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ABSTRACT 
 
This paper examines the interaction between non-linear deterministic trends and long 
run dependence by means of employing Chebyshev time polynomials and assuming 
that the detrended series displays long memory with the pole or singularity in the 
spectrum occurring at one or more possibly non-zero frequencies. The combination of 
the non-linear structure with the long memory framework produces a model which is 
linear in parameters and therefore it permits the estimation of the deterministic terms by 
standard OLS-GLS methods. Moreover, we present a procedure that permits us to test 
(possibly fractional) orders of integration at various frequencies in the presence of the 
Chebyshev trends with no effect on the standard limit distribution of the method. Several 
Monte Carlo experiments are conducted and the results indicate that the method 
performs well, and an empirical application, using data of real exchange rates is also 
carried out at the end of the article. 
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1. Introduction 

This paper deals with the analysis of long range dependence in the context of non-linear 

models. In particular, we employ the Chebyshev polynomials in time to describe the 

deterministic part of the model, and suppose that the detrended series displays long 

memory behavior. We use a general definition of long memory that allows the inclusion 

of one or more poles or singularities in the spectrum at various frequencies. Thus, we 

consider the standard case of I(d, d > 0) behavior, but also other possibilities such as 

seasonal/cyclical long range dependence and multiple cyclical structures. This is 

particularly interesting for macroeconomic data with a high seasonal component or 

cyclical movement due to economic activity. 

The main problem with the non-linear deterministic trends in the context of 

fractional integration is that the interaction of the two structures produces a model with a 

non-linear structure for the coefficients, implying that linear methods are invalid for the 

estimation of the parameters. Also, a misspecified deterministic component may affect 

the power of the tests for the order of integration of the variables (see Perron, 1989, 

amongst many others). Many authors such as Zivot and Andrews (1992), Lumsdaine and 

Papell (1997), Lee and Strazicich (2003) and Papell and Prodan (2006), inter alia, have 

proposed unit root tests incorporating structural breaks, so as to improve the performance 

of the tests. However, structural breaks may still not be a proper specification of the 

deterministic component. Changes can occur smoothly rather than suddenly. In this line, 

Ouliaris et al. (1989) proposed regular polynomials to approximate deterministic 

components in the data generation process. However, as later pointed out by Bierens 

(1997), Chebyshev polynomials might be a better mathematical approximation of the 

time functions, since Chebyshev polynomials are bounded and orthogonal. Chebyshev 
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polynomials are cosine functions of time, which according to Bierens (1997), can be very 

flexible to approximate deterministic trends.  With respect to the long range dependence 

we use a very general framework that allows the incorporation of one or more integer or 

fractional orders of integration of arbitrary order anywhere on the unit circle in the 

complex plane. This will allow us the analysis of a great variety of model specifications, 

including for example seasonal and cyclical behaviors of any stationary or nonstationary 

degree. Also, given that the inference based on t-statistics remains valid under the 

fractional integration specification used, we propose a very simple way to choose the 

order of the Chebyshev polynomials based on the significance of the Chebyshev 

coefficients. 

 The structure of the paper is as follows: Section 2 describes the statistical model 

incorporating non-linear (Chebyshev) trends and long range dependence. Section 3 

presents a testing procedure for the fractional differencing parameters that includes the 

estimation of the non-linear trend coefficients. Section 4 contains a simulation study. 

Section 5 is devoted to the empirical work that includes an application using real 

effective exchange rates for 40 industrialized countries, and its implications for the 

purchasing power parity (PPP) theory. Section 6 concludes the paper. 

 

2. The statistical model 

We consider the following model, 

,...,2,1,);( =+= txzfy ttt θ    (1)     

where yt is the observed time series, f is a non-linear function that depends on the 

unknown parameter vector of dimension m, θ, and zt which is a vector of deterministic 



 4

terms or weakly exogenous variables; finally, we suppose that the error term xt can be 

described in terms of the following model, 

,...,2,1,);( == tuxdL ttρ     (2)     

with 

∏
=

+−+−=
M

j

dj
r

dd jLLwLLdL
3

2)( )cos21()1()1();( 21ρ   (3) 

and ut assumed to be I(0).  For the purpose of the present work we define an I(0) process 

as a covariance stationary process with a spectral density function that is positive and 

bounded at all frequencies in the spectrum. Thus, it includes for ut in (2) stationary and 

invertible autoregressive and moving average (ARMA) processes. Coming back to (3), L 

is the backshift operator (i.e., Lxt = xt-1) and d is an (Mx1) vector containing the fractional 

differencing parameters that correspond to different poles or singularities in the 

spectrum. We observe that this is a very general specification that includes many cases of 

interest such as the standard I(d) models (in case of dj = 0 for all j ≠  1, and d1 = d); 

cyclical fractional models based on Gegenbauer processes (when dj = 0 for all j ≠  3); 

seasonal models (M = 3 with )3(
rw = π), etc. (See Section 3.1 below). 

 Given the above set-up we focus on the estimation and testing of the unknown 

parameters corresponding to the vectors d and θ referring respectively to the differencing 

parameters and the non-linear deterministic trend coefficients. 

 The main problem we face with this set-up is the interaction between the equations 

(1) and (2), in particular, between the long memory polynomial ρ and the non-linear 

function f. Under many circumstances the combination of the two produces a non-linear 

model in parameters, which hinders the task of estimating the parameter vector θ. 
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However, one model that accommodates extremely well in the present context is the 

Chebyshev time polynomial. 

The Chebyshev time polynomials Pi,T(t) are defined by: 

,1)(,0 =tP T  

( ) ...,2,1;,...,2,1,/)5.0(cos2)(, ==+= iTtTtitP Ti π  . (4) 

See Hamming (1973) for a description of these polynomials. Bierens (1997) uses them in 

the context of unit root testing. The latter author proposes several unit root tests, which 

account for a drift and a unit root under the null hypothesis, and stationarity around a 

linear or non-linear trend under the alternative. Hence, within the analysis of the order of 

integration of the variables, Bierens (1997) unit root tests, allow us to test whether the 

process is linear or non-linear trend stationary. 

Across the present paper we employ Chebyshev polynomials to describe the 

deterministic trend. Thus, we can replace (1) by 

,...,2,1,)(
0

=+= ∑
=

txtPy t

m

i
iTit θ    (5)     

with m indicating the order of the Chebyshev polynomial, and xt following the model 

given by (2) and (3). Note that the higher m is the less linear the approximated 

deterministic component becomes. An issue that immediately arises here is the 

determination of the optimal choice for m. However, as will be argued below, standard t-

statistics will remain valid under the specification given by (5), (2) and (3) noting that the 

error term is I(0) by definition. The choice of m will, then, depend on the significance of 

the Chebyshev coefficients based on a particular choice of the (possibly ARMA) model 

selected for the I(0) disturbances. 
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3. The procedure 

The method proposed in this paper is a slight modification of Robinson (1994). He 

considers the same set-up as in (1) and (2) with f in (1) of the linear form: θTzt, testing the 

null hypothesis: 

,: oo ddH =      (6)  

for any real vector value do. Under Ho, and using the two equations,  

,...,2,1,** =+= tuzy tt
T

t θ    (7) 

where ,);(*
tot ydLy ρ= and .);(*

tot zdLz ρ=  Then, given the linear nature of the above 

relationship and the I(0) nature of the error term ut, the coefficients in (7) can be 

estimated by standard OLS/GLS methods. The same happens in our approach, whereby f 

contains the Chebyshev polynomials, noting that the relation is linear in parameters. 

Thus, combining equations (2) and (5) we get 

,...,2,1,)(
0

** =+= ∑
=

tutPy t

m

i
iTit θ    (8)     

where 

),();()(* tPdLtP iToiT ρ=  

and using OLS/GLS methods, under the null hypothesis (6), the residuals are 

    ,ˆ;)(ˆˆ
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and Pt as the (mx1) vector of Chebyshev polynomials. Based on the above residuals tû , 

we estimate the variance, 

,/2;)()ˆ;(2)(ˆ ˆ
1

1

2 TjIg
T jjuj

T

j

πλλτλπτσ == −

=
∑     (10) 
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where )(ˆ juI λ is the periodogram of tû ; g is a function related with the spectral density of 

ut (i.e., s.d.f.(ut) = (σ2/2π)g(λj;τ)); and the nuisance parameter τ is estimated, for example, 

by ),(minargˆ 2
* τστ

τ T∈=  where T* is a suitable subset of the Rq Euclidean space. 

 The test statistic, based on Robinson (1994), for testing Ho (6) in (5), (2) and (3) 

uses the Lagrange Multiplier (LM) principle, and is given by 

,ˆˆˆ
ˆ

ˆ 1
4 aAaTR T −=

σ
     (11) 

where T is the sample size, and 
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j
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τ∂
∂

=λε  

and the sum over * above refers to all the bounded discrete frequencies in the spectrum. 

Under very mild regularity conditions1, Robinson (1994) showed that 

,ˆ 2 ∞→→ TasR Md χ    (12) 

and, based on Gaussiantiy of ut,  he also showed the Pitman efficiency theory of the test 

against local departures from the null. That means that if we direct the test against local 

alternatives of form: 

,: 2/1−+= TddH oa δ       

                                                           
1  These conditions only include moments up to a second order. 
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where δ is a non-null parameter vector, ),(ˆ 2 Λ→ MdR χ indicating a non-central chi-

squared distribution with non-centrality parameter which is optimal under Gaussiantiy of 

ut. 

 

3.1 Simple particular cases  

In this section, we simplify the functional form of the above test statistic for some 

particular cases of interest. 

 

a) White noise ut 

If we suppose that the disturbances are white noise, then, the spectral density function of 

ut is simply σ2/2π, and therefore, g ≡ 1. Also, .0)(ˆ =jλε  Then, 

),()(2ˆ ˆ

*

ju
j

j I
T

a λλψ
π ∑−

=     and     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

*

)()(2ˆ
j

T
jjT

A λψλψ . 

 

b) The case of the standard I(d) model 

A very standard case examined in the literature is the one corresponding to ρ(L;d) = (1-

L)d. These processes are called fractionally integrated or I(d); they were introduced by 

Granger (1980), Granger and Joyeux (1981) and Hosking (1981), and have been widely 

employed in empirical works in the last twenty years to describe the dynamics of many 

economic and financial time series (Diebold and Rudebusch, 1989; Sowell, 1992; Gil-

Alana and Robinson, 1997; etc.). 

In this context, M = 1, and ,
2

sin2log)( j
j

λ
λψ =  implying that 
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,
2

sin2log2ˆ
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which can be asymptotically approximated by π2/6. 

 

c) The case of a cyclical I(d) model 

In the previous case, the spectral density function is unbounded at the long run or zero 

frequency. However, the pole or singularity in the spectrum may occur at a non-zero 

frequency. In such a case we can consider ρ(L; d)  =  (1 - 2cos wrL + L2)d, with wr = 

2πr/T, r = T/s, and thus s will indicate the number of time periods per cycle, while r 

refers to the frequency that has a pole or singularity in the spectrum of the series. Gray et 

al. (1989, 1994) showed that this polynomial can be expressed in terms of the 

Gegenbauer polynomial, such that, denoting μ = cos wr, for all d ≠  0, 

,)()21(
0

,
2 j

j
dj

d LCLL μμ ∑
∞

=

− =+−    

where )(, μdjC  are orthogonal Gegenbauer polynomial coefficients defined recursively 

as:  

,1)(,0 =μdC   ,2)(,1 dC d μμ =  

....,3,2,)(112)(112)( ,2,1, =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
= −− jC

j
dC

j
dC djdjdj μμμμ , 

(see Magnus et al., 1966, Rainville, 1960, etc. for further details on Gegenbauer 

polynomials). This type of process was introduced by Andel (1986) and subsequently 

analysed by Gray, Zhang and Woodward (1989, 1994), Chung (1996a,b), Gil-Alana 

(2001) and Dalla and Hidalgo (2005) among many others. 

 In this case, M is also equal to 1, and  



 10

( ).coscoslog)( rjj w−= λλψ  

 

 d) The case of multiple cycles 

We can also study the case of processes that contain multiple poles or singularities in the 

spectrum. In these cases, .)LLwcos21()d;L(
M

1u

d2)u(
r u∏ +−=ρ

=
 These processes were 

introduced by Giraitis and Leipus (1995), Woodward et al. (1998), Ferrara and Guegan 

(2001), and Sadek and Khotanzad (2004) among others. One special case here is the 

seasonal I(d) model that, using a very simple specification may be expressed as 

,...,2,1,)1( ==− tuxL tt
ds      

s indicating the number of time periods per year. Thus, for example, for quarterly data, s 

= 4, and it is a particular case of d) with M = 3, and =)u(
rw  0, π/2 and π respectively for 

(u) = 1, 2 and 3. These processes were introduced by Porter-Hudak (1990) and have been 

subsequently examined by Ray (1993), Sutcliffe (1994) and Gil-Alana and Robinson 

(2001) and others. 

If s = 4 and ρ(L; d) = (1 - L4)d, then M = 1,2 and ψ(λj) becomes: 

,cos2log
2

cos2log
2

sin2log)( j
jj

j λ
λλ

λψ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

 

and allowing for a greater degree of generality, we can consider the case of different 

orders of integration at each frequency, so that .)1()1()1();( 321 2 ddd LLLdL −+−=ρ  In 

this case, M = 3 and ψ(λj) becomes a (3x1) vector of form: 

                                                           
2 Note that M refers to the dimension of d, while m indicates the order of the Chebyshev polynomials. 
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 e) The case of Bloomfield (1973) disturbances 

Finally, we can suppose that the disturbances ut follow a non-parametric approach due to 

Bloomfield (1973). This model does not provide an explicit formula for the error term, 

but it is implicitly determined by its spectral density function, which is given by 

,)(cos2exp
2

);(
1

2

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

rf
X

r
jrj λτ

π
στλ

    (13) 

where X indicates the number of parameters required to describe the short run dynamics. 

Bloomfield (1973) showed that the logarithm of an estimated spectral density function is 

often found to be a fairly well behaved function and thus can be approximated by a 

truncated Fourier series. He showed that (13) approximates the spectral density of an 

ARMA(p, q) process well when p and q are small values, which is usually the case for 

most economic time series. Like the stationary AR model, this has exponentially 

decaying autocorrelations and thus, using this specification, one does not need to rely on 

as many parameters as in the case of ARMA processes. Moreover, it accommodates 

extremely well in the context of the testing procedure presented above. Thus, formulae 

for Newton-type iterations for estimating the τj are very simple (involving no matrix 

inversion), updating formulae when X is increased is also simple,  and we can replace Â 

in the functional form of the test statistic in (11) by the population quantity:  
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,
6 1

2
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1

2 ∑∑
=

−
∞
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− −=
X
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ll π

 

which indeed is constant with respect to the τj.3 

 

4. A simulation experiment 

In this section we briefly examine the finite sample behavior of some simple versions of 

the tests by means of Monte Carlo simulations. All calculations were carried out using 

Fortran and the programs are available from the authors upon request. Given the variety 

of cases and the number of possibilities covered by the tests, we concentrate on some 

simple cases, widely employed in the literature such as the case of standard I(d) 

processes with the singularity or pole in the spectrum occurring at the long run or zero 

frequency. In particular, we consider the following data generation process (DGP): 

∑
=

=−+=
m

i
tt

d
tiTit uxLxtPy

0

,)1(,)(θ    (14) 

with m = 3 to justify some degree of non-linear behavior, and ut as a white noise process 

with mean zero and variance 1. Also, for simplicity, we suppose that θi  = 1 for all i, and 

take d in (14) equal to 0, 0.25, 0.50, 0.75 and 1, thus, including stationary and 

nonstationary hypotheses. We generate Gaussian series using the routines GASDEV and 

RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), for different sample sizes T 

= 50, 100, 300 and 500, taking 10,000 replications for each case, and present the results 

for a nominal size of 5%. 

                                                           
3 See Gil-Alana (2004) for an explanation of the accommodation of the model of Bloomfield (1973) in the 
context of fractional integration, and more in particular, in the context of the tests of Robinson (1994). 
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 Based on the model given by (14) we test the null hypothesis (6) for different do-

values. However, noting that in this context M = 1, we can consider one–sided 

alternatives such as Ha: d > do or d > do, and then, consider the test statistic:  

,
ˆ
ˆ

ˆ
ˆˆ

2σ
a

A

TRr ==
     (15) 

which is asymptotically distributed as 

,)1,0(ˆ ∞→→ TasNr d     (16) 

See Robinson (1994). Thus, an approximate one-sided 100α%-level of (6) against the 

alternative d > do is given by the rule: 

“Reject Ho if r̂ > zα”, 

where the probability that a standard normal variate exceeds zα is α. In the same way, an 

approximate one-sided 100α%-level of (6) against the alternative d < do is given by the 

rule: 

“Reject Ho if r̂ < -zα”. 

 We examine the size and the power properties of the test in the case of the model 

given by (14) with d = 1 and look in Table 1 at the rejection frequencies of r̂ in (15) 

with do = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2. Thus, the values corresponding to do 

=1 will indicate the size of the test. We see in this table that the sizes of the tests are 

clearly biased if the sample size is small. Thus, for example, if T = 50 and the tests are 

directed against d > do, the size is 0.018; however, when directed against d < do, it 

becomes much higher than the nominal size of 0.050 (0.109); however, as the sample 

size increases the values tend to approximate to the 5% level, which is consistent with the 

asymptotic nature of the tests. If we focus now on the rejection frequencies, we observe 

that the higher sizes observed in the case of d < do also produce higher rejection 
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probabilities in all cases compared with the case of alternatives with d < 1. Nevertheless, 

for departures higher than 0.5 even with small sample sizes, the tests behave fairly well, 

and if T ≥  300 the probabilities are very close to 1 in all cases. Remember here that the 

null consists of a unit root with Chebyshev polynomials, so the test performs well even in 

strong nonstationary contexts. Performing the experiment with θ-coefficients different 

from 1, and also with other values of d lead to essentially the same conclusions implying 

that the test performs relatively well if the sample size is large enough. 

[Insert Tables 1 and 2 about here] 

 Next we perform a similar experiment in non-Gaussian contexts. For this purpose, 

we examine the same null model as in Table 1 but assuming now that the disturbances 

are t-Student distributed with 3 degrees of freedom. This distribution is interesting 

because it just satisfies the second moment condition required in the test, its third 

moments not existing. The results, displayed in Table 2, are competitive with the 

Gaussian ones, with the sizes being closer to the nominal one of 5% in practically all 

cases. If we focus on the rejection frequencies, they tend to be slightly larger for values 

of do < 1, and lower when do > 1 compared with Table 1. Very similar results were 

obtained if weak autocorrelation is permitted for the I(0) disturbances term, and the same 

applies for other values of d in (14). 

 

5. An empirical application 

In this section we apply the fractional integration tests developed in this paper to examine 

the mean reversion of real exchange rates and purchasing power parity (PPP). The 

absolute version of the PPP theory postulates that the price levels in two different 

countries should converge when measured in the same currency, so as to equalize the 
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purchasing power of the currencies. This, therefore, implies that the real exchange rate, 

defined as the ratio of prices in both places, translated to a common currency using the 

nominal exchange rate, should converge to 1. However, it is well known within the 

literature that the absolute version of the PPP hypothesis may be too restrictive. Hence, a 

less restrictive version of PPP is the relative PPP hypothesis, which implies that prices in 

common currency may converge to a constant different from 1. This relative version of 

the PPP implies then that what is actually expected in the long run is that the real 

exchange rate should be reverting to a constant, which may be different from 1. The 

intuition behind this is related to the fact that because of the existence of trade barriers, 

transport costs, and different measures of price indices, there may be a gap between price 

levels in different countries. Hence, on average, changes in real exchange rates should be 

zero, according to the relative version of the PPP theory. 

 In view of the above comments, testing for mean reversion becomes of paramount 

importance when testing for the empirical validity of the PPP theory, which at the same 

time, can be seen as a measure of the degree of over/under-valuation of the currencies, 

and it is used as a base for a number of macroeconomic models, i.e. the Dornbusch 

model. However, real exchange rate convergence, on average, to a constant along time 

may not be very realistic, in particular when countries experience different levels of 

economic growth and productivity gains, as well as, when countries suffer from changes 

in economic fundamentals, which may indeed change the equilibrium value of real 

exchange rates. For instance, the well known dynamic Penn effect and the Balassa-

Samuelson effect, may induce deterministic trends in the data (see Lothian and Taylor, 

2000, among others), and the existence of structural changes, may, in addition, induce 

changes in those trends. Hence, the importance of controlling for non-linear deterministic 



 16

trends when testing for real exchange rate mean reversion. In a recent contribution, 

Cushman (2008) tests for the PPP hypothesis using the Bierens (1997) unit root tests for 

bilateral exchange rates. He finds evidence to support that real exchange rates may in fact 

contain non-linear trends. However, it is not possible to test for the significance of these 

trends, unless the null is rejected. 

Our newly developed fractional integration testing procedure, taking into account 

Chebyshev polynomials to approximate non-linear deterministic trends, solves these 

problems with the flexibility of having non-integer orders of integration. Given that the 

residuals of the auxiliary regression are I(0) stationary by assumption, t-statistics are 

valid to test for the significance of the non-linear trends. This novelty solves the problem 

of choosing the order of the Chebyshev polynomials, which was not clearly defined by 

Bierens (1997). 

The data used in the empirical application are real effective exchange rates 

against each country’s 27 main trade partners, downloaded from Eurostat (code 

ert_eff_ic_q) for 40 countries, with different degrees of economic integration and 

development. We have used quarterly data from 1994:Q1 until 2011:Q3. 

Across this section we consider the following model, 

∑
=

=−+=
m

i
tt

d
tiTit uxLxtPy

0
,)1(,)(θ    (17) 

assuming that ut is a white noise process. 

 Table 3 displays the estimates of d and the 95% confidence bands of the non-

rejection values of d for the cases of m = 0, 1, 2 and 3. Higher values of m lead to non-

significant coefficients for θi in all cases. These estimates were obtained using the 

Whittle function in the frequency domain and they coincide with the values of do that 
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produce the lowest statistics in absolute value when using our testing approach with a 

fine grid of do-values (with 0.001 increments). We observe in this table that the values of 

d are very similar across the different values for m, in general, observing a slight 

reduction in the degree of integration as we increase m.4  We also notice that most of the 

estimates of d are within the unit root interval and some of them are even significantly 

above 1. The only evidence of mean reversion (i.e. d significantly below 1) is obtained 

for the cases of Cyprus, Greece and Malta (for all values of m) and for France and Spain 

if m = 2 or 3, i.e. assuming the existence of non-linearities. The results from Table 3 also 

point out that it is possible to reduce the order of integration of the variable by increasing 

artificially the order of the Chebyshev polynomials, m. This is consistent with other 

works that show that fractional integration and nonlinearities are issues which are 

intimately related (Diebold and Inoue, 2001; Granger and Hyung, 2004; etc.). 

[Insert Tables 3 – 5 about here] 

 Next we examine the deterministic terms in more detail, checking if the Chebyshev 

coefficients are statistically significant for the selected estimates of d. The results are 

presented in Table 4. We notice several cases where non-linearities are present. Based on 

these significant terms, we selected the appropriate model for each series, and the 

summary of the results (based only on the significant Chebyshev coefficients) are 

reported in Table 5. We see that strong evidence of non-linearities (with the two non-

linear coefficients statistically significantly different from zero) is obtained for the cases 

of Cyprus, France, Malta, Spain, Germany, Hong-Kong and Lithuania. In the first four 

cases, the unit root hypothesis is rejected in favour of mean reversion, while in the 

                                                           
4 This might indicate a degree of competition between the non-linear structure due to the Chebyshev 
polynomials and the I(d) framework in describing the structure of the series. 
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remaining three cases, though the estimated values of d are smaller than 1, the unit root 

cannot be rejected. Evidence of non-linearity with significant θ2-coefficient is observed 

for Austria, Greece and Slovakia, the unit root being rejected in favor of mean reversion 

in the case of Greece. Also, for some countries only one of the two non-linear 

coefficients is significant, such as China (with only θ3 being statistically significant, and 

an estimate of d of 0.979) as well as Bulgaria and Latvia (with d equal to 0.827 and 1.197 

respectively), and also, Belgium, Brazil and the UK (with θ2 significant but not θ3) and 

the unit root being not rejected. For the remaining cases, only an intercept or a linear 

trend is required. 

 We also conducted the analysis based on weakly autocorrelated errors. We tried 

both seasonal and non-seasonal autoregressions and the results, not displayed, indicate 

that though quantitatively there are some differences when computing the results based 

on autocorrelated errors qualitatively the same conclusions hold, since the number of 

cases corresponding to “mean reversion”, “unit roots” or “explosive roots” affect exactly 

to the same series as in the case of white noise errors. 

 Our results pinpoint a few economic insights. We first observe that in most cases 

structural breaks in the form of non-linear trends are present in the data. Second, for a 

number of countries, for instance the Czech Republic and Hungary, a linear trend is 

enough to approximate the data. This implies that the Balassa-Samuelson effect might be 

present, which makes economic sense given the process of catching-up with Western 

Europe during the transition period from communism to market economies. Finally, that 

in all cases of mean reversion, it occurs along with structural breaks. Comparing our 

results to those by Cushman (2008), although the results are not directly comparable, we 
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can say that we find evidence of mean reversion using a lower order for the Chebyshev 

polynomials.  

 

5. Concluding comments 

In this paper we have examined a model that incorporates Chebyshev polynomials in 

time in the context of long range dependence. For the latter we use a very general 

expression that permits us to examine stationary and nonstationary hypotheses with one 

or more unit or fractional degrees of integration with the singularities in the spectrum 

occurring at zero and non-zero frequencies. The main advantage of this model is that 

combining the two structures (non-linear Chebyshev polynomials and fractional 

integration) leads to a new model that is linear in parameters, permitting the estimation of 

the Chebyshev polynomials in a very simple way. Moreover, we describe a testing 

procedure, originally proposed by Robinson (1994) that displays several advantages in 

the present context. Thus, it allows us to test any real vector value for the differencing 

parameters, including stationary and nonstationary hypotheses; the incorporation of the 

Chebyshev polynomials allows its estimation with a straightforward method, including 

the use of the significancy of the coefficients throughout standard t-values. The limit 

distribution of the procedure is standard chi-squared distributed, and several Monte Carlo 

experiments conducted in the paper show it performs well even with small samples. A 

small empirical application based on this approach and using real effective exchange 

rates is also conducted in the paper.  

 

 



 20

References 
 
Andel, J. (1986) Long memory time series models, Kybernetika 22, 105-123. 

Bierens, H.J. (1997) Testing the unit root with drift hypothesis against nonlinear trend 

stationarity with an application to the US price level and interest rate, Journal of 

Econometrics 81, 29-64. 

Bloomfield, P. (1973) An exponential model in the spectrum of a scalar time series, 

Biometrika 60, 217-226. 

Chung, C.-F. (1996a) A generalized fractionally integrated autoregressive moving-

average process, Journal of Time Series Analysis 17, 111-140. 

Chung, C.-F. (1996b) Estimating a generalized long memory process, Journal of 

Econometrics 73, 237-259. 

Cushman, D. O. (2008) Real exchange rates may have nonlinear trends, International 

Journal of Finance and Economics 13, 158-173. 

Dalla, V. and J. Hidalgo (2005) A parametric bootstrap test for cycles, Journal of 

Econometrics 129, 219-261. 

Diebold, F.X. and A. Inoue (2001) Long memory and regime switching. Journal of 

Econometrics 105, 131-159. 

Diebold, F. X. and G. D. Rudebusch (1989) Long memory and persistence in aggregate 

output, Journal of Monetary Economics 24, 189-209. 

Ferrara, L. and D. Guegan (2001), Forecasting with k-factor Gegenbauer processes: 

Theory and Applications, Journal of Forecasting 20, 581-601. 

Gil-Alana, L. A. (2001) Testing stochastic cycles in macroeconomic time series, Journal 

of Time Series Analysis 22, 411-430. 



 21

Gil-Alana, L. A. (2004) The use of Bloomfield (1973) model as an approximation to 

ARMA processes in the context of fractional integration, Mathematical and Computer 

Modelling 39, 429-436. 

Gil-Alana, L. A. and P. M. Robinson (1997) Testing of unit roots and other nonstationary 

hypotheses in macroeconomic time series, Journal of Econometrics 80, 241-268. 

Gil-Alana, L.A. and P.M. Robinson (2001) Testing of seasonal fractional integration in 

the UK and Japanese consumption and income, Journal of Applied Econometrics 16, 95-

114. 

Giraitis, L. and P. Leipus (1995) A generalized fractionally differencing 

approach in long memory modelling, Lithuanian Mathematical Journal 35, 65-

81. 

Granger, C. W. J. (1980) Long memory relationships and aggregation of dynamic 

models, Journal of Econometrics 14, 227-238. 

Granger, C.W.J. and N. Hyung (2004) Occasional structural breaks and long memory 

with an application to the S&P 500 absolute stock returns, Journal of Empirical Finance 

11, 399-421. 

Granger, C. W. J. and R. Joyeux (1980) An introduction to long memory time series and 

fractional differencing, Journal of Econometrics 16, 121-130. 

Gray, H. L., N. F. Zhang and W. A. Woodward (1989) On generalized fractional 

processes, Journal of Time Series Analysis 10, 233-257. 

Gray, H.L., N. F. Zhang and W. A. Woodward (1994) On generalized fractional 

processes. A correction, Journal of Time Series Analysis 15, 561-562. 

Hamming, R. W. (1973) Numerical Methods for Scientists and Engineers, Dover. 

Hosking, J. R. M. (1981) Fractional differencing, Biometrika 68, 165-176. 



 22

Lee, J. and M. C. Strazicich (2003) Minimum LM unit root test with two structural 

breaks, Review of Economics and Statistics  85, 1082-1089.  

Lothian, J. And M. P. Taylor (2000) Purchasing power parity over two centuries: 

strengthening the case for real exchange rate stability. A reply to Cuddington and Liang, 

Journal of International Money and Finance 19, 759-764. 

Lumsdaine, L. and D. Papell (1997) Multiple trend breaks and the unit-root hypothesis, 

Review of Economics and Statistics 79, 212-218. 

Magnus, W., F. Oberhettinger and R. P. Soni (1966) Formulas and theorems for the 

special functions of mathematical physics, Springer, Berlin. 

Ouliaris, S., J. Y. Park and P. C. B. Phillips (1989) Testing for a unit root in the presence 

of a maintained trend. In Ray, B. (Ed.) Advances in Econometrics and Modelling. 

Kluwer, Dordrecht, 6-28. 

Papell, D. and R. Prodan (2006) Additional evidence of long-run purchasing power 

parity with restricted structural change, Journal of Money, Credit and Banking 38, 1329-

1349. 

Perron, P. (1989) The great crash, the oil price shock and the unit root hypothesis, 

Econometrica 57, 1361-1402. 

Porter-Hudak, S. (1990) An application of the seasonal fractionally differenced model to 

the monetary aggregate, Journal of the American Statistical Association 85, 338-344. 

Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Wetterling (1986) Numerical 

recipes. The art of scientific computing, Cambridge University Press, Cambridge. 

Rainville, E.D. (1960) Special functions, MacMillan, New York. 

Ray, B.K. (1993) Long range forecasting of IBM product revenues using a seasonal 

fractionally differenced ARMA model, International Journal of Forecasting 9, 255-269. 



 23

Robinson, P.M. (1994) Efficient tests of nonstationary hypotheses, Journal of the 

American Statistical Association 89, 1420-1437. 

Sadek, N. and A. Khotanzad (2004) K-factor Gegenbauer ARMA process for network 

traffic simulation, Computers and Communications 2, 963-968. 

Sowell, F. (1992) Modelling long run behavior with the fractional ARIMA model, 

Journal of Monetary Economics 29, 277-302. 

Sutcliffe, A. (1994) Time series forecasting using fractional differencing, Journal of 

Forecasting 13, 383-393. 

Woodward, W. A., Q. C. Cheng and H. L. Ray (1998) A k-factor Gamma long memory 

model, Journal of Time Series Analysis 19, 485-504. 

Zivot, E. and D. W. K. Andrews (1992) Further evidence on the great crash, the oil price 

shock, and the unit root hypothesis, Journal of Business and Economic Statistics 10, 251-

270. 



 24

Table 1: Rejection frequencies against one-sided alternatives with Gaussian ut 
 do T = 50 T = 100 T = 300 T = 500 
 
 
 

Ha: d > do 

0.00 0.788 0.907 1.000 1.000 

0.25 0.519 0.788 0.903 0.999 

0.50 0.308 0.554 0.702 0.945 

0.75 0.103 0.341 0.671 0.893 

1.00 0.018 0.027 0.039 0.047 
 
 
 

Ha: d < do 

1.00 0.109 0.088 0.075 0.056 

1.25 0.608 0.701 0.855 0.939 

1.50 0.771 0.886 0.996 0.998 

1.75 0.983 1.000 1.000 1.000 

2.00 1.000 1.000 1.000 1.000 
The nominal size is 5%. In bold the size of tests. 
 
 
Table 2: Rejection frequencies against one-sided alternatives with t3-distributed ut 

 do T = 50 T = 100 T = 300 T = 500 
 
 
 

Ha: d > do 

0.00 0.793 0.914 1.000 1.000 

0.25 0.520 0.793 0.955 1.000 

0.50 0.311 0.570 0.724 0.946 

0.75 0.107 0.344 0.683 0.894 

1.00 0.022 0.034 0.040 0.047 
 
 
 

Ha: d < do 

1.00 0.101 0.088 0.069 0.055 

1.25 0.603 0.693 0.831 0.917 

1.50 0.747 0.877 0.974 0.981 

1.75 0.979 0.992 1.000 1.000 

2.00 1.000 1.000 1.000 1.000 
The nominal size is 5%. In bold the size of tests. 
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Table 3: Estimates of d based on white noise disturbances 

Series m = 0 m = 1 m = 2 m = 3 

AUSTRIA 1.055 
(0.907,   1.272) 

1.048 
(0.907,   1.260)

0.971 
(0.786,   1.224)

0.929 
(0.711,   1.197) 

AUSTRALIA 1.205 
(1.007,   1.501) 

1.209 
(1.021,   1.493)

1.202 
(0.997,   1.497)

1.199 
(0.984,   1.493) 

BELGIUM 1.206 
(1.069,   1.395) 

1.203 
(1.068,   1.391)

1.137 
(0.955,   1.355)

1.123 
(0.939,   1.337) 

BRAZIL 1.114 
(0.961,   1.356) 

1.103 
(0.952,   1.341)

1.029 
(0.832,   1.317)

0.986 
(0.746,   1.303) 

BULGARY 0.914 
(0.743,   1.261) 

0.948 
(0.737,   1.263)

0.947 
(0.734,   1.266)

0.821 
(0.451,   1.222) 

CANADA 1.136 
(0.895,   1.465) 

1.133 
(0.884,   1.462)

1.133 
(0.882,   1.461)

1.121 
(0.863,   1.461) 

CHINA 1.179 
(1.025,   1.426) 

1.168 
(1.022,   1.409)

1.160 
(1.016,   1.407)

0.953 
(0.694,   1.317) 

CYPRUS 0.658 
(0.568,   0.806) 

0.602 
(0.478,   0.784)

0.503 
(0.347,   0.725)

0.429 
(0.242,   0.688) 

CZECK REP. 1.003 
(0.806.,   1.389) 

1.049 
(0.822,   1.392)

1.041 
(0.802,   1.394)

0.972 
(0.633,   1.384) 

DENMARK 1.058 
(0.861,   1.323) 

1.062 
(0.860,   1.327)

1.048 
(0.847,   1.316)

1.048 
(0.830,   1.322) 

ESTONIA 1.439 
(1.274,   1.681) 

1.443 
(1.293,   1.667)

1.443 
(1.295,   1.673)

1.399 
(1.252,   1.617) 

FINLAND 1.202 
(0.993,   1.495) 

1.190 
(0.974,   1.486)

1.179 
(0.953,   1.486)

1.176 
(0.951,   1.473) 

FRANCE 0.907 
(0.821,   1.043) 

0.859 
(0.748,   1.016)

0.721 
(0.556,   0.933)

0.664 
(0.453,   0.897) 

GERMANY 1.072 
(0.941,   1.255) 

1.072 
(0.940,   1.255)

0.985 
(0.825,   1.200)

0.935 
(0.747,   1.164) 

GREECE 0.774 
(0.661,   0.933) 

0.800 
(0.685,   0.954)

0.722 
(0.569,   0.904)

0.701 
(0.543,   0.897) 

HONG-KONG 1.206 
(1.067,   1.425) 

1.187 
(1.032,   1.414)

1.158 
(1.002,   1.396)

0.987 
(0.741,   1.293) 

HUNGARY 0.909 
(0.753,   1.344) 

0.759 
(0.427,   1.307)

0.755 
(0.405,   1.307)

0.738 
(0.384,   1.307) 

IRELAND 1.195 
(1.035,   1.437) 

1.149 
(0.972,   1.403)

1.148 
(0.973,   1.404)

1.114 
(0.907,   1.396) 

ITALY 1.062 
(0.833,   1.352) 

1.062 
(0.825,   1.349)

1.059 
(0.817,   1.343)

1.050 
(0.807,   1.331) 

JAPAN 1.067 
(0.904,   1.311) 

1.056 
(0.884,   1.305)

1.056 
(0.881,   1.306)

1.027 
(0.851,   1.283) 

LATVIA 1.326 
(1.167,   1.553) 

1.336 
(1.193,   1.554)

1.333 
(1.192,   1.554)

1.193 
(0.992,   1.462) 

LITUANIA 1.146 
(1.013,   1.322) 

1.184 
(1.081,   1.333)

1.146 
(1.037,   1.306)

0.941 
(0.766,   1.177) 

MALTA 0.694 
(0.584,   0.938) 

0.738 
(0.606,   0.975)

0.676 
(0.523,   0.920)

0.309 
(0.071,   0.693) 

MEXICO 1.151 
(1.003,   1.352) 

1.150 
(1.003,   1.351)

1.116 
(0.952,   1.334)

1.097 
(0.932,   1.308) 

(continued) 
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NETHERLANDS 1.088 

(0.932,   1.304) 
1.082 

(0.924,   1.301)
1.081 

(0.922,   1.303)
1.034 

(0.861,   1.262) 
NORWAY 0.944 

(0.729,   1.222) 
0.952 

(0.741,   1.222)
0.949 

(0.731,   1.229)
0.943 

(0.722,   1.221) 
NEW ZEELAND 1.274 

(1.039,   1.624) 
1.265 

(1.044,   1.603)
1.264 

(1.034,   1.603)
1.255 

(1.033,   1.566) 
POLAND 1.029 

(0.804,   1.354) 
1.034 

(0.823,   1.346)
1.023 

(0.796,   1.346)
0.997 

(0.741,   1.331) 
PORTUGAL 1.051 

(0.872,   1.292) 
1.039 

(0.855,   1.288)
1.039 

(0.853,   1.288)
0.984 

(0.762,   1.244) 
ROMANIA 1.145 

(0.931,   1.433) 
1.134 

(0.917,   1.433)
1.133 

(0.917,   1.435)
1.129 

(0.906,   1.422) 
RUSSIAN FED. 1.245 

(1.022,   1.533) 
1.249 

(1.042,   1.553)
1.242 

(1.027,   1.556)
1.242 

(1.027,   1.554) 
SOUTH KOREA 1.094 

(0.861,   1.411) 
1.096 

(0.873,   1.417)
1.096 

(0.876,   1.417)
1.083 

(0.846,   1.407) 
SLOVAKIA 1.137 

(0.984,   1.417) 
1.107 

(0.944,   1.395)
0.992 

(0.722,   1.366)
0.980 

(0.692,   1.354) 
SLOVENIA 1.342 

(1.037,   1.755) 
1.337 

(1.072,   1.744)
1.342 

(1.077,   1.711)
1.332 

(1.054,   1.591) 
SPAIN 0.907 

(0.813,   1.047) 
0.859 

(0.744,   1.016)
0.721 

(0.554,   0.933)
0.664 

(0.459,   0.899) 
SWEDEN 1.063 

(0.854,   1.376) 
1.044 

(0.807,   1.377)
1.044 

(0.803,   1.364)
1.042 

(0.797,   1.382) 
SWITZERLAND 1.252 

(1.096,   1.463) 
1.207 

(1.076,   1.398)
1.208 

(1.073,   1.384)
1.207 

(1.066,   1.373) 
TURKEY 0.824 

(0.643,   1.308) 
0.677 

(0.318,   1.269)
0.678 

(0.317,   1.263)
0.648 

(0.207,   1.255) 
U.K. 1.227 

(1.082,   1.433) 
1.228 

(1.087,   1.444)
1.151 

(0.956,   1.405)
1.132 

(0.933,   1.388) 
U.S.A 1.212 

(1.047,   1.346) 
1.213 

(1.045,   1.467)
1.172 

(0.983,   1.444)
1.119 

(0.911,   1.393) 
Note: In bold, evidence of mean reversion (d < 1). In brackets we display the confidence intervals at the 
95%. 
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Table 4: Estimates of the Chebyshev polynomials in the case of m = 3 

Series θ0 θ1 θ2 θ3 

AUSTRIA 99.016 
(39.39) 

2.373 
(1.68)

1.575 
(2.01)

0.707 
(1.31) 

AUSTRALIA 107.251 
(3.10) 

-3.701 
(-0.17)

4.266 
(0.49)

-1.872 
(-0.35) 

BELGIUM 99.301 
(20.94) 

0.610 
(0.21)

2.286 
(1.81)

0.665 
(0.83) 

BRAZIL 102.362 
(3.09) 

6.446 
(0.33)

18.811 
(1.90)

-8.191 
(-1.23) 

BULGARY 114.558 
(11.12) 

-27.761 
(-4.75)

-1.164 
(-0.32)

-5.309 
(-2.06) 

CANADA 126.198 
(4.82) 

-7.224 
(-0.45)

-1.048 
(-0.15)

-2.934 
(-0.66) 

CHINA 90.971 
(6.95) 

0.391 
(0.05)

-3.134 
(-0.77)

-9.764 
(-3.56) 

CYPRUS 104.742 
(130.10) 

-2.909 
(-5.77)

1.089 
(2.60)

0.613 
(1.70) 

CZECK REP. 115.654 
(9.51) 

-21.675 
(-3.03)

1.994 
(0.54)

-3.420 
(-1.37) 

DENMARK 99.238 
(21.86) 

-0.806 
(-0.29)

0.802 
(0.62)

0.020 
(0.02) 

ESTONIA 67.849 
(2.65) 

-0.254 
(-0.38)

0.651 
(0.12)

-2.962 
(-0.96) 

FINLAND 93.879 
(9.22) 

2.774 
(0.43)

1.587 
(0.61)

0.490 
(0.30) 

FRANCE 104.771 
(91.91) 

-4.643 
(-7.21)

1.555 
(3.40)

0.545 
(1.67) 

GERMANY 97.290 
(26.80) 

4.052 
(1.91)

2.630 
(2.31)

1.188 
(1.72) 

GREECE 99.848 
(43.86) 

-3.694 
(-2.88)

1.791 
(2.03)

-0.690 
(-1.02) 

HONG-KONG 87.038 
(6.70) 

12.242 
(1.90)

-6.114 
(-1.87)

-8.055 
(-3.09) 

HUNGARY 120.065 
(18.02) 

-17.302 
(-4.61)

-0.560 
(-0.22)

1.031 
(0.55) 

IRELAND 107.079 
(13.75) 

-5.871 
(-1.23)

0.080 
(0.03)

1.548 
(1.16) 

ITALY 103.153 
(13.02) 

-2.892 
(-0.60)

-0.518 
(-0.23)

-0.810 
(-0.55) 

JAPAN 102.040 
(4.28) 

10.698 
(0.75)

-0.514 
(-0.07)

-4.812 
(-1.06) 

LATVIA 92.662 
(5.18) 

-13.363 
(-1.20)

-1.255 
(-0.28)

-7.690 
(-2.78) 

LITUANIA 99.697 
(11.62) 

-21.677 
(-4.33)

-6.914 
(-2.58)

-7.910 
(-4.32) 

MALTA 101.467 
(136.29) 

-5.077 
(-9.78)

-2.017 
(-4.42)

-2.416 
(-5.88) 

MEXICO 141.923 
(3.47) 

-2.875 
(-0.11)

-13.782 
(-1.24)

-7.252 
(-1.01) 

(continued) 
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NETHERLANDS 102.410 
(21.65) 

-1.291 
(-0.45)

0.254 
(0.18)

1.339 
(1.50) 

NORWAY 104.085 
(11.81) 

-1.934 
(-0.37)

0.741 
(0.27)

-0.730 
(-0.39) 

NEW ZEELAND 87.099 
(2.01) 

7.085 
(0.26)

2.264 
(0.22)

3.277 
(0.52) 

POLAND 108.376 
(5.03) 

-11.451 
(-0.90)

-3.565 
(-0.55)

-3.853 
(-0.90) 

PORTUGAL 101.431 
(34.79) 

-3.058 
(-1.78)

-0.064 
(-0.07)

0.906 
(1.54) 

ROMANIA 119.977 
(3.29) 

-22.595 
(-1.01)

-1.933 
(-0.20)

-1.976 
(-0.32) 

RUSSIAN FED. 99.158 
(0.93) 

-13.008 
(-0.19)

12.455 
(0.49)

-1.812 
(-0.11) 

SOUTH KOREA 110.881 
(3.08) 

6.752 
(0.31)

-1.080 
(-0.10)

3.805 
(0.57) 

SLOVAKIA 131.870 
(10.30) 

-34.771 
(-4.61)

7.797 
(2.02)

-1.482 
(-0.57) 

SLOVENIA 86.649 
(5.25) 

-0.551 
(-0.05)

0.370 
(0.09)

-0.693 
(-0.32) 

SPAIN 104.771 
(91.91) 

-4.643 
(-7.21)

1.554 
(3.40)

0.545 
(1.73) 

SWEDEN 95.991 
(8.10) 

4.633 
(0.65)

0.266 
(0.07)

-0.599 
(-0.27) 

SWITZERLAND 93.915 
(4.87) 

8.133 
(0.67)

0.222 
(0.04)

-0.632 
(-0.21) 

TURKEY 111.308 
(11.74) 

-16.485 
(-3.07)

0.170 
(0.04)

-1.649 
(-0.54) 

U.K. 97.291 
(5.72) 

2.831 
(0.27)

-8.440 
(-1.88)

-2.380 
(-0.84) 

U.S.A 112.153 
(4.76) 

1.777 
(0.12)

-8.525 
(-1.35)

-5.725 
(-1.43) 

In bold, significant coefficients at the 5% level. T-statistics are given in brackets.  
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Table 5: Summary results based on the selected model for each series 
Series d θ0 θ1 θ2 θ3

AUSTRIA 0.971 (UR) 99.839 2.464 1.578 --- 
AUSTRALIA 1.205 (AB) 105.363 --- --- --- 

BELGIUM 1.138 (UR) 101.068 --- 2.307 --- 
BRAZIL 1.043 (UR) 99.724 --- 18.879 --- 

BULGARIA 0.827 (UR) 113.038 -27.794 --- -5.316 
CANADA 1.136 (UR) 110.355 --- --- --- 

CHINA 0.979 (UR) 87.019 --- --- -9.745 
CYPRUS 0.429 (MR) 104.742 -2.909 1.089 0.613 

CZECK REP. 1.049 (UR) 112.905 -21.855 --- --- 
DENMARK 1.058 (UR) 99.257 --- --- --- 
ESTONIA 1.439 (AB) 54.584 --- --- --- 
FINLAND 1.202 (UR) 100.749 --- --- --- 
FRANCE 0.664 (MR) 104.771 -4.643 1.555 0.545 

GERMANY 0.935 (UR) 97.290 4.052 2.630 1.188 
GREECE 0.722 (MR) 99.245 -3.901 1.781 --- 

HONG KONG 0.987 (UR) 87.038 12.242 -6.114 -8.055 
HUNGARY 0.759 (UR) 120.406 -17.042 --- --- 
IRELAND 1.195 (AB) 101.113 --- --- --- 

ITALY 1.062 (UR) 97.160 --- --- --- 
JAPAN 1.067 (UR) 109.704 --- --- --- 

LATVIA 1.197 (AB) 90.952 -13.409 --- -7.681 
LITUANIA 0.941 (UR) 99.697 -21.677 -6.914 -7.910 

MALTA 0.309 (MR) 101.46 -5.077 -2.017 -2.416 
MEXICO 1.151 (AB) 108.404 --- --- --- 

NETHERLANDS 1.088 (UR) 102.809 --- --- --- 
NORWAY 0.944 (UR) 101.390 --- --- --- 

NEW ZEELAND 1.274 (AB) 105.200 --- --- --- 
POLAND 1.029 (UR)  81.641 --- --- --- 

PORTUGAL 1.039 (UR) 102.489 -2.993 --- --- 
ROMANIA 1.145 (UR) 82.272 --- --- --- 

RUSSIAN FED. 1.245 (AB) 95.927 --- --- --- 
SOUTH KOREA 1.094 (UR) 124.409 --- --- --- 

SLOVAKIA 0.992 (UR) 129.793 -34.799 7.812 --- 
SLOVENIA 1.342 (AB) 85.759 --- --- --- 

SPAIN 0.664 (MR) 104.771 -4.643 1.554 0.545 
SWEDEN 1.063 (UR) 102.116 --- --- --- 

SWITZERLAND 1.252 (AB) 104.935 --- --- --- 
TURKEY 0.677 (UR) 110.839 -16.902 --- --- 

U.K. 1.152 (UR) 98.004  --- -8.481 --- 
U.S.A. 1.212 (AB) 94.615 --- --- --- 

MR means Mean Reversion (d < 1) and AB refers to the cases where d is significantly greater than 1. UR means that it 
contains the unit root case (i.e. d = 1). 

 


