML.

Materials and Methods

Cell culture and transfection
EOL-1, HL-60, Kasumi-1, OCI-AML2, MOLM13, MV4-11,

HEL, KG-1, KYO-1, K562 and MEG-01 cells were maintained

in RPMI-1640 (Invitrogen) with 10% fetal bovine serum (FBS);

NOMO-1 and KU-812 in RPMI-1640 with 20% FBS; F-36P in

RPMI-1640 with 20% FBS, and 10 ng/ml GM-CSF; MUTZ-3 in

80% alpha-MEM with 20% FBS and 10 ng/ml GM-CSF; and

TF-1 in RPMI-1640 with 20% FBS and 5 ng/ml GM-CSF. Cell

lines were grown at 37uC in a 5% CO2 atmosphere. Media were

supplemented with penicillin G (100 U/ml), and streptomycin

(0.1 mg/ml). Cell lines were obtained from the DSM Cell Culture

Bank (Braunschweig, Germany). Characteristics of the 16 myeloid

cell lines used in this study are summarized in Table S6. For

transfection experiments HL-60 and TF-1 cells were seeded in

culture flasks and transfected using the Nucleofector System

(solution V and protocol T-019 for HL-60 cells; solution T and

protocol T-001 for TF-1 cells) (Amaxa) with 5 nM of pre-miRNAs

designed and synthesized by Ambion (Applied Biosystems) (hsa-

miR-370 ID/PM12868; hsa-miR-432 ID/PM10838; hsa-miR-

379 ID/PM10316; hsa-miR-494 ID/PM12409; anti-hsa-miR-370

ID/AM12868, hsa-miR-Control ID/AM17110), or with

100 pmol of NF-1 and scramble siRNA oligonucleotides (NF-1

siRNA: 59-AAGGUUGCGCAGUUAGCAGUU-39 and scramble

siRNA: 59-UUCUCCGAACGUGUCACGU-39) synthesized by

MGW Biotech (Ebersberg, Germany).

Patient samples
The study comprised bone marrow samples of 70 patients with

AML at diagnosis. Bone marrow samples of normal healthy

donors were used as controls.

Ethics Statement
The study has been approved by the Comisión de Ética de

Investigación de la Facultad de Medicina de la Universidad de

Navarra (037/2008). Informed consent for this study is not

required because the samples are anonymous (anonymous samples

have neither personal data nor individual clinical information that

could allow the identity of the donor to be traced).

Single Nucleotide Polymorphism Array Analysis
Whole genome analyses were performed using the GeneChip

Mapping 500 K Array Set (Affymetrix). Genomic DNA samples

were isolated using QiAmpDNA MiniKit (Qiagen). Arrays were

scanned individually using the GeneChipH Scanner 3000 7G under

the GeneChipH CEL files were generated using Affymetrix

GeneChip Command Console operating software and Genotyping

Console 2.1 according to the manufacturer protocols (Affymetrix).

We only analyzed samples which met the quality control (QC)

thresholds recommended by Affymetrix in their Genotyping

Console v2.1 software. The QC call rate of samples analyzed was

at least 96%. Samples not meeting this specification were excluded

from further analysis. CEL files were then imported into Partek

Genomic Suite and analyzed using the Copy Number Analysis

Table 2. Clinical and molecular characteristics of the 70
patients with AML at diagnosis included in the study.

Sex No. (%)

Male 49 (70)

Female 21 (30)

Age

,60 years 24 (34.8)

$60 years 45 (65.2)

No data 1

Diagnosis

AML-M0 6 (8.6)

AML-M1 19 (27.2)

AML-M2 16 (22.8)

AML-M4 6 (8.6)

AML-M5 15 (21.4)

AML-M6 2 (2.8)

AML-NOS 6 (8.6)

Secondary AML

No 60 (87)

Yes 9 (13)

No data 1

Cytogenetic group

good 4 (5.8)

intermediate 59 (85.5)

poor 6 (8.7)

No data 1

NF1 downregulation

No 47 (69.2)

Yes 21 (30.8)

No data 2

Deletions affecting NF1 locus

No 32 (76.4)

Yes 13 (23.6)

No data 15

miR-370 overexpression

No 40 (87)

Yes 6 (13)

No data 24

FLT3-ITD

No 40 (78.4)

Yes 11 (21.6)

No data 19

NPM1 mutated

No 23 (54.8)

Yes 19 (45.2)

No data 28

doi:10.1371/journal.pone.0047717.t002
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workflow. Regions of CNVs were detected using an unpaired

analysis and Genomic segmentation algorithm in the standard

Partek. Genomic alterations identified by SNP array (SNPa) were

compared with the 500K HapMap Genotype Data Set. We consider

as amplification the regions whose copy number was over 3 copies,

and as deletion, regions with copy number below 1.5 (homozygous

deletion CN,0.5 and hemizygous deletions CN = 0.8–1.5) [8]. We

considered the karyotype of each cell line to asses that results

obtained in the SNPa analysis are not due to the presence of a

previously described cytogenetic aberration.

Validation of copy number alterations
Genomic regions located within miRNAs genes were amplified

with the primers included in Table S7. Glucose-6-Phosphate

Dehydrogenase (G6PDH), Hydroxymethylbilane Synthase (HEM3)

and Chloride channel 7 (CLCN7) genes were selected as internal

controls for varying input DNA amounts as recommended by

prior published guidelines [9,10]. Thus, any difference in the real

time PCR obtained for test primers/markers would correspond to

differences in the amount of the target sequence primers. SYBR

Green I real time PCR assays were carried out in final reaction

volumes of 15 ml with 7.5 ml of SYBR Green I Master mix

(Applied Biosystems), 1 mM of forward and reverse primers and

10 ng of genomic DNA. Real time PCR reactions were performed

using the 7500 Real Time PCR System (Applied Biosystems). The

reaction profile was: initial step, 50uC for 2 min, denaturation,

95uC for 10 min, then 40 cycles of denaturing at 95uC for 15 sec,

combined annealing and extension at 60uC for 30 sec and 72uC
30 sec, followed by the dissociation stage of 72uC 10 min. Data

were analyzed as previously described [10].

Quantification of miRNA expression levels
Total RNA was isolated using TRIzol Reagent (Invitrogen)

according to manufacturer’s instructions. For quantification of

miRNA expression levels, samples were reverse transcribed using

the TaqManHMicroRNA Reverse Transcription Kit (P/N

4366597, Applied Biosystems) and mature miRNAs were quantified

by quantitative real-time RT-PCR (QRT-PCR) using the Taq-

ManH MicroRNA Assays - Human Panel Early Access Kit (P/N

4365409, Applied Biosystems). The kit contained assays for 250

miRNAs of the 733 currently listed in the Sanger miRBase

database. Expression levels of miR-370, miR-379, miR-494, and

miR-432 were confirmed using TaqMan MicroRNA Assays

(Applied Biosystems) specific for each miRNA and U6B as internal

control. Analysis of relative gene expression data was performed

Figure 3. Western blot analysis of NF1 in 14 samples of patients with AML at diagnosis. Data about NF1 status and expression of miR-370
are shown. N: normal control; P: patient sample.
doi:10.1371/journal.pone.0047717.g003
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using the 22DDC
T method [11]where DDCT = (CT,Target Gene

– CT,U6B)Cell Line – (CT,Target Gene – CT,U6B)Normal Control.

Gene Expression Profiling
Total RNA was extracted from cell lines using miRNEasy Mini

Kit (Qiagen) following manufacturer’s protocol. The RNA

integrity was assessed using Agilent 2100 Bioanalyzer (Agilent).

Whole genome expression analysis was performed in the cell lines

using the Affymetrix Human Genome-U133 Plus-2.0, which

contains 54,676 probesets (47,000 transcripts). Microarray data

analysis consisted in background correction and normalization

using RMA algorithm [12] and a filtering process to eliminate low

expression probesets. LIMMA (Linear Models for Microarray

Data) [13] was used to identify the probesets with significant

differential expression. Genes were selected as significant using a B

statistic cut off (B.0) or a less stringent P-value cut off (P,0.001).

Quantification of NF1 by real-time RT-PCR and validation
of copy number alterations

Total RNA was isolated using the RNeasy minikit (Qiagen).

cDNA was synthesized with SuperScriptIII Reverse Transcriptase

(Invitrogen). Quantification of the expression of NF1 was

performed by SYBR Green I real time PCR assays (Applied

Biosystems), using specific primers for each gene (NF1_Fwd:

AAGCCCTCACAACA-ACCAAC; NF1 Rv: GACAATACA-

CAGCATCAATCT; HPRT Fwd: TGACAC-TGGCAAAA-

CAATGCA; HPRT Rv: GGTCCTTTTCACCAGCAAGCT).

HPRT was used as internal control. Analysis of relative gene

expression data was performed using the 22DDC
T method

[11]where DDCT = (CT,Target Gene – CT,HPRT)Cell Line –

(CT,Target Gene – CT,HPRT)Normal Control. A gene was considered

deregulated if its expression value was higher or lower than the

cut-off value established for each gene (mean+3SD), defined by the

analysis of 10 normal BM samples.

Quantification of genomic copy number changes at the NF1

locus (17q11) was performed using specific TaqMan-based probes

for NF1 (Hs06413068_cn) and RAG2 (Hs01851142_s1) (Applied

Biosystems) as previously described [14]. DNA was extracted using

QuiAmp DNA Mini Kit (Qiagen). Analysis of relative gene copy

number data for NF1 was performed using the DDCT method. As

indicated by Parkin et al. (2010), the CT values for the RAG2 locus

were used as reference [14].

Integrative Genomic Analyses
Relationship between miRNA expression and the CN of the

corresponding miRNA gene locus was measured by a parametric

analysis. Data from SNP and miRNA analysis were crossed and

analyzed using t-tests. A statistical hypothesis test was performed

for each miRNA profile using the results of the CNV analysis

(amplification/deletion) as sample labels. Associations were

considered statistically significant when P,0.05. The set of

differentially expressed genes were further studied using miRNA

predicted targets stored in public databases to identify coherent

targets [15,16,17,18,19].

Western blot analysis
Protein extracts were isolated using TRIzol Reagent (Invitro-

gen) following manufacturer’s indications, clarified (12,0006g,

15 minutes, 4uC), denatured and subjected to sodium dodecyl

sulfate-polyacrylamide gel electrophoresis and Western blot.

Antibodies used were rabbit polyclonal anti-Nf1 (Santa Cruz)

and mouse monoclonal anti-b-actin (Sigma-Aldrich). Proteins

were detected with the appropriate secondary antibodies by

chemiluminescence (ECL kit, GE Healthcare).

Luciferase assays
Luciferase assays were done using the Dual Luciferase System

(Promega). One hundred nanograms of pRL-NF1(39UTR) or pRL

were transfected in the presence of 5 ng of pre-miR-370 or pre-

miR-negative control, and 50 ng of pGL3-Promoter. A pRL-

NF1(39UTR) construct including a mutated miR-370 seed region

was used to confirm NF1 as a direct target of miR-370. Renilla

luciferase activities were normalized to firefly luciferase activities.

Proliferation assays
TF-1 cells transfected with pre-miR-370, anti-miR-370, pre-miR-

control, NF-1 siRNA or scramble siRNA, were seeded at 7.56103

cells/well in 96-well plates. Cell growth was assessed by MTS assay

using the CellTiter 96 Aqueous One Solution Cell Proliferation Assay

(Promega) and following the manufacturer’s indications. Experiments

were performed in triplicate and repeated at least 3 times.

Colony-forming assay
Experiments were performed in 6-well plates were coated with

0.6% soft agarose (Sigma) in medium. 16105 TF-1 transfected cells

were suspended in 0.3% agarose in medium and plated in triplicated

over the pre-coated wells. Fresh medium was supplied thrice a week.

After 7 days, colonies were stained by adding 500 ul of 5 mg/mL

MTT (Methylthiazolyldiphenyl-tetrazolium bromide, M-5655, Sig-

ma) for 4 h at 37uC. Then, colonies were fixed by adding DMSO

overnight at 37uC. Colony numbers were determined from triplicates.

Supporting Information

Figure S1 Boxplots of miRNAs whose expression signif-
icantly correlated with the inferred CN of the corre-
sponding region. Cell lines are classified as carrying or not A.
gain/amplification (inferred CN .3) or B. loss/deletion (inferred

CN ,1.5) of each specific miRNA gene.

(TIF)

Figure S2 Knockdown of NF1 reduces cell growth and
colony-forming ability of TF-1 cells. A. Relative NF1 gene

expression levels in TF-1 cells 48 h after transfection with scrambled

and NF1 siRNA. Bars represent the fold change calculated by the

22DCt method. Expression was normalized to the HPRT1 gene.

B. Western blot showing NF1 expression levels from TF-1 cells

transfected with NF1-targeting or scrambled siRNA, 48 h post-

transfection. b-actin was used as a loading control. C. Growth

curves of scrambled and NF1 siRNA-transfected TF-1 cells.

*P,0.05 Student’s t test. Data shown are mean 6 SD of triplicate

cultures and are representative of three independent experiments.

D. Representative images of colonies formed by scramble and NF1

siRNA-transfected TF-1 cells after two weeks grown in soft agar. E.
Number of colonies formed in the colony formation assay.

**P,0.01, Student’s t test. Data represented are mean 6 SD.

(TIF)

Figure S3 Scatterplot showing the significant associa-
tion between down expression of NF1 and high expres-
sion of miR-370.
(TIF)

Table S1 Genomic regions with amplifications or
deletions found at least in 4 out of the 16 myeloid cell
lines analyzed. Amplification was considered if CN .3, and

deletion if CN ,1.5.

(DOC)
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Table S2 List of the high amplifications (CN.5) and
homozygous deletions (CN,0.5) found in the copy
number analysis of 16 myeloid cell lines.
(DOC)

Table S3 MicroRNAs located in amplified regions in
myeloid cell lines, which were highly expressed, and had
NF1 as a potential target gene.
(DOC)

Table S4 NF1 status and miR-370 expression in the 68
samples of patients with AML at diagnosis included in
the study.
(DOCX)

Table S5 Clinical and molecular characteristics of 14
patients with AML at diagnosis included in the study of
NF1 at protein level.
(DOC)

Table S6 Clinical and molecular characteristics of the
16 human myeloid cell lines.

(DOCX)

Table S7 Oligonucleotide primers used for real-time Q-
PCR.

(DOC)
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