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Chapter 1

Introduction

Positron emission tomography (PET) is a medical diagnostic technique that provides func-

tional and biochemical information. Throughout the last few decades, PET imaging has

experienced tremendous advancements [1–3]. It started as a research tool mainly focused

on neurological applications and now it is an integral and indispensable part in the daily

practice medicine. The primary application of PET imaging is in clinical oncology, specially

on the staging and restaging of tumours; however, as a quantitative tool it has a wide range

of applications, such as the evaluation of treatment response or the definition of radiotherapy

volumes [4].

The number of PET exams performed has not stopped growing and it is estimated to

keep expanding with the introduction of new radiopharmaceuticals and the establishment

of new diagnostic indications. This situation requires a thorough optimization of resources,

such as reducing the occupation of the scanner or the total used radiopharmaceutical activity,

which are factors that directly increase with the number of patients and affect the economical

profitability of a PET unit. However, to be competitive with other emerging diagnostic

techniques this optimization must be linked to an increase in image quality and quantitative

value of PET studies.
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Additionally, it is also necessary for all tests using ionizing radiation to be performed

with the lowest possible radiation dose to the patient, compatible with the necessary diag-

nostic quality [5, 6]. The radiation dose received during a PET study can be assumed as

directly proportional to the administered activity [7, 8]. Likewise, image quality of a PET

study is directly related to the number of events recorded in the acquisition. Hence both

parameters (image quality and radiation dose) depend on the activity administered to the

patient. Consequently, the parameters of image quality and radiation dose are linked by the

acquisition time and the administered activity of a PET study.

Since its introduction, PET scanners have undergone a continuous development to im-

prove various aspects of imaging, ranging from fundamental changes in its design to new

reconstruction and data processing methods [9]. From the design point of view, in the present

generation of PET scanners, most manufacturers have chosen to include high temporal

resolution detectors (LSO or LYSO) to increase the time-of-flight (TOF) correction capability

[10–12]. However, GE Healthcare has chosen to maintain a series of PET scanners with

BGO crystals, the Discovery IQ (D-IQ) series. A BGO scintillator, presents a lower temporal

resolution but with greater sensitivity and a reduced price. Besides, the pricing allows an

increase of tomograph sensitivity by expanding the axial field of view with an additional ring

of detector blocks. The D-IQ tomograph in its configuration of 5 rings (D-IQ-5), and 26 cm

of axial field, has a sensitivity of approximately 2.5 times superior to the 3-ring equipment,

with 15.5 cm of axial field, measured according to the National Electrical Manufacturers

Association (NEMA) standards. This gain in sensitivity can be translated into a reduction of

the acquisition time while maintaining the number of detected photons.

On the other hand, the introduction of iterative reconstruction algorithms in PET imaging

compared to filtered backprojection reconstructions (FBP), resulted in a substantial improve-

ment in image quality and quantitative accuracy by successively incorporate modeling for

the scattering corrections, random and, more recently, the point-spread function (PSF) [13].
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The Ordered Subset Expectation Maximization (OSEM) algorithm is the most commonly

used iterative reconstruction method, although it has some limitations, such as the limit to

reach full quantitative convergence due to an increase in noise as the effective iterations are

increased.

In order to improve the OSEM performance (i.e. preserving image quality and improving

the PET quantitative value), GE Healthcare introduced commercially the Q.Clear algorithm,

which is a Bayesian penalized reconstruction algorithm [14], where the penalty is controlled

through a parameter β that is the only possible user input. The penalty function is designed

such that the image edges are preserved while the background noise of the image remains low

[15]. Thus, the regularization allows a commitment between image quality and quantification.

For the case of a PET tomograph with LYSO crystals and TOF correction, the behavior

of the Q.Clear algorithm has been studied [16], observing that it improves the image quality

of the study, with respect to an OSEM algorithm, and proposing an optimum β value.

However, this optimization is not transferable to a reconstruction from different equipment

with different characteristics such as the D-IQ.

Besides technical parameters, the methods to extract clinical relevant data from PET

studies also evolved during the last years. For example, the emerging analysis of textures

features on PET imaging consists of a set of post-processing mathematical tools for the

evaluation of the heterogeneity of a certain volume. Texture analysis can generate hundreds

of different parameters, which can be used in the application of a new medical imaging

paradigm called radiomics [17]. Despite the recent interest in textural analysis, there is still a

lack of consensuses to define the parameters that influence these [18]. As explained above, the

Q.Clear algorithm acts as a selective filtering that differentiates it from common algorithms.

There is no study yet that explains how this reconstruction can affect the morphology of the

uptake in the lesions and therefore the analysis of the textures.
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Despite all recent advances, there are still old problems in PET imaging that need

to be addressed. Image quality in PET studies can be considered noisy when compared

to other modalities, such as magnetic resonance or computed tomography. Under this

circumstance, PET image quality should be evaluated thoughtfully in order to maximize the

information extracted. Evaluation of image quality can be performed by different approaches.

A common way to measure it is in terms of the signal-to-noise ratio (SNR), which for a simple

linear reconstruction algorithm should be proportional to the squared number of recorded

counts (assuming non-degrading effects). However, this relation does not hold for a modern

iterative reconstruction algorithm, specially when incorporating PSF modelling [19, 20].

Moreover, reconstructed algorithms such as Q.Clear act as a selective filtering, changing the

noise properties non uniformly, so the relation between counts and SNR could increase in

complexity. Although it is common to use single parameters such as SNR to evaluate image

quality, nowadays it is generally accepted that a good metric must be linked to a specific

diagnostic task, as could be lung lesion detection. There are many different methods and

metrics to evaluate image quality, and as stated previously, the Q.Clear reconstruction can

change its relation to image properties. Thus, it is important to select the most relevant

parameters for image quality assessment related to each different diagnostic task.
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Central Hypothesis and Purpose of this

Thesis

Central hypothesis:

The characterization of the operation of a new PET/CT model and the optimization of the

acquisition protocol together with the corresponding and adequate selection of a Bayesian

penalty parameter in the reconstruction should lead to an improvement in the quantitation

and image quality of clinical images.

Main goal:

To study the impact of a new reconstruction algorithm on the image quality and quantification

of clinical PET studies performed with a high sensitivity BGO PET.

Specific aims:

1. Evaluate the PET imaging characteristics of the Discovery IQ 5-rings PET/CT.

2. Optimize the penalization factor for a Bayesian reconstruction algorithm (Q.Clear)

under different levels of PET image noise.
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3. Study the impact of Q.Clear reconstructions in different quantitative metrics, including

the heterogeneity and morphology of lesions.

4. Evaluate the impact of Q.Clear reconstruction on the image quality metrics, and its

relation to the subjective perception.



Chapter 3

Background

3.1 PET Imaging Physics

At a fundamental level, PET imaging is based in the use of proton rich radioactive nuclides,

which decay through positron emission (also known as β+ decay). This decay will produce a

daughter nuclide containing one less proton so that its atomic number Z is decreased by one.

Typical nuclides are 11C, 13N, 15O, 18F, 22Na, 64Cu,68Ga, 82Rb and 124I; Table 3.1 presents

some of its physical properties. The suitability of a nuclide for PET imaging depends on

many factors, as could be its half-life, branching ratio, ease of production, the β+ energy

or its possible binding molecules. Thereby, from a practical clinical point of view, the most

important nuclide is 18F, which decays to 18O emitting a positron of 633.5keV.

Once the positron is emitted by spontaneous decay, it rapidly loses its kinetic energy

in inelastic interactions with atomic electrons in the surrounding tissue, travelling a certain

distance (positron range) depending on its energy and the tissue density; typical ranges are

from 1 to several millimeters, increasing with the energy of the positron. When the positron

has lost almost all its kinetic energy, it will interact with one electron of a surrounding atom,

resulting in an annihilation of both the positron and the electron [22]. The annihilation results

in the emission of 2 or more γ photons, with 2 photons accounting for almost all cases,
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Table 3.1 Selected list of nuclides that decay by positron emission and are relevant to PET
imaging. Data from Nuclides(www2.bnl.gov/ton). Adapted from Simon R. Cherry et al.
[21].

Nuclide Half-life Emax(MeV) Branching Ratio
11C 20.4 min 0.96 1.00
13N 9.97 min 1.20 1.00
15O 122 s 1.73 1.00
18F 109.8 min 0.63 0.97
22Na 2.60 y 0.55 0.90
64Cu 12.7 h 0.65 0.29
68Ga 67.6 min 1.89 0.89
82Rb 1.27 min 2.60/3.38 0.96
124I 4.17 d 1.53/2.14 0.23

making the emission of more photons negligible. Due to the conservation of energy, the

sum of the photon energies must be equal to the sum of the electron and positron masses,

implying that each photon must be emitted with an energy of 511keV.

If the annihilation of the positron and the electron occurs when the kinetic energy of

both particles is exactly zero, the momentum in the centre of the masses is also zero. Due to

the momentum conservation, the emitted photons should also preserve a zero momentum,

which implies that both photons must be emitted in opposite directions, forming a 180° angle.

However, the annihilation process does not occur when the total momentum is strictly zero,

and the emitted photons will not depart in exactly opposite directions. This effect is called

acollinearity of the photon pair. Although it is a small effect, it introduces an uncertainty on

the departure angles, typically 180±0.25° [23].

Each photon will travel through the surrounding material and may interact with it. The

interaction can be via photoelectric effect, Compton scattering, or Rayleigh scattering.

In Rayleigh scattering the photon does not lose any considerable amount of energy, but

considering the energy of the gamma photons, this kind of interaction could be neglected.

For the other interactions, the mass attenuation coefficient of the 511keV gammas in water

www2.bnl.gov/ton


3.1 PET Imaging Physics 9

is 0.096cm2/g, low enough to allow the two photons escaping the body of the subject. The

basis of PET imaging is the detection of these photons.

Surrounding the patient there is a ring of detectors; if both emitted photons are detected

in a defined time window (usually in the order of nanoseconds), the process is called a

coincidence event, and a line of response (LOR) is created joining the points of the detection

(Fig. 3.1 A). The information recorded in every LOR is assembled and employed to produce

an image of the activity uptake in the patient’s body.

If two events are measured within the time window by two detectors, it is interpreted as a

coincidence event. The time window τ applied to score coincidences depends on the time

resolution δτ of the device. An electronic coincidence sorting unit filters the events through

the application of a coincidence time window to the detected photons.

Each accepted LOR is binned in what is known as raw data, a collection of the number of

detected events for each LOR, normally organized or stored as sinogram or projection data.

If the data are stored in the list-mode each individual LOR is registered, and the time stamp

is also recorded.

The desired coincidence events occur when both photons from the same annihilation are

detected in coincidence without any kind of interaction prior to the detection, this is called a

true coincidence or true event.

There are other kinds of coincidences. When at least one of the photons interacts with

the surrounding matter by means of the Compton scattering, it changes the original direction

of the photon, modifying the detection angle from the departure angle (180°) and assigning

a wrong LOR to the coincidence event. These kind of coincidences are known as scatter

events. The ratio of scatter events to the total coincidence events (scatter fraction) depends

on the attenuation properties of the subject and of the detectors [24]. Also, part of the kinetic

energy of the photon is lost in each scatter process. As common PET detectors measure the

photon energy, scatter events could be minimized if all photons from different energies than
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A B

Fig. 3.1 (A) Definition of a line of response, and (B) physical effects in PET, representing
attenuation, scatter and random events.

a defined energy window are discarded. However, there is an intrinsic limit to this caused by

the energy resolution and by the need to maintain a minimum detection sensitivity.

Another type of events are the random events, which occur when two photons from

different annihilation events are detected in the same time window. This process is more

likely observed at high count rates, as it increases the probability between different but nearly

simultaneous events. Then, random events would be more important in the presence of large

activity concentrations. It is also dependent on the time window of the detection. If Nd1 and

Nd2 are the total photon rates detected at detectors 1 and 2, respectively, and τ is the duration

of the timing window, for a single event at detector d1 at time t1, all the events detected in

the interval [t1 − τ, t1 + τ] will be accepted. During this interval, in detector d2 there will be

2τNd2 photons detected. Thus, the mean rate of randoms will be given by:

⟨R⟩= 2τNd1Nd2. (3.1)

Slower detection systems induce to increase the time window, which in turn increases

the probability of random events [24]. Moreover, Eq. 3.1 is valid for all detector pairs

accounted in the acquisition, thus increasing the possible detector pairs increases the random
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coincidences generated. Nevertheless, this type of coincidences can arise from activity

anywhere in the region between the detectors, including activity outside the useful FOV,

making the relation between true events and the random counting rate dependent in a complex

relation on both the source and the detector geometry [22, 25].

Both scatter and random events assign a wrong LOR, resulting in a noisy background

to the true coincidence distribution and decreasing overall image quality. To mitigate

the contribution of random events, a usual technique is the delayed coincidence channel

method. This method is usually applied by acquiring an additional sinogram with a delayed

coincidence time window. Non-true coincidences can be evaluated in this sinogram, though,

since the random events are uniformly distributed in time, the delayed coincidences have the

same mean as the random events in a correct time window. This delayed sinogram is then

subtracted from the real sinogram. On the other hand, scatter events are more complicated to

model, and they are usually corrected from a model-based approach of the relation between

the involved gamma photon scatter and the attenuation map [22, 26].

There is a certain time of flight for each photon, from the annihilation event to the

detection process; if the detectors time resolution is low enough, the difference in detection

time of both photons can be used to shorten the possible annihilation range along the LOR.

This is known as TOF. In the absence of TOF information, it is assumed that the decay event

could have occurred anywhere along the LOR, with uniform probability.

3.2 PET scanners

Although in recent years, new detector materials have been introduced [9], most modern PET

scanners still use a pixelated array of scintillator crystals in order to detect both annihilation

photons. Scintillator material emits visible light when a γ-photon energy is deposited in it,

by the transition of electrons in an excited state and the posterior fast decay into the ground

state by the emission of photons in the visible range [27]. An ideal detector would have high
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Table 3.2 Properties of selected inorganic scintillators. Some of these specifications can be
modified by the vendor specific impurity proportions and growth methods. Adapted from T.
Lewellen [28].

NaI(Tl) BGO LYSO LSO

Chemical Formula NaI(Tl) Bi4(GeO4)3 Lu2−xYxSiO5:Ce Lu2(SiO4)O:Ce
Effective atomic number (Z) 53 74 60 66
Density (g/cm2) 3.7 7.1 7.1 7.4
Peak emission wavelength (nm) 410 480 420 420
Light yield (photons/keV) 38 7.2 30 34.8
Decay time (ps) 230 300 40 31

density and high atomic number to increase the absorption coefficient of the γ-photons, a

fast decay time to increase the resolution time, a high luminosity to increase the number of

output photons of the incident photon, a high spatial and energy resolution (to discriminate

the scatter events), and it should be as inexpensive as possible to be affordable to extend as

maximum the axial arrangement of the crystals [28].

Scintillators can be divided in two categories: organic and inorganic. Organic scintillators

are based on hydrocarbon compounds and exhibit excellent time properties, but they also

possess low density. On the other hand, inorganic scintillators are based on high atomic

number (Z) elements, and exhibit better absorption coefficients and also a desirable more

approximate linear response. Inorganic scintillators are only scintillators in crystal form, and

mostly they are activated by impurity atoms of other elements, which causes a disturbance

to the crystal matrix. Some of this common scintillators are sodium iodide activated with

thallium (NaI(Tl)), bismuth germanate oxide (BGO), lutetium oxyorthosilicate (LSO), and

lutetium yttrium oxyorthosilicate (LYSO). Table 3.2 summarizes some of its characteristics.

Although the most common crystal used for a long time has been BGO, since the end of the

last decade most scanners use LSO or LYSO crystals, due to their high luminosity and time

resolution, suitable for TOF measurements.

The crystals are attached to a device to convert the emitted scintillation photons into an

electrical signal. Most common devices are the Photomultiplier Tubes (PMT), made of a
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vacuum glass tube, which houses a photocathode, an anode, and several dynodes. When

the light from the scintillator enters the PMT through a glass entrance window, an electron

may be generated by phoelectric effect. This electron is accelerated by a potential difference

across the PMT towards a series of dynodes, at each of which more electrons are ejected in

an avalanche effect, resulting in a detectable electric signal at the back of the PMT.

Although PMT was the dominant technology in previous PET generations, recently, new

PMT alternatives are entering the market, as could be Avalanche Photodiodes (APD) or

Silicon Photomultipliers (SiPM). SiPM comprise a robust alternative, more compact, with a

high gain (similar to a PMT), good intrinsic timing resolution (under 200 ps), a higher value

of photon detection efficiency than PMTs, and they are MRI compatible [9, 29, 30].

Table 3.3 summarizes the specifications of some modern PET/CT scanners. The only

BGO PET presented is the Discovery IQ from GE Healthcare; all other relevant PET are

LSO or LYSO systems.
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3.3 Physical factors affecting image quality

From its creation, the main limitations in PET/CT imaging have been the same: the relative

poor spatial resolution and the generally low SNR ratio.

3.3.1 Spatial resolution

Spatial resolution is mainly limited by the physics of positron detection. Two fundamental

limits exist, the positron range and the acollinearity, described earlier in Section 3.1. For

18F, the positron range blurring is approximately 0.54 mm Full Width at Half Maximum

(FWHM) [23]. The acollinearity effect introduces a small deviation of 0.25° around the 180°

mean value. The impact of this effect on spatial resolution depends on the detector ring

diameter, the FWHM is approximately 2.2 ·10−3D [23], where D is the detector diameter

in millimeters. Following this equation, for a 70cm PET, the blurring effect will be about

1.5 mm. This effect is one limiting factor on the design of whole-body PET scanners, which

require a large ring to position different patient sizes and accessories.

Combining only both effects, it can be estimated that a whole-body oncological PET

scanner can achieve a spatial resolution of approximately 2mm [23]. However, as it can be

seen in Section 3.2, current PET scanners are still far from it. Mostly because the dominant

factor is the loss of spatial resolution produced by the detectors. Which in turns is limited, in

a pixelated detector design, by the cross section (width) of each individual crystal used in the

PET detector. While a theoretical spatial resolution of half the crystal width can be achieved,

the finite detector sampling over the FOV often degrades it [3, 37]. Traditional PET scanners

use much larger photomultiplier tubes than the individual detectors in the matrix to which the

tubes are coupled, so Anger logic must be employed to estimate the location of the photons

original impact, limiting the further improvement of spatial resolution in PET imaging due

to an added uncertainty in the localization of the events. Some progress has been made

in recent years in the so called digital PET systems, by using the above commented SiPM



16 Background

light detectors which are able to minimize the coupling between the detector crystal and

light detector to a 1:1 ratio [9]. Unfortunately, the detection width can not be decreased as

desired, since it is limited by the detected photons, i.e. the low SNR, which is the other main

disadvantage of PET scanners [25]. One solution would be to increase the depth of each

detector element to improve the counting efficiency. However, apart for the detectors width,

its thick (typically 2–3 cm) leads to another geometric effect that degrades spatial resolution,

known as depth of interaction (DOI) or parallax error, caused by the fact that the annihilation

photons can interact at any depth in the scintillator material, resulting in a degradation of

the spatial resolution as you move away form the centre of the field of view [21]. Several

solutions have been proposed to minimize this error, by developing DOI encoding detectors

[38].

Lastly, the resolution obtained in clinical images will be also affected by the reconstruction

method and filter, which will add a blurring to suppress noise and, inevitably, will contribute

to a spatial resolution decrease.

The lack of small spatial resolution will impact directly on the image quality, by means

of an undesired blurring of small structures, but will also limit the ability to obtain accurate

quantitative values. This is due to an undesired cross-contamination between adjacent struc-

tures with distinct activities, referred as the partial volume effect (PVE) [39, 40]. Structures

smaller than two to three times of the FWHM, will be specially affected by the PVE. Spatial

resolution, and in general spatial variations in PVE will be a confounding factor on many

studies [41]. PVE effect is not only created for the intrinsic resolution of the system, and can

also be created by the voxel size or by a decrease on resolution due to the movement of the

structure.
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3.3.2 Factors affecting Signal-to-Noise Ratio

Initial PET reconstruction algorithms could only acquire two dimension images, recon-

structing each slice of the subject for each plane of the sinogram, and then obtaining the

3D tomographic image after stacking each plane. Thus, only those LOR corresponding to

detector pairs in the same ring were necessary; these are the direct planes, although some

limited cross ring LOR were allowed to enable planes between adjacent rings. These cross

planes can be assumed as been acquired by a virtual ring of detectors [22]. To limit the

number of undesired coincidences (random and scatter events), these systems usually have

tungsten collimating septa around the detector, in order to reduce the view of one to the same

ring detectors, and are usually known as 2D PET systems.

The removal of the septa allows a 3D data acquisition, employing any LORs between

rings, even for larger ring differences. This leads to a substantial increase in sensitivity, but

at the expanse of increasing scatter and random events. First PET systems that allowed 3D

reconstruction also included removable septa to additionally operate as a 2D PET. As an

example to illustrate the gain in sensitivity, the 2D/3D Discovery ST PET/CT system [11]

has a sensitivity at the centre of the FOV of 1.9 cps/kBq and of 9.5 cps/kBq operating in 2D

and 3D mode, respectively. On the other hand, the scatter fraction under the NECR peak is

16.3% in 2D and of 32.6% in 3D, measured according to the NEMA NU 2-2001 standards.

Despite the increase of undesired events, the sensitivity gain of 3D PET clearly compensates

its drawbacks, and modern systems do not include any 2D option.

Pure sensitivity and scatter fraction is difficult to correlate with image quality. In this

sense, one parameter that somehow better describe the equipment performance is the SNR. In

PET imaging and in a first approximation, the detection process follows a Poisson distribution

and the SNR dependence on the number of detected events (N) can be modelled as

SNR ∼
√

N, (3.2)
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given a PET scan time per bed of T , and assuming it is sufficiently short compared with

the half-life of the radionuclide being imaged, so that radioactive decay can be ignored, and

that loss of events from detector or system dead time is negligible, as happens with 18F

radiopharmaceuticals. The number of events acquired in a PET scan is approximately given

by

N ∼ Gε
2AT, (3.3)

where G is the average geometric coverage of the scanner, ε is the efficiency of the

detector, and A is the concentration of activity in the field of view [25]. The factor ε is

squared as the photons must be detected by two detectors at the same time. Then, the SNR

will depend on the activity in the field of view as

SNR ∼ ε
√

GAT . (3.4)

If the system incorporates TOF modeling, the relationship between SNR and the timing

resolution δτ , is given by SNR ∼
√

1/∆t [42], and in this case the SNR can be approximated

as

SNR ≃ Kε

√
GAT
δτ

, (3.5)

where K is a factor that accounts for patient-specific factors such as attenuation and

scatter of the photons inside the body and on the source and scanner geometry [22, 25].

As can be easily seen from the previous equations, under the same ratio of time and

activity, an increase of the SNR can be reached by increasing the time resolution of the

detector or by extending the axial FOV. Unlike other PET systems (see Table 3.3) the D-IQ-5

uses the latter method. Investing in increase of the axial FOV is not a dead-end, and some

ambitious projects are currently under development to create a PET scanner with a FOV that

covers the whole body in a single static acquisition [43, 44].
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3.4 Iterative Reconstruction Algorithms

First PET tomographic reconstructions were routinely performed by analytical approaches,

normally FBP. The main advantage of an analytical approach is the computation speed;

however, the accuracy of the reconstruction is limited by the approximation of the method as

well as the intrinsic PET limitations (undesired events, positron range, etc.). Nevertheless, in

3D PET the most common reconstruction is the iterative reconstruction [45, 26]. Iterative

methods are more time-computing expensive, but have the power to adopt a model approach

to incorporate the physics involved from the positron annihilation to the coincidence detection,

and without requiring the solution of difficult analytical problems. Even more, a model-

based iterative approach starts from the assumption of a statistical nature of the detection

of radiation, while analytical methods can only control the noise by means of filtering the

sinogram.

The modern era of the iterative reconstruction started with the works of Shepp and Vardi

[46] and Lange and Carson [47] on the maximum-likelihood expectation-maximization

(MLEM) framework, based in a Poisson model of the emission data. This is probably the

most studied iterative reconstruction in medical imaging. The basic idea behind iterative

reconstruction approaches is summarized in Figure 3.2. In short the algorithm starts with an

initial estimation of the reconstruction (normally a uniform image), from where it computes

the simulated projections (forward projection). The resulted projections are compared to

the real ones, and a matrix of weight is obtained to update the reconstruction estimate back

projection. This process is repeated until the iterations converge.

For a 3D PET, the image is binned into voxels, which can be represented by a vector f

distributed in J voxels ( j = 1, ..J). The goal of the reconstruction algorithm is to find the

distribution f which has the highest probability to have generated the measured projection

data y, where if the system has I LORs (i = 1...I), then yi is the number of counts measured

in each LOR.
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Fig. 3.2 Schematic diagram for the maximum-likelihood expectation-maximization method.
The algorithm starts with an initial image guess in the upper left ( f (0)).

The probability of finding y given f , will be given by a Poisson mass function

p(y| f ) =
I

∏
i=1

e−ȳi
ȳyi

i
yi!

, (3.6)

where ȳi is the expected value of yi (E[yi]), and the expected count of an i LOR (forward

projection) will be given by

ȳi =
J

∑
j=1

ci, j f j, (3.7)

where ci j is the so-called system matrix, which represents the probability that an emission

from voxel j will be detected in LOR i. The first part of the MLEM algorithm is given by the

maximum likelihood (ML), which is just the logarithm of the Poisson distribution

L(y| f ) =
I

∑
i=1

yi log(ȳi)− ȳi − log(yi!). (3.8)

The ideal solution will be given by the maximization of this likelihood function given f j.

Substituting the equation 3.7, and noting that the last term of the previous summation does
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not contain the f j term, the equation to maximize is given by

L(y| f ) = ∑
i, j

yi log(ci, j f j)− ci, j f j. (3.9)

The second part of the MLEM algorithm is the maximization of the previous equation,

which is out of the scope of the present introduction; see references [26, 45] for a detailed de-

scription. In short, Sheppard and Verdi obtained the MLEM equation using the maximization

expectation of the likelihood, which (in its sinogram-based implementation) has the closed

form

f (k+1)
j =

f (k)j

∑ j ci, j
∑

i
ci, j

yi

∑ j ci, j f (k)j

, (3.10)

where yi is the number of counts collected in LOR i. If the measured counts are corrected

by random and scatter events, then it will not follow a Poisson distribution and Eq. 3.10 is

not a valid assumption. That is because the expected value, instead of Eq. 3.7 is given by

E[yi] = ∑
j=1

ci, j f j + ri + si, (3.11)

where r and s are the random and scatter events. The subtracted randoms modify the

expected value, but not its variance, and for a Poisson distribution the variance and the

expected value must be the same. The likelihood usually is modified to account for this

effect, and the MLEM has the form

f (k+1)
j =

f (k)j

∑ j ci, j
∑

i
ci, j

yi

∑ j ci, j f (k)j + si + ri

. (3.12)

The MLEM algorithm has some particular useful properties. First, the total counts in

each iteration are preserved; second, it guarantees positive values for each voxel (negative

concentrations are not expected); and last, it assures convergence to the maximum likelihood

estimate.
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On the other hand, the main disadvantage which limits the application of the MLEM

method in clinical practice is the slow convergence. Each iteration performs one forward

projection of the estimate and one backprojection of the whole data set, thus a method as

the FBP (on backprojection) reconstructs all the dataset with approximately half the time

needed for one MLEM iteration [48]. Many attempts have been developed to speed the

reconstruction time of the MLEM. The most frequently used method in nuclear medicine

reconstruction is the Ordered Subsets Expectation Maximization (OSEM) method by Hudson

and Larkin [49]. In the OSEM algorithm projection data are divided into ordered subsets,

with each subset containing an equal number of projections. Splitting the measured dataset

into different subsets and using only one subset for each iteration speeds up the algorithm

with a factor equal to the number of subsets. Therefore, the product of iterations and subsets

is commonly refereed as effective iterations. However, in comparison to an MLEM this

method will not guarantee to converge to the maximum likelihood (and will not happen in

general [26]), which is a desired condition for an optimal tracer quantification. In any case,

Hudson and Larkin proved that image quality for the same number of iterations in MLEM

and effective iterations in OSEM is comparable if the number of subsets is not too high [49].

A faster reconstruction time with a comparable image quality, and the method simplicity

in the form of a closed solution, makes it enough to widespread the use of OSEM in PET

reconstruction. For example, the algorithm VPHD by GE Healtchare which is usually

referred in the present dissertation is a commercial variation of and OSEM algorithm. For

most situations, OSEM provides accurate quantitative results within 3%, but bias up to 50%

can be achieved for lesions with hotter backgrounds. This effect can partially be explained

by differences in the convergence rate of different regions [50].

The other main disadvantage of the MLEM algorithm (and of all ML methods in general,

as the OSEM algorithm) is that the convergence solution is highly dependent on the initial

data noise (the so called ill-conditioning problem), which can be appreciated in Fig 3.3 as
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a noise magnification with the number of iterations. With each iteration the reconstructed

image will be closer to the convergence, but the reconstruction also increases in noise. This

is due to the initial data measurements, which are Poisson random variables. One approach

to solve this problem is to stop the iteration process after a desired level of convergence

and smoothness [51, 52]. Another approach, which is the one commonly applied in clinical

practice, is to post-filter the reconstruction after the desired convergence. This has the

advantage to simply choose the desired image quality by modifying a post-filtering cut-off

frequency, and easily adjusting the desired level of noise to the nuclear medicine physicians,

in the other hand, though, the post-filtering will modify the image quantification values.

Moreover, this approach has been exploited by clinical trials and international initiatives

[53, 54], to equal the quantitative parameters of different PET machines and centres.

Another approach, is to add a smooth penalty factor in the likelihood function. If we have

some prior information regarding how the image is expected to be (in terms of smoothness or

other metrics), then this information can be used in a Bayesian formulation, performing a

regularized iterative reconstruction [55].

In a pure Bayesian regularization, the prior distribution of the image p(f) is introduced in

the likelihood trough the Bayes rule

p(f|y) = p(y|f)p(f)
p(y)

. (3.13)

If we are interested in the maximum a posteriori (MAP) estimate of the image, the

objective function has the form

Φ(f) = L(y|f)+ p(f). (3.14)

The block sequential regularized expectation maximization (BSREM) is a convergent

OSEM-like algorithm to solve the MAP problem. It is an example of a penalized likelihood
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Fig. 3.3 Effect of reconstruction parameters in ML methods. A) MLEM with 2 iterations,
B) 48 iterations and C) 192 iterations. The details of the image increase with the iterations,
however the image ends dominated by noise. D) An OSEM reconstruction using 12 subsets
and 4 iterations (48 effective iterations) has a similar aspect as the corresponding MLEM
reconstruction. E) The same OSEM reconstruction as D with a 4.8 Gaussian post-filtering,
which is more suitable for clinical practice. F) the latter reconstruction adding PSF modeling.
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image reconstruction method, which adds a penalty term to the likelihood function that

controls image quality [26, 56, 57].

Q.Clear is a commercial implementation of a BSRM reconstruction. It includes a point-

spread function (PSF) modeling and controls the noise through the use of a penalty term

[57, 16], which imposes more smoothing in lower activity regions and less smoothing in

higher activity regions, resulting in smoother cold backgrounds and improved hot lesions

signal-to-noise ratios. The behaviour of Q.Clear is controlled by a parameter β . Image

reconstruction is performed by maximizing the following penalized-likelihood objective

function over all non-negative images, assuming a Poisson model for the data [58]:

Φ(x) = ∑
i

yilog([cf]i + ri)− ([cf]i + ri)−βR( f ). (3.15)

The R( f ) term is the regularization [59], which has the form

R( f ) = ∑
j

∑
k⊂N j

w jwk
( f j − fk)

2

f j + fk + γ| f j − fk|
, (3.16)

where N j is the subset of neighbors of voxel j and both w j and wk are penalty terms that

controls for the position dependent of the local smoothing, because in a PET scanner the

resolution is not uniform around the FOV [15]. The parameter γ controls over the importance

of the relative difference of pixels, to avoid cases where | f j − fk| ≫ f j + fk, principally on

the image edges; normally γ is set equal to 2.

3.5 Quantitative parameters

An absolute PET quantification should be extracted by means of kinetic analysis, in the

form of relevant metabolic parameters, for example glycolysis absorption in the case of

FDG studies. However, these studies are difficult to perform due to high demands in time
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a non-trivial computation of the data. One alternative are the Standardized Uptake Value

(SUV) related metrics, usually referred as semi-quantification to differentiate them from the

parametric imaging obtained from kinetic analysis. SUV is defined as

SUV (t) =
C(t)

A′(t)/W
(3.17)

where C(t) is the concentration in Bq/ml of each voxel, A′(t) is the injected activity in

Bq decay corrected to the beginning of the PET acquisition, and W is the patient mass in

grams. From this equation one can see that SUV is just an escalation of the pixel values,

to allow its comparison for different injection activities and patient weights. If we assume

that the radiopharmaceutial is distributed throughout all the body and that the body density

is equal to the water density, a SUV equal to 1 means an homogeneous distribution of the

radioparmaceutial and an SUV bigger than 1 means as a increased uptake. Computing SUV

gives units of g/ml or equivalent, although it could be considered a unitless parameter, as

it is used in soft tissue where it can be assumed that the body densitiy is equal to the water

density. Still, it is customarily to be presented in units of g/ml.

SUV has several limits that affects its reliability, from physical factors to biological

ones [60, 61]. As can be deduced from Section 3.4, the SUV value will depend on the

reconstruction algorithm and its characteristics, specially if the iterations are not enough

to achieve the convergence or if there is any post-filtering. For example, Q.Clear, by using

the penalty function, allows an effective SUV convergence, providing more accurate values.

On the other hand, from a biological point of view, one of the main limitations of all SUV

related parameters is that C(t) is a function of time, and it also depends of each person and

tissue, and then the SUV value is much dependent on the PET acquisition time after the

radiopharmaceutical injection.



3.5 Quantitative parameters 27

Other similar definitions quantitative metrics derived from SUV exist. The most used in

clinical practice is the SUV normalized to the lean body mass (LBM) instead of the body

mass, referred as SUL.

Radiomics and texture features

Radiomics is the use of quantitative imaging features extracted from medical images to char-

acterize tumor pathology or heterogeneity. The potential of such an approach is to quantify

properties of tissues and/or organs beyond the capability of visual interpretation or simple

metrics [17]. The majority of features currently used in radiomics studies were designed to

evaluate visual perception characteristics quantitatively, such as contrast, complexity, etc.

On the present dissertation, the words radiomics, texture or heterogeneity features will be

mostly used indistinctly, although the former can include more parameters that are not strictly

measures of heterogeneity.

First-order features estimate properties of the histogram of individual voxel intensities;

parameters such as SUVmean or SUVmax can be considered as first-order features, along with

other less common ones such as distribution deviation, skewness or kurtosis, and histogram

entropy. First order features ignore the spatial arrangement between pixels, and as such

cannot be considered as true texture or heterogeneity measures [18].

Second-order or higher-order features include the ones derived from the gray-level co-

occurrence matrix (GLCM), Gray-Level Run Length Matrix (GLRM) or the the Gray-Level

Zone Matrix (GLZM). These features are considered second-order features because they

depend on the spatial position of each gray level, and hence can capture more information

from the image than first-order features.

Most of the features were originally created to solve non-PET imaging problems, as the

ones derived from the Harlick matrix [62] which was originally created to solve a spatial

map detection problem. Only in the last couple of years texture analysis was applied to
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PET and other radiological images (such as CT or magnetic resonance imaging), so the

field of research is in its early days, still expanding and adapting its methodologies. In the

present section we only focus in the description of these features used in our in-house code

(written in python 3.6); however these features are general and are also included in other

codes as the pyradiomics package [63], event if their name convention or some aspects of

their mathematical definition could be slightly different. Due to the vast number of textural

indices (TI) we focused in a subset of indices described in previous publications [64]. Our

in-house code only uses features extracted from the Co-Occurence matrix, Run Lenght

Matrix and Zone Lenght Matrix, although there are other common features extracted from

the Neighborhood Gray-tone Matrix (NGTM), wavelet analysis or fractal analysis. Each

used feature category included is explained in more depth below.

Co-ocurrence matrix: the gray-level co-occurrence matrix (GLCM), defined by Robert

Haralick et al. in 1973 [62], represents the frequency at which each gray-level i intensity

appears adjacent to each other gray-level intensity j for a given direction, which in a 3D

matrix corresponds to 13 different angles. From the resulting matrix, several heterogeneity

parameters can be extracted. The parameters were obtained for each possible angle and then

the mean value was computed.

• The second order parameter of homogeneity, was defined as

GLCMHomogeneity = meanangle

(
∑

i
∑

j

GLCM(i, j)
1+ |i− j|

)
. (3.18)

• The entropy of the GLCM was defined as

GLCMEntropy = meanangle

(
∑

i
∑

j
GLCM(i, j) log10(GLCM(i, j)+ ε)

)
, (3.19)
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where ε is the smallest possible variable to account for cases where GLCM(i, j) is

zero.

• Correlation was defined as

GLCMCorrelation = meanangle

(
∑

i
∑

j

(i−µi)( j−µ j)GLCM(i, j)
σiσ j

)
, (3.20)

where µi/σi and µ j/σ j are the mean/variance of rows i and column j, respectively.

Run Length Matrix: the Gray-Level Run Length Matrix (GLRM), defined by Mary Gallowey

in 1974 [65] gives the size of homogeneous runs for each grey level, where a run is collinear

image pixels with the same gray level intensity value. The same procedure for averaging

was used for all angles as in the GLCM matrix. For a GLRM matrix, with j voxels of

homogeneous runs with intensity i.

• The Short-Run Emphasis (SRE) is the distribution of the short homogeneous runs

defined as

SRE = meanangle

(
1
N ∑

i
∑

j

GLRM(i, j)
j2

)
, (3.21)

where N corresponds to the total number of homogeneous runs in the GLRM.

• The Long-Run Emphasis (LRE) is the distribution of the long homogeneous runs

defined as

LRE = meanangle

(
1
N ∑

i
∑

j
j2GLRM(i, j)

)
. (3.22)

• The High Gray-level Run Emphasis (HGRE) is the distribution of high grey-level runs

defined as

HGRE = meanangle

(
1
N ∑

i
∑

j
i2GLRM(i, j)

)
. (3.23)
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• The Low Gray-level Run Emphasis (LGRE) is the distribution of low grey-level runs

defined as

LGRE = meanangle

(
1
N ∑

i
∑

j

GLRM(i, j)
i2

)
. (3.24)

Zone Matrix: the Gray-Level Zone Matrix (GLZM), defined by Guillaume Thibault in 2003

[66], measures the distribution of clusters of grays levels. A gray level zone is defined as the

number of connected voxels that share the same gray level intensity. A voxel is considered

connected if there is another voxel of the same gray levels in the 26 neighborhood voxels in

a 3D VOI. Contrary to the GLCM or GLRLM, the GLZM does not depend of any direction

and only one matrix is computed. Given the number of homogeneous zones of j voxels with

the intensity i:

• The Short-Zone Emphasis (SZE), which represents the distribution of the short homo-

geneous zones in an image is defined as

SZE =
1
N ∑

i
∑

j

GLZM(i, j)
j2 . (3.25)

• The Long-Zone Emphasis, representing the distribution of long homogeneus zones is

defined as

LZE =
1
N ∑

i
∑

j
j2GLZM(i, j). (3.26)

• The Low-Level Zone Emphasis (LGZE), the distribution of the low grey-level zones,

is defined as

LGZE =
1
N ∑

i
∑

j

GLZM(i, j)
i2

, (3.27)

where N corresponds to the total number of homogeneous runs in the GLRM.
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• The High-Level Zone Emphasis (HGZE), the distribution of the high grey-level zones,

was computed as

HGZE =
1
N ∑

i
∑

j
i2GLZM(i, j). (3.28)
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In this chapter, we present the results for Specific Aim 4 of this thesis: evaluate the impact of Q.Clear

reconstruction on the image quality metrics and its relation to the subjective perception.
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Image quality evaluation in a 
modern PET system: impact of new 
reconstructions methods and a 
radiomics approach
Gabriel Reynés-Llompart1,2, Aida Sabaté-Llobera2, Elena Llinares-Tello2, Josep M. Martí-Climent3 
& Cristina Gámez-Cenzano2

The present work investigates the influence of different biological and physical parameters on image 
quality (IQ) perception of the abdominal area in a modern PET scanner, using new reconstruction 
algorithms and testing the utility of a radiomics approach. Scans of 112 patients were retrospectively 
included. Images were reconstructed using both OSEM + PSF and BSRM methods, and IQ of the 
abdominal region was subjectively evaluated. First, 22 IQ related parameters were obtained (including 
count rate and biological or mixed parameters) and compared to the subjective IQ scores by means 
of correlations and logistic regression. Second, an additional set of radiomics features was extracted, 
and a model was constructed by means of an elastic-net regression. For the OSEM + PSF and especially 
for the BSRM reconstructions, IQ parameters presented only at best moderated correlations with the 
subjective IQ. None of the studied parameters presented a good predictive power for IQ, while a simple 
radiomics model increased the performance of the IQ prediction. These results suggest the necessity 
of changing the standard parameters to evaluate IQ, particularly when a BSRM algorithm is involved. 
Furthermore, it seems that a simple radiomics model can outperform the use of any single parameter to 
assess IQ.

Positron emission tomography (PET) with 18F-2-fluoro-2-deoxy-D-glucose (FDG) has become a routine image 
procedure for the management of oncological patients. Compared to other imaging modalities, PET exams 
are limited by their low spatial resolution and signal-to-noise ratio (SNR)1. However, there is still an interest in 
decreasing as much as possible the administered activity dosage, both for patient safety and economic concerns, 
though images must maintain a certain level of diagnostic accuracy, not only in clinical research and trials, but 
also for medical diagnostic purposes.

The assessment of image quality (IQ) in PET is a challenging task affected by biological and physical factors2. 
It can be studied using phantoms or human examinations by means of different quantitative metrics. Some of the 
measurements could be considered as standard IQ parameters, such as the variance, SNR or contrast-to-noise 
ratio (CNR) of a target region (commonly a lesion or part of the healthy liver when human beings are involved)3–5. 
These parameters are an objective measurement that allows automation, though there can lack a connection 
between them and how IQ is perceived by the physician in some defined tasks (e.g. organ definition).

Beyond the reconstructed image, there is another set of IQ parameters derived from the count statics of a PET 
study. The measurement of the patient noise equivalent count rate (NECR) is a promising idea in order to predict 
IQ, providing a measure of the image count statistics corrected by the degrading scatter and random events. 
Several studies have reported a relationship between NECR and other IQ parameters6–10, including IQ percep-
tion11. However, in everyday practice, clinical NECR is not used to optimize clinical protocols or to establish a 
minimum level of IQ for clinical trials, probably due to the high uncertainties involved in its IQ prediction.
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Another form of IQ assessment is via model-based tasks using automated models. Nevertheless, qualitative 
tasks are difficult to automate, as they involve a subjective human assessment, and models are usually limited to 
lesion detectability and conspicuity12,13.

In recent years, one of the main gains in IQ comes from advances in reconstruction methods. The inclusion 
of point-spread function (PSF) modeling in the iterative methods supposed an improvement in terms of diag-
nostic performance, though the relation between count statistics and IQ increased in complexity7. Additionally, 
penalized reconstruction methods were recently introduced into clinical practice. In contrast to ordered subset 
expectation maximization (OSEM), block sequential regularized expectation maximization (BSREM) methods 
can run until full convergence while controlling noise levels14–16. The penalization acts as a selective filtering and 
the level of noise or IQ could be rather different than OSEM with PSF algorithms. The reliability of predicting IQ 
using the aforementioned assessment methods, such as the SNR or NECR, has never been tested on these new 
reconstruction algorithms.

Despite all factors that could affect IQ in PET studies, dosage optimization of the administered activity is 
usually calculated only in terms of patient weight17. Once the acquisition starts, the only relevant parameters that 
have a direct impact on image quantification are the acquisition time and image reconstruction settings, the latter 
being delicate to modify18.

A fast and automated model to predict IQ could optimize the acquisition and reconstruction parameters in 
real time, or serve as a basic metric to compare acquisitions in multicentric studies. Thus, this task could benefit 
the emerging field of radiomics, which intends to extract and process a large number of quantitative features 
from radiological images19. Automated IQ evaluation using these methodologies has been developed for brain 
and liver magnetic resonance imaging (MRI)20,21; however, there is still a lack of research on this topic in nuclear 
medicine imaging.

The present study has two main aims, and hence the manuscript is divide in two parts: the first one is to 
investigate the influence of different biological and physical parameters on IQ perception of the abdominal area 
using new algorithms (OSEM + PSF and BSREM) and a modern PET scanner (Discovery IQ); the second one 
aims to test the utility of a radiomics approach in the first task. The study is focused on the abdominal region as 
the presence of different anatomic structures, sometimes with low SNR and definition, makes it a complex area 
to evaluate in PET studies.

Material and Methods
We obtained approval from the Bellvitge University Hospital Institutional Review Board. All work was done in 
accordance with institutional guidelines and regulations. This manuscript has been revised for its publication by 
the Clinical Research Ethics Committee of Bellvitge University Hospital. Written informed consent was waived 
by this Committee, as it was a retrospective analysis of our usual everyday work. The data of the patients were 
anonymized for the purposes of this analysis. The confidential information of the patients was protected accord-
ing national normative.

Patient selection, image acquisition and reconstruction.  A total of 112 patients were retrospectively 
included. Patients were selected sequentially from torso oncological FDG PET/CT studies; a detailed description 
of its referral reason can be seen on Table 1. Exclusion criteria were: a blood glucose level higher than 200 mg/dl, 
an uptake time outside the range of 60–100 min after FDG injection, and any abnormal condition such as artifacts 
or lesions which averted a correct evaluation of the abdominal region.

PET/CT acquisitions were performed according to the EANM 2.0 guidelines17. Patients were injected with 
2.7 MBq/kg and scanned at 2 min/bed position. All data were acquired on a Discovery IQ 5-ring PET/CT22 (GE 
Healthcare, Waukesha). Mean injected activity was 194 MBq (range 97–374 MBq) and mean uptake time was 
68 min (range 60–98 min). Overlap between beds was 19%.

Characteristics

Age (years), median (range) 66 (19–86)

Sex, no. (%)

   Male 58 (52%)

   Female 54 (48%)

Referral reason, no. (%)

   Lung 25 (20%)

   Gynecologic 25 (20%)

   Colorectal 21 (19%)

   Lymphoma 12 (11%)

   Skin Cancer 9 (8%)

   Head and Neck 5 (4%)

   Unknown Primary 4 (3%)

   Hepatobiliary 4 (3%)

   Urologic 4 (3%)

   Breast 3 (3%)

Table 1.  Clinical characteristics of the studied population and referral reason for the PET/CT scan.
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Two different reconstructions were used: an OSEM iterative reconstruction with modeling PSF (OSEM + PSF), 
commercial name VUE Point HD-Sharp (VPHD-S, GE Healthcare, Waukesha), using 12 subsets, 4 iterations and 
a 4.8 Gaussian post-filtering; and a BSRM penalized algorithm with PSF correction, Q.Clear (GE Healthcare, 
Waukesha), using a β value of 350, which is a validated penalization value for torso oncological examinations16. 
Both algorithms used an image matrix of 256 × 256 and CT based attenuation correction, as well as dead time, 
random, and scatter events corrections.

Subjective image quality evaluation.  Images were transferred to a dedicated review platform (AW 
Server 2.0) (GE Healthcare, Waukesha). IQ perception was evaluated by two different expert nuclear medicine 
physicians; both rankers had more than two years of clinical experience using the BSRM and OSEM + PSF recon-
structions in the PET/CT system. Figure 1 summarizes the workflow for the extraction and processing of all 
data. Physicians were asked to evaluate the IQ of the axial slices of the abdominal area (IQABD) considering the 
conspicuity of the structures and the apparent noise. The score was ranked from 1 to 5 (1 non-diagnostic IQ, 2 
poor IQ for diagnosis, 3 acceptable IQ but could lead to some undetermined judgment, 4 good IQ, and 5 excellent 
IQ). Moreover, all images were visualized in a randomized order mixing both reconstructions. The IQABD was 
also grouped between low diagnostic quality (LQ) (1–3.5 score) and high diagnostic quality (HQ) (>3.5 score) 
to obtain a binary problem.

Image quality features extraction.  All data were processed with an in-house software programmed using 
Python 3.7 that automatically detected the bed containing more liver parenchyma, which was defined as the 
abdominal bed. As the Discovery IQ has an axial field-of-view (FOV) of 26 cm, it is a reasonable assumption 
that a single bed will include a major part of the liver. Table 2 presents all studied variables. All parameters were 
obtained from the data available in the DICOM header and from the image.

Figure 1.  All image quality features were extracted and processed using an automatic pipeline. Blue line 
describes the first phase of the methodology: image is converted to SUV units and an automatic algorithm 
detects the slice including more liver parenchyma. Then, all DICOM data are extracted from the bed 
corresponding to this slice and a region of interest is placed on the liver to extract ROI-based image quality 
metrics. From a body mask, all slice-based image quality parameters are extracted. The green line describes 
the second phase: all common radiomics features are also extracted from the selected slices, as well as from its 
surrounding volume. Next, an elastic-net model is fitted selecting the relevant features. Results are compared in 
both lines with the subjective assessment.

Biological Count related Mixed

Pre-image reconstruction

Age, glucose level, body weight, 
body height, BMI, LBM

Activity at scan time, true count 
rate, random count rate, scatter 
rate, NECR, PNECR

Uptake time, RDW, 
RDBMI, RDLBM

Post-image reconstruction

Noise related Radiomics Others

VarianceROI, SNRROI, 
VarianceSlice, SNRSlice and CNR

1st order, GLCM, GLZM, GLRM, 
GLDM, NGTDM

Patient position 
misplacement 
(center shift)

Table 2.  Pre- and post-image reconstruction considered IQ parameters.
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First, the image was loaded and converted to SUV units (Fig. 1). The slice containing the most liver paren-
chyma was automatically detected by using some heuristics on the suspected position range and the expected 
SUV values from healthy liver. More details of the used method can be found on supplemental data. Once the 
slice was defined, all count data and patient (biological) related data were extracted from the corresponding slice 
DICOM data. Additionally, an automatic region-of-interest (ROI) was placed in the healthy liver to account for 
SUV variance and SNR.

Next, a segmentation of the patient body in the liver slice was performed using a thresholding method fol-
lowed by a morphological processing, which provides a mask used to perform all non-ROI based measurements. 
The same mask was used to fit the minimum circle around the abdominal surface and find the patient position 
misplacement (center shift).

Biological parameters that could potentially affect IQ included the age of the patient, glucose level at the injec-
tion time, patient height and weight, and uptake time. Body mass index (BMI) and lean body mass (LBM) were 
also computed, the second one defined as recommended by EANM 2.0 guidelines17, according to Janmahasatian 
equation23, which depends on patients’ sex.

NECR was computed directly over the total prompts, the random events, and the scatter factor extracted from 
manufacturer’s data inside the relevant DICOM tags, using the formulation provided by the NEMA standards24, 
defined as

=
+ +

.NECR T
T S R (1)

2

No additional corrections were used over these data, as could be the extraction of all count outside the body6,9. 
A metric closely related to the NECR was also used, called pseudo-NECR (PNECR) which was directly obtained 
from the sinogram and proportional to the NECR6, and defined as

=
+

+ +
.PNECR T S

T S R
( )

/2 (2)

2

An additional set of mixed parameters that combine count and biological parameters was considered. The 
ratios between activity at the acquisition start time and patient weight, BMI and LBM were also computed, 
defined as RDW

11, RDBMI
11 and RDLBM, respectively.

The mean value and variance were measured in the healthy liver ROI and in the body mask. SNR was meas-
ured dividing the mean value and standard deviation. CNR was measured using the ROI mean value and the 
mean and standard deviation of the mask. Lastly, from the body mask, the minimum surrounding circumference 
was extracted to compute the patient positioning shift (center shift, to abbreviate).

Radiomics features were extracted using the pyradiomics package25 from the same body mask described in the 
previous paragraphs. Moreover, the mask was extended to the two consecutive slices in both cranial and caudal 
directions to obtain a 3-dimensional mask, which will be referred as zone features. The extracted features are 
defined in compliance with feature definitions as described by the Imaging Biomarker Standardization Initiative 
(IBSI)26. A fixed bin number of 64 was used for feature extraction, employed in previous studies showing good 
reproducibility27.

Investigations using standard parameters.  All parameters listed in Table 2, excluding the radiom-
ics features, were correlated to the IQABD for both algorithms. Furthermore, this metrics were also compared 
using a two tailed Wilcoxon signed-rank test. Next, we studied the predictive power of all relevant parameters. 
All data was randomly split in a training (n = 73) and a test (n = 39) set. For each statistically significant value 
(p-value < 0.05) a logistic regression was fitted on the train data. Predicted IQABD was computed for the test and 
train datasets, and the area under the curve (AUC) was obtained from the Receiver Operating Characteristic 
(ROC) curve.

Building a Predictive Radiomics Model.  To build a radiomics model to assess the IQ perception, the 
same train and test datasets were used. All Table 2 parameters were initially included in the radiomics model. 
This model consists of all IQ related parameters, as well as the texture parameters from the 1st order statistics 
(19 features), Gray Level Co-occurrence Matrix (GLCM, 24 features), Gray Level Size Zone Matrix (GLZM, 
16 features), Gray Level Run Length Matrix (GLRM, 16 features), Gray Level Dependence Matrix (GLDM, 14 
features), and Neighbouring Gray Tone Difference Matrix (NGTDM, 5 features). Non-normal features were log 
transformed. All features were standardized, by subtracting to each value the variable mean and dividing by the 
standard deviation. As the number of patients is limited, we used an algorithm to perform a feature reduction. 
First, Spearman’s rank correlation coefficients were calculated to examine the internal correlation between indi-
vidual features. Redundant features with linear correlation coefficients >0.95 were removed. Then, an elastic-net 
feature selection approach and model building was adopted, which is a combination of the least absolute shrink-
age selection operator (LASSO) and the Ridge Regression, and is suitable for the regression of high-dimensional 
data28. The LASSO shrinks all regression coefficients towards zero to set the coefficients of non-contributing 
features to exactly zero. To find an optimal penalization terms, a ten-fold cross validation with minimum crite-
ria was used in the elastic-net parameter tuning. The retained features with non-zero coefficients were used for 
regression model fitting and combined into a radiomics signature. Different models were computed for the OSEM 
and BSRM algorithms.
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The performance of the model was reported using the ROC methodology and AUC values in the training and 
test sets. The regression and its validation were performed using the R software version 3.4.4 (the R foundation) 
through the caret and glmnet packages.

Results
Mean IQABD was 3.0 ± 0.8 and 3.2 ± 0.8 for the OSEM + PSF and BSRM reconstructions, respectively (p = 0.006 
using a paired t-test). Weighted Cohen’s kappa coefficient between rankers was 0.46. Figure 2 presents the cor-
relation matrix between all studied variables. For the OSEM + PSF the three IQ parameters presented only at 
best moderated correlations. The highest correlation coefficients were found with patient weight (r = −0.574), 
LBM (r = −0.48), BMI (r = −0.41), activity at scan time (r = −0.37), and NECR (r = 0.37). For the BSRM algo-
rithm, correlations between variables and IQABD score were lower: RDW (r = 0.43), weight (r = −0.24), and LBM 
(r = −0.22). For NECR the correlation was also reduced (r = 0.12). On the other hand, despite some observable 
degree of heteroscedasticity in the data, there was a clear positive correlation between NECR and SNR2 (r = 0.54 
and 0.56, for the OSEM + PSF and BSRM algorithms, respectively).

Supplemental Fig. 1 shows the relation of NECR with BMI, and Supplemental Fig. 1 the relation of SNR2
Slice 

with NECR. It should be noted that RDW presented a highly non-normal distribution of values, and hence the 
validity of the regression coefficient is limited. Figures 3, 4 present the relation between IQABD and some selected 
variables for both reconstructions.

For the discretized analysis, in the case of the OSEM + PSF reconstruction, the parameters that present statis-
tically significant differences (p < 0.05) are patient LBM (p = 0.0005), RDW (p = 0.007), weight (p = 0.001), height 
(p = 0.003), CNR (p = 0.01), BMI (p = 0.02), NECR (p = 0.02), and PNECR (p = 0.04). For BSRM the parameters 
which present lower p-values are patient RDW (p = 0.006), height (p = 0.03), CNR (p = 0.04), and LBM (p = 0.05). 
For further details, see Supplemental Table 1.

Table 3 shows the AUC obtained from fitting a logistic regression to each statistically significant variable for 
the train and test dataset. For all parameters, the OSEM + PSF reconstruction presented higher AUC values than 
the BSRM reconstruction, and from both reconstruction methods, the RDW followed by the LBM parameters 
presented the highest AUC values for the test data.

Regarding the radiomics model, Supplemental Fig. 1 presents the parameter tuning of the elastic-net model. 
The resulting ROC can be seen in Fig. 5 for the test and train datasets. The resulting AUC is greater for the 
OSEM + PSF compared to the BSRM reconstruction. Also, for both algorithms, the radiomics AUC values were 
higher than the single parameter logistic regressions. The model selected variables and their importance are 
shown in Supplemental Fig. 4.

Discussion
The assessment of PET IQ is a complex task, as is highly subjective and depends on many different parameters. 
This study demonstrates its difficulty when single parameters are used, and aims to point the necessity of adopt-
ing an alternative model, as could be a radiomics model, especially when considering the increasing tendency of 
using penalized algorithms in modern systems. Our work shows how when using modern reconstruction algo-
rithms and clinical acquisition settings most common single parameters are not correlated with the evaluation of 
IQ by physicians.

Research methodology in the present study is similar to that of Queiroz et al.11, and in a similar fashion, 
we found an expected relation between NECR and SNR2. Even if our settings were different, especially, to the 
best of our knowledge, this is the first study evaluating the relationship between NECR and IQ using a BSRM 

Figure 2.  Pearson’s r correlations between all studied variables for OSEM + PSF (A) and BSRM (B) 
reconstructions. Statistically significant correlations (p < 0.05) are the ones with |r| >0.2.
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reconstruction algorithm. Despite all this, we did not find any relevant relation between the NECR and IQ scores, 
particularly for the BSRM reconstruction method. A possible explanation is that our work is restricted to patients 
with an uptake time below 100 min, instead of the 128.3 min in average in the mentioned paper. Increasing the 
uptake time could increase the range of NECR values. Our purpose was to use a clinical relevant setting and 
we restricted our data accordingly. Furthermore, our injected activity is 2.7 MBq/kg instead of 4.3 MBq/kg of 
Queiroz et al.

In accordance to previous publications15,22, in our study IQ was also ranked higher for BSRM than for 
OSEM + PSF. However, when comparing IQ scores with most IQ parameters, lower correlations and higher 
p-values were found for the BSRM algorithm. This is partially explained by the higher and less variable IQABD 
scores, which limit a possible correlation. Yet, the non-linear reconstruction possibly dismisses the effect of exter-
nal causes in IQ. The single parameter presenting a higher AUC value for the BSRM algorithm is RDW. This 
result must be taken with caution though, as it presents a non-uniform distribution, as can be seen in the linear 
regression figures. Thus, the good results in predicting HQ and LQ images could be due a discretization effect, so 
further work should be performed to confirm its utility. Aside from RDW, among all studied parameters, LBM is 
the only one that shows a lower p-value and a higher AUC in both reconstruction methods.

Most publications about PET IQ using clinical data only focus in lesion conspicuity3–5, although there are 
other independent diagnostic tasks. When dealing with the abdominal zone, parameters such as SNR (extracted 
from a ROI in the healthy liver) are often used as a measure of IQ4, but according to our results, they may have 
limited value differentiating between LQ and HQ images.

In contrast, we present a simple radiomics model as a proof of concept that a different paradigm can be 
applied on IQ evaluation, increasing the AUC presented by any single parameter. The present model has several 
limitations, though. First, this is a retrospective study with a relatively small sample size, even if an independent 
validation cohort from our institution was used. In the future, a large-scale multicenter study would be con-
venient to fully assess the generalization ability of the model. Second, it uses extracted data from a single slice 

Figure 3.  Selected relevant studied variables for the OSEM + PSF (VPDH-S) reconstruction method. The 
dotted line represents an adjusted linear regression and its 95% confidence interval.
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and the surrounding slices as different inputs, although the evaluation was performed in the entire abdominal 
area. Despite the abdominal slice selected was manually verified, in order to increase the number of slices better 
algorithms for detecting the abdominal area should be applied, as a miss-selection of the abdominal zone could 
include undesired structures (such as the heart), which could potentially affect any feature values. Third, the 
model uses an elastic-net algorithm, but other more sophisticated models, such as neural networks could be 
applied21. Moreover, it would be interesting to mix different reconstruction methods and settings in the same 
model, although that would require a completely different study design, out of the present scope. Lastly, some 

Figure 4.  Selected relevant studied variables for the BSRM (Q.Clear) reconstruction method. The dotted line 
represents an adjusted linear regression and its 95% confidence interval.

OSEM + PSF BSRM

Train Test Train Test

Weight (kg) 0.67 (0.50–0.84) 0.64 (0.51–0.78) 0.57 (0.38–0.76) 0.58 (0.44–0.71)

Height (cm)* 0.56 (0.36–0.75) 0.59 (0.44–0.73) 0.51 (0.32–0.70) 0.62 (0.48–0.75)

BMI (kg/m2) 0.67 (0.50–0.84) 0.64 (0.49–0.79) 0.56 (0.37–0.75) 0.55 (0.42–0.69)

LBM (kg)* 0.63 (0.44–0.82) 0.65 (0.50–0.80) 0.51 (0.33–0.72) 0.60 (0.47–0.73)

NECR 0.74 (0.57–0.91) 0.65 (0.51–0.78) 0.62 (0.44–0.79) 0.56 (0.42–0.69)

PNECR 0.76 (0.58–0.94) 0.66 (0.53–0.80) 0.60 (0.42–0.78) 0.59 (0.47–0.73)

RDW* 0.75 (0.60–0.91) 0.73 (0.61–0.86) 0.75 (0.59–0.91) 0.64 (0.59–0.78)

CNR* 0.54 (0.36–0.73) 0.63 (0.48–0.77) 0.58 (0.39–0.76) 0.53 (0.39–0.66)

Table 3.  Calculation of the AUC and the 95% confidence interval for all significant variables when using the 
OSEM + PSF algorithm. Variables that were also significant for the BSRM reconstructions are marked with an 
asterisk.
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radiomics features could have a direct interpretation in terms of some IQ traits, such as lesion conspicuity or 
structure definition. Even if we have treated the model as a black box, it will be still useful to interpret the relation 
of each radiomics feature with a specific aspect of IQ. It should be noted that to achieve this goal, a current limi-
tation of the present approach is the difficulty to obtain higher correlations between IQ rankers, the present study 
shows a rather moderate correlation, more work should be done extending redesign the study to include more 
rankers, ideally from different institutions.

Furthermore, PET IQ is potentially dependent on many pre-imaging parameter conditions17, some of which 
were considered in the present manuscript (i.e. glucose level or uptake-time), but others are difficult to quantify, 
as could be other metabolic conditions. Additionally, PET imaging has the possibility to modify IQ by changing 
the acquisition time or reconstruction settings. Beyond the clear advantages of obtaining an objective IQ score, an 
IQ radiomics model could be performed during the PET scan, by applying a fast OSEM reconstruction during the 
acquisition, and modifying the duration of the scan or reconstruction settings according to the results. Moreover, 
our methods are easily extensible to other anatomical areas, such as the brain, where a correct definition of the 
structures could be of special importance for multicentric clinical trials20.

Conclusion
The present work is a first step to a comprehensive analysis of the abdominal area IQ, pointing the necessity of 
changing the standard parameters to evaluate IQ, particularly when a BSRM algorithm is involved. Moreover, the 
promising role of a radiomics approach to assess IQ has been investigated, and according to our results a simple 
model can outperform the use of any single parameter.
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Chapter 7

General discussion

The main goal of this thesis was to study the impact of a new reconstruction algorithm on the image

quality and quantification of clinical PET studies performed with a high sensitivity BGO PET scanner.

To do so we started with Aim 1, by studying the PET imaging characteristics of the D-IQ-5R PET/CT.

As it was a new model, the study of the system performance it is necessary in order to establish a

ground base to compare any result with other previous research based on a different PET/CT system.

We followed with Aims 2 and 3, which are the core of the present dissertation, as they solve the

image optimization problem under the penalized reconstruction algorithm. Aim 2 studies how as

different reconstruction parameters affect the quantification accuracy of different lesion sizes, as well

as their impact on the image quality evaluation on real patients. Aim 3 moves beyond classical PET

quantification to study the impact of different reconstruction settings on lesion heterogeneity and

morphology measurements in form of texture indices. Finally, Aim 4 tries to account for the impact

of Q.Clear reconstruction on different image quality metrics and its relation to the subjective image

quality perception.

In Aim 1, which is mainly covered in Chapter 4, we investigated the different performance

characteristics of the D-IQ-5R, primarily based on the NEMA standards. Yet we extended the tests in

some aspects, especially referring to image quality, as the BSRM reconstruction algorithm is the most

innovative aspect in comparison to the older BGO-based PET systems.
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Beyond this, from a physical point of view, the sensitivity gain could be considered one of the

main advantages of the D-IQ-5R, compared to the other PET/CT systems currently available. As an

example, the Siemens mCT Flow [34], which is a TOF PET/CT that could be considered competing

at a similar market segment, has a sensitivity of 7.6 cps/kBq, a 33% of the D-IQ-5R one. This also

holds for the high-end digital PET/CT systems; the GE Healthcare D-MI [33] has a sensitivity of

12.65 cps/KBq and the Philips Vereos [67] has a sensitivity of 5.7 cps/kBq, both values at the centre

of the ring. On the other hand, the major drawback of the D-IQ could be considered the lack of

TOF reconstruction, due to the BGO detector, which still presents some advantages in terms of a

gain of reconstruction information [42]. Furthermore, the worse time resolution of BGO detectors

could impact in image quality of more uncommon PET nuclides, such as 90Y, which possess high

contamination of non-desired photons that could increase the noise and would especially benefit

from a TOF reconstruction [68]. In any case, the D-IQ is intended to be a multipurpose PET/CT,

though its performance is optimized for 18F radiopharmaceuticals, as other nuclides normally involve

higher concentrations, i.e. 15O exams. This can be seen in the NECR peak, which is located at 9.1

kBq/ml, closer to typical FDG concentrations. On the other hand, the mCT Flow has its NECR peak

at 22.5 kBq/ml or the D-MI has its peak at 29.0 kBq/ml, which could be an advantage when higher

radiopharmaceutical concentrations are used.

The image quality test is usually the most difficult to interpret of the NEMA tests, as it can

not always be compared in a straightforward way with other scanners, due to differences in image

processing and or acquisition time. Using the standard approach or a more realistic condition (with

a worse combination of acquisition time and phantom activity concentration), the introduction of

the Q.Clear reconstruction noticeably improves image quality, increasing the CR coefficients and

decreasing the BV. These are consistent with previous results from the Discovery 960 scanner based

on LYSO crystals [16], and posterior results using other settings [69–74]. Also the images of the

Jaszczak and NEMA image quality phantoms reconstructed with the Q.Clear algorithm showed a

higher contrast, with less apparent noise.

In the last section of Chapter 4, in order to translate the phantom image quality value to patient

images, we studied different quantification parameters on lesions. One can observe that the differences
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found between the Q.Clear reconstruction and the VPHD-S are not linear; even more, although in most

lesions the BSRM algorithm tended to increase lesion quantification, in some of them it decreased.

These last results directly link with the next aim of the present dissertation.

In Aim 2, which is mainly addressed in Chapter 5, we investigated the optimization of a pe-

nalization factor for a Bayesian reconstruction algorithm (Q.Clear) under different levels of PET

image noise. In order to do so, we started by studying the behaviour of the Q.Clear algorithm on

phantom data. As the gold standard of PET reconstructions are the different variations of the OSEM

method, it is convenient to compare the Q.Clear algorithm behaviour to the expected for an OSEM

reconstruction. However a direct comparison of both algorithms is not straightforward. On the one

hand, by decreasing β values on the Q.Clear algorithm comparable quantitative metrics (measured

as CR) as in an OSEM reconstruction can be achieved if there is an increase on the iterations or

subsets, or a reduction of the total post-filtering. On the other hand, our study shows that the image

quality improvement is not homogeneous, depending on the LBR and total administered activity. In

general terms, as the β value increases, the quantification capacity (measured as CR and contrast)

decreases, as well as the noise, leaving a total increase on detectability (in terms of CNR or SNR both

for phantoms or patients). When comparing patient data, no relevant differences of noise measured in

the liver were observed, although Q.Clear reconstructions presented a slightly lower value. For lesion

quantification, the Q.Clear reconstruction increased lesions SUV mean and maximum. Moreover,

when using the Q.Clear reconstruction algorithm in a BGO scanner, and combining phantom with

patient data, a β value of 350 and 200 appears to be the optimal value for 18F-FDG oncology and

brain PET/CT, respectively. Our results show that for torso scans, this value assures a compromise in

image quality and quantitation accuracy. However, the changes in PET quantification introduced by

the algorithm selection and settings should be considered with care, especially when standardization

and harmonization are required as is the case of multicenter studies [53].

In Aim 3, covered in Chapter 4, we investigated the direct impact of a BSRM reconstruction in

the stability of heterogeneity features. Texture indices show the effect of lesion homogeneity as β

value increases. From a practical point of view we found that most features are stable (COV < 10%)

when using the recommended range of β values. However, that is not the case when the range of β
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values is extended. Thus it will be important for any future studies seeking to use radiomics features

from a BSRM reconstruction to keep their imaging protocols as uniform as possible.

In Aim 4, covered in Chapter 6, we studied how common quantitative parameters behave when

used to measure clinical image quality on Q.Clear reconstructions. The study was limited to the

abdominal area, and we were able to show that not a single commonly used parameter presented a good

correlation with image quality perception. All correlations where lower in the BSRM reconstruction

than in the OSEM + PSF one. This is an important landmark as it is crucial to modify how to evaluate

image quality with the incorporation of new penalized reconstruction methods in clinical practice.

When dealing with the abdominal area, parameters such as SNR (extracted from a ROI in the healthy

liver) are often used as a measure of image quality [75], but according to our results, they may have

limited value in distinguishing among different image quality studies. The last part of the chapter

deals with a proof of concept of radiomics model, which, if extended, could be useful to solve this

problem.

The last two aims involve the use of heterogeneity features. As explained during the background

section 3.5, the majority of TI currently used in radiomics studies were designed to quantitatively

evaluate visual perception characteristics in images, such as background contrast or some pattern

of complexity. Despite the enthusiasm for radiomics and the exponentially growing number of

studies using FDG PET heterogeneity prameters, there is still work to do in order to harmonize

its methodological application. As an example, after the initial publications showing some kind

of relation between TI and different tumour progressions, the first meta-analysis showed that none

of the considered publications (18 studies from 2009 to 2013) presented enough statistical rigour

to pass a minimum cut-off required to be considered in the meta-analysis [76], hence part of the

methodology used by these pioneer studies should be discouraged in a modern project. Consequently,

at the initial steps of answering Aim 2 texture analysis was an incipient discipline and many aspects

of its computations were unknown, but by the time of working in the specific Aim 3, several other

initiatives had emerged into the goal of standardizing all the methodology involving radiomics studies.

The evolution in the computation of radiomics features explains the two different approaches

used during this dissertation. First, in Chapter 5, an in-house software was written using Python 3.6.
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Developing our own software allowed a deep understanding of the different aspects that could affect

the heterogeneity computation, as well as the caveats of different methodological approaches followed

by other authors.

However, during the process of answering the subsequent specific aim (Aim 4), we decided to use

an external package to compute all radiomics features, known as pyradiomics [63]. One advantage

of using this external tool is that it includes more features than the initially planned in our in-house

computations, but more important is its participation in an initiative to standardize the naming and

computation of different features [77], allowing us to focus in the answer of the aims of the thesis

without losing time in other factors. The software also works as an external library to Python 3.6, thus

the changes in the general workflow were minimal. Additionally, the code is open-source, supporting

the revision by the scientific community in search of possible computational errors.

7.1 Future Directions

The present study deals with the optimization of the Q.Clear penalization factor under different levels

of PET image noise, but we restricted our study to a general oncological and neurological case.

However, there is still work to do in order to find the optimal parameters for other cases, but more

importantly to clinically evaluate the new reconstruction method in particular settings. Specifically,

in the last years, Q.Clear has been proven of utility in different 18F-FDG oncological settings, as in

the detection of lung nodules [78], lung nodules by dual-time point [79], mediastinal lymph nodes

in lung cancer [78] and colorectal liver cancer metastases [80]. However, there is some criticism on

the use of Q.Clear for some settings. For example, Devriese et al. [81] studied the impact of Q.Clear

reconstructions in the assessment of solid tumour response criteria (PERCIST), and they recommend

the use of an harmonization reconstruction protocol (without PSF modelling and non-penalized) [53]

as it overestimates true SUL values. Hence, there is a future direction of work to find a subset of

Q.Clear penalization factors compatible with the EARL harmonization criteria.

Another controversy is in lymphoma assessment. In a letter to the editors, Barrington et al. [82]

note that Q.Clear increases the SNR of lesions but do not modify the uptake in reference of the
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mediastinum and liver (as we discussed previously), and hence its use can lead to different scoring of

the Deauville criteria and response interpretation using the Lugano Classification. Therefore, there is

a need to validate BSRM algorithms in lymphoma patients before its adoption in routine practice.

In general terms, when the goal is to detect a lesion with high LBR, Q.Clear demonstrated to be

superior, and the present dissertation proposed a optimization criteria. However, when considering to

use normal regions, small lesions in low LBR settings, or quantitative parameters involving ratios

to normal structures, there is still work to perform for a clinical validation and optimization. These

include some oncological cases as liver metastases, or non-oncological cases as could be the study of

epilepsy focuses.

A point of further research stated in Chapter 4, is the possible benefit of using different opti-

mization parameters on different anatomical areas, where count statistics and resolution demands are

different. This necessity can be clearly seen on brain images, where the required β values are much

lower than those that could be considered clinically acceptable on a torso acquisition. As a general

rule, as image statistics, the β value can be decreased. Using this criteria, a future optimization can

lead to whole-body acquisitions with different β values depending on the anatomical zone, clinical

goal or count statistics in the same reconstruction. Furthermore, it could also be studied on dynamic

tracer quantification, where yet any study evaluated the impact of Q.Clear reconstructions.

Another interesting area of future research is the definition of a set of new metrics to study the IQ

performance of PET reconstructions. Furthermore, before applying different IQ criteria on clinical

images, it will be beneficial to apply this metrics on phantom data to know how your algorithm in

combination of your PET equipment behaves. This is performed in our study (Aim 2 & 3) but a set

of definite parameters should be standardised in order to evaluate any new equipment when using

a penalized algorithm. For example, in CT imaging a new protocol has been recently published

proposing a series of performance metrics to evaluate image quality when iterative reconstruction

algorithms are used in this modality [83]. It points the need to use some complex metrics as modulation

transfer function (MTF) and task-based related parameters, in a similar fashion as shown in the present

dissertation, as also most common parameters has a limited utility to quantify IQ of CT studies when

using modern reconstruction algorithms. A similar work should be done for PET imaging, to compare
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and harmonize image quality among different centres when penalized reconstruction algorithms are

involved.

In addition, in our study we proposed a radiomics model that could serve as a final IQ evaluation.

However, in its current state it just works as a proof of concept, and further work must be done in order

to be clinically adopted. The most important step is a large-scale multicenter study, comparing its

IQ assesment with more physician and a larger cohort of patients, allowing the use of more complex

algorithms as neural nets. Moreover, the algorithm should be extended to different anatomical areas

or clinical goals.

Lastly, beyond the clear advantages of obtaining an objective IQ score, an improved IQ radiomics

model could be used during the PET scan, by applying a fast OSEM reconstruction during the

acquisition, and modifying the duration of the scan or reconstruction settings on the fly according to a

desired IQ.





Chapter 8

Conclusions

In the present work we studied how a new implemented BSRM reconstruction algorithm (Q.Clear)

impacts on image quality and quantification of clinical PET studies performed with a high sensitivity

BGO PET scanner.

The main results obtained are the following:

• The D-IQ PET/CT with a 5 ring block of detectors has the highest overall performance of the

Discovery BGO-based scanners and of the rest of the current commercially available scanners

that was compared with, showing improved sensitivity and count rate performance.

• Compared to standard OSEM reconstructions, Q.Clear increases contrast recovery and de-

creases background variability, producing an overall increase of contrast-to-noise ratio in

phantom studies, and increasing the signal-to-noise ratio in patient lesions. Image quality

assessment of torso and brain studies also improves: a β value of 350 and 200 appears to be

the optimal value for 18F-FDG oncology and brain PET/CT studies, respectively. For torso

scans, this value assures a compromise in image quality and quantitation accuracy.

• Texture indices show the effect of lesion homogeneity as β value increases. In the oncological

clinical proposed β range (between 300 and 450) almost all the texture indices presented

coefficients of variance under a 10% threshold.
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• None of the studied IQ parameters correlated with the clinical IQ assessment, pointing the

necessity of changing the standard parameters to evaluate IQ, particularly when a penalized

algorithm as Q.Clear is involved. Moreover, the promising role of a radiomics approach to

assess IQ has been investigated, and according to our results a simple model can outperform

the use of any single parameter.
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Jaszczak Phantom

In the context of this work, the Jaszczak phantom (Data Spectrum Corporation, Durham, NC, USA)

was used in order to assess the image quality and resolution when different reconstructions are applied.

This phantom is a cylinder fillable with water, with an internal diameter of 21.6 cm. The lower portion

of the cylinder contains 6 sets of acrylic rods arranged in a pie-shaped pattern and with the following

diameters: 4.8, 6.4, 7.9, 9.5, 11.1, and 12.7 mm. This allows the evaluation of spatial resolution in

transaxial direction. The phantom was filled with a total activity of 25 MBq, providing a concentration

of approximately 4.2 kBq/cm3, and acquired during 350 s. Then data was reconstructed using VHD,

VPHD-S and Q.Clear algorithms, using a total of 70 cm FOV and the reconstruction parameters

specified in the image quality section.
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Methodology to detect the liver slice

A heuristic method was used to batch process al PET scans to select the slice comprising a major part

of the liver. An initial guess of the slices comprising the live was made (from the second bed to the

third). An initial thresholding segmentation was performed to only consider the regions comprising

a SUV between 0.1 and 2.6, to avoid lesions or physiologic glucose avid regions (such as heart or

bladder). Next, the slice with the maximum mean SUV was found and the row and columns with the

maximum mean SUV where selected as regions of the liver. The correct selection of the liver ROI

placement was visually inspected for each patient.

Additional table and figures

Fig. C.1 Relation of NECR and BMI. Dotted line represents an adjusted linear regression
and its 95% confidence interval.
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Table C.1 Studied variables mean and standard deviation for low (LQ) and high (HQ) image
quality groups.

VPHD-S Q.Clear

LQ HQ p-value LQ HQ p-value

Patients (n) 56 57 78 35
Age (y) 67±14 63±13 0.06 67±16 64±12 0.1
Glucose level
(mmol/l)

6±2 6±2 0.4 6.4±1.6 6±2 0.2

Weight (kg) 85±21 70±14 0.001 83±20 74±17 0.1
Height (cm) 165±8 160±10 0.003 165±8 160±10 0.03
BMI (kg/m2) 31±7 27±6 0.02 30±6 28±6 0.17
LBM (kg) 55±11 46±10 > 0.001 53±11 48±11 0.05
Uptake Time
(min)

71±8 71±9 0.6 72±9 70±8 0.19
Tracer Activity
(MBq) 140±38 123±30 0.07 136±38 127±33 0.4

True events (11±2) ·104 (12±1) ·104 0.12 (11±20) ·104 (12±1) ·104 0.17
Random events (40±15) ·104 (34±12) ·104 0.11 (38±16) ·104 (36±1 ·104 0.8
Scatter events (9±1.8) ·104 (9±1.5) ·104 0.48 (9±2) ·104 (9±12) ·104 0.9
NECR 35±12 41±12 0.02 36±11 39±12 0.3
PNECR 111±20 121±19 0.04 112±20 118±19 0.2
RDW 1.6±0.1 1.7±0.2 0.007 1.6±0.1 1.7±0.2 0.006
RDBMI 4.5±0.6 4.5±0.8 0.2 4.5±0.5 4.5±0.8 0.7
RRDLBM 2.54±0.4 2.7±0.4 0.09 2.5±0.4 2.7±0.5 0.3
VarianceROI 0.1±0.2 0.05±0.03 0.6 0.1±0.3 0.05±0.03 0.2
SNRROI 10±3 11±3 0.6 11±4 11±4 0.6
VarianceSlice 0.6±0.3 0.7±0.2 0.3 0.7±0.3 0.7±0.3 0.6
SNRSlice 1.5±0.2 1.5±0.3 0.4 1.4±0.3 1.5±0.3 0.6
CNR 1.6±0.43 1.3±0.4 0.01 1.5±0.4 1.3±0.4 0.04
Center Shift 16±10 20±12 0.2 15±9 19±11 0.7
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Fig. C.2 Relation of NECR and SNRSlice
2 , for a) OSEM + PSF and b) Q.Clear reconstruction

methods. Dotted line represents and adjusted linear regression and its 95% confidence
interval.
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Fig. C.3 Elastic net lambda optimization by cross-validation.
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Fig. C.4 Importance of the selected features for A) OSEM+PSF and B) Q.Clear.
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