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 “How often have I said to you that when you have eliminated the impossible, 

whatever remains, however improbable, must be the truth?” 

― Arthur Conan Doyle, The Sign of Four 
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Pharmacometrics is a quantitative discipline with multiple applications in drug development and 

therapeutic drug monitoring. By combining elements from disciplines such as pharmacology and 

statistics, pharmacometrics allows to quantitatively characterise the variability associated with 

drug exposure and effect to provide a temporal description of the pharmacological response. As 

a consequence, the contribution of the individual characteristics to the response can be 

differentiated from confounding factors that would otherwise limit data interpretation, thus 

allowing the individualization of drug administration. This feature represents the main 

application of pharmacometrics and an opportunity for implementing model-informed precision 

dosing (MIPD) as part of personalised medicine.  

This thesis is about the use of pharmacometrics in two areas, pain management and 

perioperative medicine. Throughout the different sections, several examples of the application 

of MDPI in these clinical settings are presented. The thesis is organized as follows: 

The Introduction provides an overview of the evolution of pharmacometrics, its main 

components and the current state of the field to contextualise the methodologies that will be 

developed in the following sections. At the end of the introduction, the Objectives condense the 

concrete aims of this work. 

The Methods detail the clinical studies, measured variables and the different pharmacometric 

techniques that were used in this thesis. The Results provide a comprehensive description of the 

evaluation, validation and clinical applicability of the developed population 

pharmacokinetics/pharmacodynamics (popPK/PD) models, which constitute the main findings 

of this work. 

The Discussion provides an overview of the highlights, the applicability, as well as the limitations 

of this work taking into consideration the present and future of the field. Finally, the Conclusions 

summarise the most relevant findings of this thesis in both English and Spanish. 
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The Appendix contains two pieces of work not directly linked with the primary objective of this 

thesis. In the first one, an overview of PAINCARE, a public-private collaboration aiming to 

improve the clinical success rate of novel analgesics, is provided. The second one proposes a 

population PK model for piperacillin in critically ill children with or without continuous kidney 

replacement therapy, an area with high medical need due to the vulnerability of this population. 

Partial results of the presented work have also been included in the following publications: 

Marco‐Ariño N, Vide S, Agustí M, et al. Semimechanistic models to relate noxious stimulation, 

movement, and pupillary dilation responses in the presence of opioids. CPT Pharmacometrics 

Syst Pharmacol. Novemeber 2021. doi:10.1002/psp4.127291 

Couto M, Vide S, Marco-Ariño N, et al. Comparison of two pharmacokinetic-pharmacodynamic 

models of rocuronium bromide during profound neuromuscular block: analysis of estimated 

and measured post-tetanic count effect. Br J Anaesth. February 2022. 

doi:10.1016/j.bja.2021.12.0102 

Jaramillo S, Marco‐Ariño N, Montane-Muntane M, et al. A semi-mechanistic model for 

predicting perioperative haemoglobin concentration in non-cardiac surgical patients. 

Submitted. 

Bloms-Funke P, Marco-Ariño N, Birch J, et al. Perspectives on Public-Private-Partnership in Pain 

Research: Concepts, Methods and Findings of the IMI-PainCare Consortium. Manuscript in 

preparation. 

Butragueño-Laiseca, L., Marco‐Ariño, N., Troconiz IF, et al. Population Pharmacokinetics of 

Piperacillin in critically ill children including those undergoing continuous kidney replacement 

therapy. Submitted.
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Since ancient times, humans have used medicinal products to fight disease and its symptoms3. 

During most of this period, the discovery of pharmacologically active substances was accidental 

or based on trial and error testing of natural products. In the 19th century, the development of 

chemistry and pharmacology led to the production of the first synthetic drugs4, opening the 

possibility to custom-made molecules. However, it is not until the 20th century that a systematic 

process for the discovery and evaluation of new medicines, a process known today as drug 

development, is established. 

Drug development is a long and complex process and, despite the technological advances that 

occurred in the last decades, it is still associated with considerable attrition rates5. The failure of 

development programs, particularly in clinical stages, entails a significant burden for 

pharmaceutical companies6,7 and ultimately limits the number of new medicines available to 

patients. In an effort to improve success rates, pharmaceutical companies and regulatory 

authorities have implemented a series of guidelines8 and frameworks9 promoting the use of 

quantitative approaches across the drug development cycle. Among these, one discipline that 

has received significant attention for its capability to integrate information and support data-

driven decision-making is pharmacometrics. 

Pharmacometrics 

Pharmacometrics can be defined as “the science of developing and applying mathematical and 

statistical methods to characterize, understand, and predict a drug’s pharmacokinetic, 

pharmacodynamic, and biomarker–outcomes behaviour”10. Pharmacometrics is the result of the 

pioneering work carried out in 1970-2000 applying nonlinear mixed-effects (NLME) models for 

the analysis of pharmacokinetic/pharmacodynamics data (PK/PD)11–13. In approximately 50 

years, pharmacometrics has expanded from being a niche discipline to becoming a 

multidisciplinary field14 with influence in high-level decisions such as trial design, drug labelling 

and approval15. This expansion has been accompanied by the development of specific 
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methodologies and software tools, which untimely has led to the creation of sub-areas of 

expertise. Among these, quantitative system pharmacology (QSP)16,17, physiologically-based 

pharmacokinetic (PBPK)18 and particularly, population PK/PD (popPK/PD) modelling, constitute 

the core of pharmacometrics. PopPK/PD has been the subject of this thesis and an overview of 

its main features is provided in the following sections. 

Pharmacokinetics 

Commonly known as “what the body does to the drug”, pharmacokinetics (PK) is the science 

that studies the absorption, distribution, metabolism and excretion (ADME) of a drug in the 

organism.  Traditionally, two approaches have been used to characterise pharmacokinetic data: 

non-compartmental and compartmental analysis.   

In non-compartmental analysis (NCA) the concentration vs time profile for an individual is 

summarised in a series of metrics, such as maximum drug concentration (Cmax), time at which 

Cmax is achieved (Tmax) or area under the drug concentration vs time curve (AUC), to provide an 

indicator of drug exposure. NCA is a model-independent method ideal to obtain a simple and 

robust overview of the PK characteristics of the drug. However, because NCA does not take into 

account the properties of drug or physiology19, limited information about different experimental 

setups or undelaying biological processes is obtained. For this reason, NCA is mainly used at the 

initial stages of drug characterization or bioequivalence studies. 

In compartmental analysis, the body is divided into a series of interconnected compartments 

where mass balance is guided by specified input, transfer and output processes20. 

Compartments are kinetically homogenous entities that could be semi-empirical (when portions 

of the system with similar distribution kinetics are lumped together) or physiological (where 

each compartment represents an actual organ). These models are in general parameterized in 

terms of apparent volumes of distribution (V) and distribution (CLD) and/or elimination 

clearances (CL)–corresponding to primary pharmacokinetic parameters, which by definition, are 
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influenced solely by the physio-pathological conditions of the patients. This possibility, 

particularly when combined with population analysis, represents a significant advantage of 

compartmental vs NCA. 

Pharmacodynamics 

Echoing PK, pharmacodynamics (PD) can be described as “what the drug does to the body”. 

Although it is usually associated with therapeutic response, PD is a broad term that englobes 

any response elicited by the drug, including beneficial and side effects21. In practical terms, the 

aim of PD is to describe drug response as a function of drug concentration in the site of action. 

However, PD measurements are rarely performed at steady-state (SS) concentration in the site 

of action and often a PK/PD model is needed to link concentration with drug effect. Figure 1 

shows the integration of PK and PD data into a PK/PD model to provide a description of the 

pharmacological response over time.  

 

Figure 1. Overview of the main components of population PK/PD. Colour lines represent the individual 

data and black lines the typical population profile. PK: Pharmacokinetics, PD: Pharmacodynamics. 
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The most common PK/PD approach is to link measured concentrations (usually in plasma) with 

response through a direct model22. On some occasions, PD effects are delayed compared to 

measured drug concentrations, a process known as hysteresis. Hysteresis could be the result of 

delayed equilibration between the site of action and the site of measurement, irreversible drug 

effects or signal maturation and transduction. A wide range of pharmacodynamic models has 

been proposed to account for these processes13,23,24.  

Another temporal aspect to take into account when modelling PD data is the self-progression of 

the disease in absence of pharmacological intervention. For many diseases, it is unethical not to 

administer available treatments, and drug effects have to be disentangled from the natural 

course of the disease and placebo/nocebo effects25. Of note that while PK data is mainly 

continuous (the exception being modelling data below the limit of quantification), discrete PD 

is not uncommon. Figure 2 provides a graphical example of continuous and discrete variables 

used in popPK/PD analysis. Specific modelling alternatives have been developed to span the 

different types of discrete data such as categorical26, count27 and time-to-event28 among others. 

 

Figure 2. Examples of continuous and discrete variables in population PK/PD. PK: Pharmacokinetics, PD: 

Pharmacodynamics. 
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Similarly to PK, PD models range from empirical to semi-mechanistic and ultimately to 

mechanistic depending on the granularity of the physiological processes described. The more 

mechanistic the model is, the more detailed description of the biological system is provided but 

the higher the complexity and computational cost of the model. As a consequence, PD models 

tend to be “fit for purpose”, being the granularity of the model dependent on the objective of 

the model and data availability. 

Population Approach 

The goal of PK/PD analysis is to describe the behaviour of a variable, usually dug concentration 

or PD response, in a set of individuals. Due to biological and environmental factors, study 

variables do not behave homogenously in all individuals and PK/PD analysis intrinsically implies 

understanding how individuals from a population differ from each other and other populations. 

Prior to the use of NLME, the individual metrics and parameters derived from PK and PD analysis 

were gathered to provide summary statistics for the study population. For example, the mean 

and the standard deviation of the individual CL was computed to evaluate the elimination of the 

drug in the study population in a process known as the two-stage approach29.  However, this 

method entails a series of limitations: (i) rich data for all individuals is necessary to characterise 

with precision the individual parameters, (ii) data has to be balanced, (iii) variability is 

overestimated and (iv) evaluation of covariate effects is limited30,31.  

In NLME modelling, data from all individuals is pooled and analysed simultaneously to identify 

the population (hence the name population approach) parameters describing the typical 

tendency of the population and random effects which account for differences in parameters 

between individuals. Mathematically, NLME models can be represented by the following 

expression: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝜓𝜓𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜀𝜀𝑖𝑖𝑖𝑖   ;  𝑖𝑖 = 1, … ,𝑁𝑁′; 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 

𝜀𝜀𝑖𝑖𝑖𝑖  ~𝑖𝑖.𝑖𝑖.𝑑𝑑  𝑁𝑁(0,𝜎𝜎2) 
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Where yij is the jth observation for the ith individual, f is a non-linear function relating the vector 

of individual parameters (ψi) and the vector of independent variables (xij), N’ the number of 

individuals and ni the number of observations for the individual ith, and εij accounts for the 

discrepancies between the observations and the model predictions (residual error), which are 

assumed to be independent identically distributed (i.i.d) random variables following a normal 

distribution with a mean of 0 and a variance of σ2.  

At a second level of hierarchy (interindividual variation level), the model characterises the 

individual parameters as a function (g) of fixed population effects (ψpop), subject-specific 

covariates (Zi) and the variance-covariance matrix of random effects (Ω). 

𝜓𝜓𝑖𝑖 ~ �𝑔𝑔�𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝, Z𝑖𝑖�,Ω� 

Assuming for simplicity that the set of regression parameters g(ψpop,Zi) is represented by ψpop 

and that the individual parameters (ψi) are independent and follow a log-normal distribution, 

the individual value for the k parameter can be decomposed into a fixed (ψpop) and a random 

effect (ηik). 

𝜓𝜓𝑖𝑖𝑖𝑖 = 𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝 . 𝑒𝑒𝜂𝜂𝑖𝑖𝑖𝑖  

𝜂𝜂𝑖𝑖𝑖𝑖  ~ 𝑁𝑁�0,  ω𝑘𝑘
2� 

Where ψpop represents the typical population parameter (equal for all individuals in the absence 

of significant covariates) and ηik, the discrepancy between ψik and ψpop. The set of ω2s forms the 

diagonal elements of the variance-covariance matrix Ω. The off-diagonal elements are reserved 

for the covariances across ω2s. 

The fixed-effect parameters accounting for the population and covariate models (ψpop and Zi, 

respectively) are commonly known as the structural part of the model. Covariate models 

evaluate and quantify the influence of patient and study factors in the population parameters. 

The inclusion of covariates in a PK/PD model is associated with a reduction of the variability and 
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often facilitates the clinical interpretation of the model32, setting the basis for dose 

individualization.  

Random effects represent the statistical part of the model and account for the variability in the 

model not explained by the covariates. In a typical popPK/PD analysis, there are two main 

sources of variability, inter-individual variability (IIV) and residual variability (RV)33. While IIV 

represents the variability in model parameters across individuals, RV quantifies the differences 

between the individual predictions and observations (See Figure 3 for a graphical representation 

of these variabilities in relation to the observations and population and individual predictions). 

In certain models, a third level of variability -such as inter-occasion variability (IOV)34 or inter-

study variability (ISV)- may be included to account for the differences across studies or research 

centres.  

 

Figure 3.  Graphical representation of the variabilities in nonlinear mixed-effects models.  

Modelling each of the elements briefly described above represents a challenge as different 

alternatives are possible to characterise the structure of the model, the influence of covariates, 

the distribution of the individual parameters and the residual error. As a consequence, 
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developing a population model represents an endeavour requiring large amounts of resources, 

particularly in terms of time and specialized personnel.  

Pharmacometrics in drug development 

The pharmaceutical industry is the sector where pharmacometrics has received more 

recognition. By combining information from multiple disciplines and development stages, 

pharmacometrics provides quantitative evidence to overcome frequent challenges in drug 

development such as dose selection, efficacy evaluation and extrapolation to different 

populations14. As proposed by Sheiner in his “learn and confirm” paradigm35, the sequence of 

preclinical and clinical phases necessary to develop a new medicine provides a unique 

framework to use the information generated in previous stages to facilitate decision making for 

the next development steps. With the expansion of pharmacometrics, the concept of “learn and 

confirm” led to model-based drug development (MBDD)36, where modelling and simulation 

tools provide quantitative decision criteria across all the drug development process. More 

recently, a general framework called model-informed drug discovery and development (MID3) 

has been proposed to promote the use and standardization of MBDD in the pharmaceutical 

industry37,38.  

As pharmaceutical companies, regulatory authorities have progressively embraced the use of 

pharmacometrics to support drug approval and labelling decisions39. Several authors have 

reviewed the impact and contributions of pharmacometrics to regulatory purposes40,41, which 

could be classified into four categories: dose optimization, supportive evidence for efficacy, 

clinical trial design and informing policy42. The interaction between industry43 and regulators44 

is constantly evolving and has pushed the focus of MID3 into areas beyond their traditional 

scope such as work standards, effective communication and management of expertise and 

innovation.  
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Pharmacometrics in clinical settings 

Unlike in the pharmaceutical industry, the use of pharmacometrics in clinical practice is scarce45. 

With the exception of the areas of anaesthesia46, where the need to understand the induction 

and duration of drug effects is more evident, and therapeutic drug monitoring (TDM)47, few 

clinical specialities have implemented popPK/PD modelling in everyday practice. The reasons 

are multiple. One of them is the shortage of expertise in the field due to the lack of specific 

pharmacometrics training in clinical programs and funding opportunities14. Another potential 

reason is the failure of phamacometricians to effectively communicate their work to other 

disciples, which may result in the perception of pharmacometric analysis as “complex” and “of 

little use”48. In this regard, several authors have reviewed the basic principles of 

pharmacometrics for a clinical audience32,49,50.  

Data organisation, standardization and quality control are tedious aspects that may also hamper 

the application of pharmacometrics in clinical settings. While data in drug development is 

subjected to a thorough process of evaluation, validation and processing before analysis, routine 

clinical data does not undergo quality controls and is often not suitable for quantitative 

evaluation51. In this sense, automatic learning tools could provide an opportunity to organise 

and standardise clinical data51, although quality control and patient privacy would still be a 

challenge.  

Ultimately, the main limitation for the application of pharmacometrics in clinical practice is the 

lack of direct evidence supporting that model-informed precision dosing (MIPD) improves 

patient outcomes (i.e. efficacy or toxicity) vs standard care45. The few randomised clinical studies 

that have addressed this question have shown an improvement in the safety of 

chemotherapy52,53 and antibiotics54 when administered following a MIPD approach. Despite this 

fact, no confirmatory studies have been undertaken and currently, MIPD remains an 

opportunity.  
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Pain and perioperative management 

In this work, we aimed to mitigate the lack of quantitative tools for the clinical management of 

pain and perioperative care, two areas where decision-making often relies on indirect signs or 

clinicians’ criteria. Particularly, we focused on developing popPK/PD methods to improve the 

intraperioperative administration of opioids and neuromuscular blockade (NMB) agents and 

assist in the selection of patients requiring red blood cells (RBC) transfusions, which lack an 

optimal solution.  

Opioids are the main drugs used to archive analgesia in surgical procedures, although careful 

titration is required to attain the right balance between therapeutic and side effects. 

Theoretically, movement, which is the most direct and clinically observed response to painful 

stimulation, could be used to guide opioid administration, but in practice, its applicability is 

limited due to the effect of the anaesthesia and NMB agents. Previous research has shown that 

Pupillary Reflex Dilation (PRD) —a supra-spinal parasympathetic reflex55,56— is diminished by 

opioid administration57,58 and predicts movement after noxious stimuli59, suggesting it could be 

used for the assessment of analgesia in patients under general anaesthesia. In this work, we 

used pharmacometric techniques to quantify the influence of remifentanil on PRD, and its 

relationship with the reflex movement response to a standardized noxious stimulus. 

In a similar manner, the administration of NMB agents is not fully optimised. During profound 

NMB, train-of-four (TOF), the usual monitor of NMB, is overcome (TOF=0) and Post-Tetanic 

Count (PTC) stimuli are often used to assess the remaining neuromuscular function60. PTC is a 

non-invasive technique that applies a tetanic pulse of 50 Hz for 5 seconds, followed by a rest of 

3 seconds and then 10-20 single twitches of 1 Hz61. Afterwards, the number of positive twitches 

(those causing mechanical contraction) before an absence of response is added to provide the 

final PTC count. Most of the PK/PD studies for rocuronium —one of the most used NMB agents— 

have been performed in non-profound NMB using TOF response62–67. In this thesis, we 
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investigated the PK/PD relationship of rocuronium and PTC in deep levels of NMB using two 

pharmacokinetic models from the literature. 

Transfusion medicine is another clinical area where quantitative methods play a residual role. 

Decisions on red blood cell transfusions are taken predominantly based on haemoglobin 

concentrations (Hb)68–70, which are known to fluctuate significantly and unpredictably during the 

early perioperative period. Although some of the factors contributing to these variations have 

been indentified71–74, perioperative Hb remains unpredictable. As a result, clinicians often face 

the decision of whether or not to transfuse a patient (both perioperative anaemia and RBC 

transfusions are associated with adverse clinical outcomes75–79) without reliable criteria to 

support their choice. In this work, we developed a semi-mechanistic model using physiological 

and surgery-related variables to characterize the time course of Hb, thus supporting decision-

making for red blood cell transfusion. 

Concluding remarks 

Pharmacometrics is an integrative field comprising elements from multiple disciplines such as 

pharmacology, medicine and statistics. Given the quantitative nature of pharmacometrics and 

the uncertainty surrounding drug development, pharmacometrics has become a central tool to 

support decision making in the pharmaceutical industry. On the contrary, the expansion of 

pharmacometrics in clinical practice has been very limited and there is a clear opportunity to 

incorporate the use of pharmacometrics techniques in this scenario, thus contributing towards 

MIPD and personalised medicine.
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Pharmacometrics is a discipline tightly associated with drug development. Nevertheless, the use 

of pharmacometrics is not limited to the process of developing a drug per se and could also be 

applied to support other aspects such as the characterization of biomarkers in areas with low 

success rates. In this thesis, we explored the use of pharmacometrics to improve the 

development of quantitative models in clinical practice.  

In the latter, the use of pharmacometrics is in its infancy. We acknowledge that the application 

of pharmacometrics in clinical settings is challenging but there is a need to move towards the 

generation of real-world evidence in broader populations outside clinical trials. This thesis aims 

to constitute a step towards MIPD, providing clinicians with quantitative tools to guide decision-

making in perioperative management. This is a complicated scenario where decisions are often 

taken based on indirect signs and/or individual experience, and quantitative techniques could 

represent a powerful instrument to optimise drug administration. In this sense, we believe that 

the rise of personalised medicine represents a unique opportunity to consolidate the use of 

modelling and simulation techniques in clinical practice.  

These general aims can be summarised in the following objectives and sub-objectives: 

1. To evaluate Pupillary Reflex Dilation (PRD) as a prospective biomarker of analgesia depth to 

individualise the dose of analgesics during surgery. 

• To develop population PD models to characterise PRD and movement response to 

tetanic stimulation in the absence of opioids. 

• To link the developed PD models with patients’ predicted plasma drug 

concentrations to explore the effects of propofol and remifentanil on pupillary and 

movement reflexes over the time course of the surgical procedure. 

• To explore the dynamics of PRD and movement models taking into consideration 

the potential applicability of PRD as a biomarker for pain. 
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2. To investigate the PK/PD relationship between rocuronium and post-tetanic counts (PTC), a 

marker of profound neuromuscular blockade, thus enabling anaesthesiologists to optimise 

dosing during surgery. 

• To evaluate the performance of two published PK models for rocuronium.  

• To explore the suitability of different modelling approaches [i.e., continuous vs non-

continuous (ordered categorical and count data) response analysis] to characterize 

the PTC response. 

 

3. To characterise the changes in haemoglobin concentrations after surgery, hence supporting 

decision-making in red blood cell transfusion and perioperative care. 

• To develop a population PK/PD model to describe the changes in haemoglobin mass 

and the balance between fluid administration and elimination in perioperative 

patients using variables routinely collected in surgical procedures. 

• To investigate the clinical applications of the model by exploring the probability of 

requiring a blood transfusion based on patient and surgical characteristics, aiming 

to provide a simple and cost-effective framework for decision-making in blood 

transfusion. 
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Clinical Studies 

Data from three different clinical studies in surgical patients was used to develop the popPK/PD 

models. An overview of the patient characteristics, the study protocols and the measured 

variables from each study is provided in the following sections. 

Clinical study 1: PRD and movement models 

Patient population and characteristics 

Under Institutional Review Board and Ethics Committee approval (Hospital CLINIC de Barcelona 

nº HCB/2016/0318) and following written informed consent, 78 female patients scheduled for 

gynaecologic surgery under general anaesthesia in the Ambulatory Surgery facility at Hospital 

CLINIC de Barcelona, Spain, were included in the current study. Exclusion criteria were prior eye 

surgery, any ophthalmologic diseases besides refraction errors, prescription of drugs affecting 

the size or reflex of the pupil and morbid obesity (BMI>35).  

Study protocol 

Upon arrival in the operating room, routine monitors were placed. General anaesthesia was 

achieved and maintained with propofol and remifentanil administered using a Target-Controlled 

Infusion (TCI) system (Base Primea, Fresenius Kabi AG, Bad Homburg, Germany). 

Loss of consciousness was induced setting the predicted effect-site concentration of propofol 

(Ce,Prop) between 5 and 11 µg·mL-1 (based on Schnider model80,81). 

Two minutes after reaching the predicted pseudo-steady state for propofol, the PRD was elicited 

using the videopupilometer Algiscan® (IDMed, Marseille, France) connected to two electrodes 

placed on the volar surface of the right arm. The stimulus consisted of a 60 mA tetanus for a 

period of 5 seconds. Pupil diameter (PDiam) was measured and recorded at 67 Hz for 13 

seconds: 2 seconds before the stimulation, during the 5 seconds stimulation and until 6 seconds 

after the stimulation ended. A rubber cup covered the measured eye, and the contralateral eye 

was taped closed.  
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The investigational procedure was video recorded. Retrospectively, two clinicians examined the 

video recordings to evaluate the intensity and duration of the movement response. Movement 

intensity was classified into a four-level categorical scale: 0 - absence of movement, 1 - 

movement of only one limb, 2 - movement of two or three limbs and 3 - movement of the whole 

body.   

Within approximately 5 min after the first stimulation, while maintaining the same propofol 

effect-site concentration, remifentanil administration was started achieving predicted effect-

site concentrations (Ce,remi)82 varying between 0.5 and 6 ng·mL-1. Two minutes after reaching the 

predicted pseudo-steady state equilibration, a second and a third PRDs were elicited as 

described above and PDiam and movement response were recorded. 

Then, the airway was secured either by placing a laryngeal mask or by endotracheal intubation. 

When intubation was required, 30 mg of rocuronium bromide were administered, two minutes 

before laryngoscopy. The hypnotic effect was titrated to maintain a Bispectral Index (BIS, BIS 

Vista, Medtronic, Ireland) value between 45 and 60. The analgesic effect was titrated at the 

discretion of the attending anaesthesiologist. 

At the end of surgery Ce,prop and Ce,remi were set to 1 µg·mL-1 and 0 ng·mL-1 respectively. When 

propofol Ce target was reached, one or two additional stimulations separated by at least three 

minutes were carried out before the patient spontaneously awakened or moved.  
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General description of the data 

Demographic characteristics of the patients included in the study are shown in Table 1.  

Table 1. Patient characteristics 

Subjects (n) 78 

Female (n) 78 

Age (years) 45 (27 - 85) 

Height (cm) 160 (140 - 173) 

Weight (Kg) 64 (38 - 93) 

Lean Body Mass (Kg) 44 (31 - 58) 

Body surface area (m2) 1.65 (1.26 - 2.04) 

Expressed as median (range) 

Figure 4 shows the raw data profiles for pupillary size, movement response and predicted drug 

concentrations used for the model development. Of all pupil measurements, 1082 were 

recorded in the presence of propofol (first stimulus) and 2775 were recorded with a combination 

of propofol and remifentanil (stimuli 2-4). For the movement analysis, 1092 observations 

correspond to the first stimulus and 2816 to stimuli 2-4. In both endpoints, the number of 

observations after surgery was lower than for those performed before surgery started as 

subjects were recovering consciousness after the surgical procedure, and measures were 

interrupted when a patient showed signs of arousal. Data corresponding to the 5th stimulus (the 

second after surgery) was not used for model development but as an internal validation dataset. 

Predicted propofol and remifentanil concentrations were recorded every second during the 

experimental procedure. Figure 5 shows the distribution of the different combinations of 

propofol and remifentanil targeted during the study. 
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Figure 4. Overview of the experimental set-up and data generated during the experimental procedure. 

Upper panels show the median concentrations of propofol (red) and remifentanil (green) over the four 

cycles of stimulation. Middle panels depict the raw pupil profiles for each stimulus. The orange line 

highlights the period of 5 seconds when electric stimulation is delivered. Lower panels represent the 

distribution of the movement scores per stimulus (Grade 0: red, grade1: blue, grade 2: green, grade 3: 

yellow). The bottom figure represents the timeline of the experimental procedure with the administration 

of propofol (red syringe), electric stimuli (yellow lightning), administration of remifentanil (green syringe) 

and surgical procedure. Times represent the mean starting time for each stimulus among all the 

individuals. Images were modified from Servier Medical Art83 and Freepik84. 



Methods 

35 

 

Figure 5. Drug combinations. Combinations of propofol and remifentanil predicted concentrations in the 

effect site (Ce) targeted across the different stimuli. 

Clinical study 2: PTC model 

Patient population and characteristics 

This prospective, non-randomised, observational study was carried out at the Centro Hospitalar 

e Universitario do Porto (CHUP, Porto, Portugal) and performed according to Good Clinical 

Practice guidelines and pharmacovigilance directives85. Approval of the protocol was obtained 

from the Research Coordinating Office and the Ethics Committee at CHUP (reference 2018-209 

(184-DEFI/183-CES)). Accordingly, agreement and written informed consent were obtained from 

all patients enrolled in the study.  

The study was conducted on adult patients (18-80 years old), classified as ASA I-IV (American 

Society of Anesthesiologists Physical Status Classification System), scheduled for routine 

laparoscopic or neurosurgical procedures, performing general anaesthesia with a minimum 

duration of 90 minutes that allowed continuous infusion of rocuronium for profound NMB. 

Patients were excluded from the study if presented any neuromuscular diseases, severe 
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cardiovascular, hepatic or renal pathologies, contra-indications for any of the drugs used, a 

BMI>35kg m-2, or were pregnant/nursing.  

Study protocol 

The protocol did not significantly change routine clinical practice. All monitoring was based on 

standard ASA guidelines, including electrocardiogram, pulse oximeter, non-invasive blood 

pressure, BIS, central temperature and neuromuscular monitoring. General anaesthesia 

consisted of propofol and remifentanil administered using a TCI (Fresenius Orchestra Base 

Primea, Homburg, Germany), with effect-site target concentrations titrated to achieve and 

maintain a BIS value between 40-60 (BIS, Medtronic, Ireland). Mean arterial pressure was 

maintained between [-30% +30%] of the patient's baseline value. For the NMB, rocuronium was 

administered using an Alaris TIVA infusion pump (BD, Becton, Dickinson and Company, Franklin 

Lakes, USA) and the infusion data was recorded to a laptop. NMB monitoring was performed 

using TOF-Watch® SX, measuring the response at the adductor pollicis muscle. After the skin 

was degreased, two electrodes were placed over the ulnar nerve and contractions were 

measured by an accelerometer sensor at the thumb. Calibration was carried out according to 

manufacture specifications (CAL 2)85. Data acquisition throughout the case was performed via 

TOF-Watch® SX Monitor software (version 2.5INT, Organon, 2007).  

After the loss of consciousness, all patients received 1mg kg-1 of Fat-Free Mass (FFM)86 of 

rocuronium, specifying the induction dose for each individual. Initially, using TOF-Watch® SX, 

the assessment of the NMB function was performed by continuous TOF stimuli every 15 

seconds, primarily to confirm the onset (TOF=0) and appropriate conditions for intubation and, 

secondly, to ensure the absence of moderate NMB during the procedure. After tracheal 

intubation was complete, PTC measurements were performed every 3 minutes. Besides 

ensuring good intubation conditions, the initial dose was selected with the objective of promptly 

achieving complete NMB (PTC=0). Next, after measuring at least two consecutive PTC 
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measurements above zero, a constant infusion of rocuronium was started and titrated to 

maintain the NMB target of 1-2 PTC. At the end of the surgery, after surgical dressing, propofol 

and rocuronium infusions were stopped, and reversal of NMB was performed with 4 mg kg-1 

sugammadex. For all subjects, extubation was carried out when the TOF-ratio was consistently 

over 0.9. Normothermia was ensured during NMB monitoring and, although the hand was 

secured and supervised, any disturbances during measurements were recorded for future 

exclusion from data analysis. 

General description of the data 

Thirty patients undergoing elective abdominal and neurosurgical procedures were enrolled in 

this study. The baseline characteristics of the study population are presented in Table 2. Surgical 

procedures had a mean duration of 219 (76.4 standard deviation (SD)) min. A total of 1955 post-

tetanic count stimuli were included in the analysis. 

The induction bolus provided appropriate intubation conditions and abolished the initial PTC 

measurements in all subjects, taking approximately 26.3 min (10.4 SD) (considering PTC 

monitoring performed every 3 minutes) to recover a positive PTC response. Next, the infusion 

was started and manually adjusted along the procedure to maintain 1-2 PTC. The length of the 

infusion was approximately 190 min (78.3 SD), during which, a mean of 58.2 PTC stimuli (25.7 

SD) were applied. For this population, 65.9% (13.9 SD) of the observed measurements were 

within the NMB target, 12.6% (11.0 SD) were below (PTC=0), and 21.5% (9.5 SD) were above the 

target (PTC>2). The rocuronium used via continuous infusion for the maintenance of the NMB 

degree showed a demand of 0.56 mg kg-1 h-1 (reference of total body weight (TBW)). At the end 

of the surgical procedure, all patients were successfully extubated at TOF-ratio>0.9 within 3-6 

min. 
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Table 2. Patient characteristics (mean (SD or range) or n). 

Patient sample 30 

Age 62.1 (23-79) 

Sex 
Male 15 

Female 15 

ASA class 

I 0 

II 25 

III 4 

IV 1 

Total body weight (kg) 72.4 (13.4) 

Height (m) 1.64 (0.09) 

BMI (kg m-2) 27.1 (4.6) 

FFM (kg) 48.7 (9.9) 

Abbreviations: ASA - American Society of Anesthesiologists Physical Status Classification System; BMI - 

Body mass index; FFM – Fat-free mass 

Clinical study 3: Haemoglobin and fluid models 

Patient population and characteristics 

This prospective observational study was conducted at Hospital Clinic de Barcelona (Spain). The 

study was approved by the institutional review board (HCB/2016/0906/2) and registered in 

Clinicaltrials.gov (NCT03740438). Adult patients electively scheduled for laparoscopic urologic 

and gynecologic surgery were included consecutively after signed written consent was obtained. 

The study design considered two cohorts of patients in two consecutive enrolment periods, the 

first for model development (development group) and the second for model validation 

(validation group).  
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Study protocol 

The study protocol for both cohorts consisted of serial measurements of Hb along with 

recordings of blood loss, fluid infusions, urine volume and laboratory assessments. 

Exclusion criteria were: history of bleeding disorders, preoperative thrombocytopenia (<150 

x103/mL), prolonged prothrombin time (>15 seconds) or prolonged activated partial 

thromboplastin time (>35 seconds),  intraoperative blood volume loss <500 mL, requirement for 

surgical gauzes during surgery including conversion to open surgical techniques, blood 

transfusion or use of blood recovery systems during the perioperative period, significant 

postoperative bleeding (>100 mL/24h in surgical drains, gross haematuria, or any other type of 

significant blood loss), major postoperative complications during hospitalization, including 

postoperative haemodynamic instability (defined in this study as the need of vasoactive drugs 

infusions after surgery), infectious complications (presence of fever, SIRS, sepsis or septic shock), 

respiratory complications (extubation failure, ventilation support, respiratory failure), and 

surgical reintervention. 

Medical, anthropometric and procedure data were collected prospectively. Standard 

preoperative care included the proper interruption of antihypertensive, antiplatelet, 

anticoagulant and other medications according to the ESA and ESC/ESA guidelines87,88, and an 8-

hour period of fasting before surgery. No fluid infusion was administered prior to surgery. 

General anaesthesia was administered in all cases. A urinary catheter was placed in all patients 

prior to surgery. During surgery, fluid infusions, urine volume and surgical time were recorded 

by an automatic electronic system (Centricity Anesthesia, GE Healthcare, Barrington, IL). 

Intraoperative fluid infusion therapy consisted of a crystalloid solution (Plasmalyte 148, Baxter 

Healthcare, Norfolk, UK) in volumes according to the anaesthesiologist’s criteria. Intraoperative 

blood loss was measured at the end of the surgery using a previously described method based 
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on the assessment of blood volume loss89 and haemoglobin mass loss90, with measurement 

precisions of ±50 mL and ±4 g, respectively. 

Postoperative fluid infusion therapy consisted of glucose solution (10% glucose, 0.8-1 mL/kg/h) 

and a crystalloid solution (Plasmalyte 148) in rates determined by the anaesthesiologist’s 

criteria. Fluid infusions and urine were registered as cumulative volumes every 24 hours on a 50 

mL scale. Intraperitoneal surgical drains were placed in all patients before the end of the surgery 

and withdrawn after 48 to 72 hours, which allowed detecting any significant postoperative 

bleeding. All clinical variables were recorded in an automatic electronic system. 

Laboratory assessments were performed prior to surgery, immediately after surgery and every 

24 hours until: (1) the patient regained complete tolerance to oral fluid intake or, (2) urinary 

catheter was removed. Blood measurements included: Hb (g/L), white blood cells complete and 

differential count (counts/mm3) and C reactive protein (mg/dL). Blood samples were analyzed 

using Advia 2120i automated hematology analyzer (Siemens Healthcare, Erlangen, Germany), 

which has a reported precision (SD) of ±1.4 g/L for the measurement of Hb. All samples were 

obtained from the arms’ large veins using a standard protocol (in a supine position, between 

07.00 and 09.00 hours). 

General description of the data 

Table 3 summarizes patient characteristics and data available for analysis. Between November 

2018 and May 2021, a total of 154 patients were considered eligible for the study. Of those, 118 

subjects were enrolled in the development group, while 36 patients were enrolled in the second 

period of recruitment for the validation group. Hb values of both groups (792 observations) were 

measured up to a maximum of 96 hours after surgery. Hb values, fluid infusions and urine 

volumes for each perioperative time point are summarized in Figure 6.  
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Table 3. Patient characteristics. 

 Development group Validation group 

Subjects (n) 118 36 

Gender (M/F) (n) 62/56 17/19 

Age (years)* 57 (28 - 88) 52 (34 - 76) 

Height (cm)* 167 (131 - 195) 166 (135 - 194) 

Weight (kg)* 77 (56 - 107) 74 (57 - 98) 

Body Mass Index (kg/m2)* 27.7 (17.0 - 39.6) 27.0 (16.6 - 39.5) 

Blood volume loss (L)* 0.88 (0.53 - 2.78) 0.90 (0.53 - 2.89) 

Haemoglobin mass loss (g)* 110 (53 - 322) 107 (55 - 311) 

Calculated intravascular 
volume (L)* 5.5 (4.0 - 7.8) 5.6 (4.0 - 7.3) 

Surgical procedure (n)   

Robotic Prostatectomy 39 10 

Partial Nephrectomy 26 10 

Radical Nephrectomy 7 2 

Nephroureterectomy 6 1 

Hysterectomy with 
adnexectomy 7 2 

Hysterectomy 19 6 

Myomectomy 7 2 

Endometriosis 7 3 

*Expressed as median (range). 
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Figure 6: Overview of the data collected. Hb data are shown for each time point (A), while fluid infusions 

(crystalloid and glucose solutions) and urine are shown in the intervals between each time point (B, C and 

D, respectively). Note that due to the different lengths of the surgical procedures, the first postoperative 

time points are gathered into a single time point (PO) comprising 2 to 6 hours.  

Data analysis 

Data was analysed using the population approach with NLME modelling and the software 

NONMEM 7.491. The First Order Conditional Estimation (FOCE) method with interaction was 

used for the analysis of continuous data, while discrete variables were analysed using the 

Laplacian estimation method. 

Continuous variables were natural-logarithm transformed and the residual error was initially 

modelled additively in the logarithmic scale —residual variability does not apply in the case of 

the analysis of non-continuous response.  In the case of variables measured very frequently,  a 

model for autocorrelated errors92 was also explored in the analysis.  
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IIV in model parameters was modelled exponentially. Only for the case of IIV associated with the 

Logit (L) transformation of categorical scores, an additive model was used, since regardless of 

the magnitude of the individual random effect, probabilities were kept between 0 and 1.  

Model selection 

The minimum value of the objective function (OFV), approximately equal to -2 x log-likelihood 

(-2LL), was used to discriminate between competing models through the log-likelihood ratio test 

(LRT). A decrease of 3.84 or 6.61 in the -2LL –corresponding to a 5 or 1 % level of significance 

respectively– was considered statistically significant for nested models differing in one 

parameter. For comparison across non-nested models, the Akaike Information Criteria (AIC) was 

used93. In addition to LRT or AIC, parameter precision expressed as the percentage of relative 

standard error (RSE) –calculated as the ratio between the standard error and the estimate of 

the parameter– and goodness of fit (GOFs) plots were used as criteria to accept or reject a 

model. Models with RSE values ≥ 0.5 were not accepted. 

Covariate evaluation  

Correlations between covariates and between covariates and individual parameters were first 

evaluated visually. For covariates showing a high level of correlation, only the covariate with the 

lowest level of missing data was included in the statistical analysis. Additionally, for random 

effects with η-shrinkage values<30%, if no tendencies were detected between individual 

estimates of model parameters and patient characteristics, no further investigation of potential 

covariate effects was undertaken. 

Statistical evaluation of covariates was performed with the stepwise covariate model (SCM)94 

method with p-values of 0.05 for the stepwise forward inclusion and 0.01 for the backward 

elimination. Categorical covariates were tested for significance as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅  × �1 + 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖�   (𝑒𝑒𝑒𝑒. 1) 
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Where TVP is the typical value of the parameter for a certain ith category of a unique categorical 

covariate (Cat), 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is the fractional change for the ith category with respect to the typical 

estimate for the reference category (θRef). 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  is equal to zero for the reference category. 

Continuous covariates were evaluated as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜃𝜃𝑚𝑚  × (1 + 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶 × (𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚))   (𝑒𝑒𝑒𝑒. 2) 

Where TVP is the typical value of the parameter for a certain covariate value (Cov), Covmedian the 

median value of the covariate, and θCov the fractional change per unit of covariate regarding the 

typical estimate for the median value of the covariate (θm). 

The impact of selected covariates was further evaluated in forest plots where the relative 

change in the parameter estimate driven by the covariate was compared with the reference 

category (categorical covariates) or the 2.5th and 97.5th percentiles versus the median 

(continuous covariates). The 95% symmetric confidence interval for covariate relationships were 

calculated using NONMEM standard errors, and an absolute change higher than 20% from the 

reference value was considered significant. 

Model evaluation 

Visual predictive checks (VPCs)95, corresponding to a simulation-based diagnostics, were used to 

evaluate the performance of the selected models. One thousand datasets (five hundred for the 

PTC model) of the same characteristics as the original one were simulated using the structure 

and parameter estimates from the selected models. For each of the simulated datasets and each 

measurement time, either the 2.5th, 50th and 97.5th percentiles (continuous variables) or the 

probability of a certain score (categorical data) were calculated. Then, the areas covering the 

95% prediction intervals for each of the simulated percentiles or each score were generated and 

plotted together with the corresponding raw data. Agreement between predictions and 
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observations was made visually. Additionally, the frequency of each score in the observed and 

simulated datasets was calculated for categorical data in the PTC models. 

Parameter precision of the selected models was further evaluated by analysing one thousand 

(five hundred for the PTC models) non-parametric bootstrap datasets and computing the 95% 

(90% for PTC models) confidence interval for each of the parameter estimates.  

Model validation  

Data not used for model development (5th stimulus in the case of Study 1 and validation group 

in Study 3) was used to validate the developed models.  

In the case of Study 1, the model developed for stimuli 1-4 was used to simulate the pupil 

diameter and movement grades during the 5th stimulus, and this simulation was compared with 

the observations. Additionally, in the case of pupil response, individual model parameters were 

used to predict the pupil diameter during the 5th stimulus. For Study 3, the developed model 

was used to obtain the empirical Bayes estimates (EBE) and individual predictions of Hb in the 

validation group. 

Prediction errors (PE) –calculated as Observation - Prediction–, normalised PE (NPE) –calculated 

with equation 3– and absolute NPE (ANPE) –calculated with equation 4– were computed to 

quantify the precision of the individual predictions. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = �
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗

𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗
      (𝑒𝑒𝑒𝑒. 3)

𝑛𝑛

𝑗𝑗=1

 

𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖 = �
| 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗 |

𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗
    (𝑒𝑒𝑒𝑒. 4)

𝑛𝑛

𝑗𝑗=1

 

Where Predj and Obsj, refer to the individual model prediction and observation for the ith subject 

obtained at time jth, respectively.  
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Software and tools 

R (versions 3.6.1 and 3.6.3) with RStudio96 interface (version 1.2.5001) were used for data 

curation and generating the graphical output (Xpose97 and ggplot298 packages). VPCs, covariate 

evaluation and bootstrap simulations were performed with Perl-Speaks-NONMEM (PsN)99,100
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Clinical study 1: PRD and movement models 

Pharmacodynamic models 

The raw data profiles presented in Figure 4 show two features that are relevant from a modelling 

point of view: (i) there is a delay between the beginning of the nociceptive electric impulse and 

the onset of the pupil and movement responses, and (ii) remifentanil reduces both the PDiam 

and the probability of movement. Consequently, models based on the concept of the indirect 

response23, and drug inhibitory effects either on the perception and/or transduction of the 

nociceptive signal, were fit to the data. 

Pupillary Reflex Dilation response 

A model considering that PRD is influenced by the time course of unobserved levels of 

nociceptors (Nact) provided better fits compared to just one turn-over compartment (∆-2LL=-

890; p<0.01). In absence of either electric stimulation or remifentanil, Nact was arbitrarily set to 

a baseline value of 1 (Nact,0), maintained by the balance between the zero and first-order rate 

constants of turn-over, KS and KD respectively, as shown by equation 5. At baseline, the rate of 

change of Nact (dNact/dt) is null, and KS equal KD as Nact,0 = 1.   

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝑆𝑆 − 𝐾𝐾𝐷𝐷 × 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎,0    (𝑒𝑒𝑒𝑒. 5) 

A turnover model was used to transduce the Nact dynamics to pupil response as shown in 

equation 6, where KP,S and KP,D represent the zero-order and first-order rate turnover constants 

respectively, being KP,S = KP,D x PDiam0, and PDiam0, the value of PDiam at baseline. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝑃𝑃,𝑆𝑆 × 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐾𝐾𝑃𝑃,𝐷𝐷 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃    (𝑒𝑒𝑒𝑒. 6) 
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Electric stimulation increases Nact as indicated in equation 7, where θES is the parameter 

accounting for its nociceptive effects, and ES is a variable with a value of 1 during the application 

of the electrical stimulus and 0 otherwise.  

Remifentanil showed significant (p < 0.01) effects in (i) reducing of the nociception activation 

triggered by the application of the electric stimulus (that is modulating θES), and (ii) increasing 

the first-order rate constant KD, which are expressed in equation 7 by f(Ce,remi), and g(Ce,remi), 

respectively. 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝑆𝑆 × �1 + 𝜃𝜃𝐸𝐸𝐸𝐸 × 𝐸𝐸𝐸𝐸 × 𝑓𝑓�𝐶𝐶𝑒𝑒,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�� − 𝐾𝐾𝐷𝐷 × 𝑔𝑔�𝐶𝐶𝑒𝑒,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� ×𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎     (𝑒𝑒𝑒𝑒. 7) 

During model development, different structures for f() and g() considering the predicted 

remifentanil concentration in plasma (Cp,remi) and effect site (Ce,remi) were explored, leading to 

the final model for Nact represented in equation 8. 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝑆𝑆 ×�1 + 𝜃𝜃𝐸𝐸𝐸𝐸 × 𝐸𝐸𝐸𝐸 ×  
1

1 +
𝐶𝐶𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐶𝐶50

� − 𝐾𝐾𝐷𝐷 × �1 + 𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐶𝐶𝑒𝑒,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� × 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎  (𝑒𝑒𝑒𝑒. 8) 

Where C50 is the concentration of remifentanil (Cp,remi) reducing the impact of θES to half its 

maximum value. The terms θES and C50 account for the induction of the PRD response by the 

electrical stimulation and the attenuation by remifentanil, respectively. The term θRemi refers to 

the slope at which the concentrations of remifentanil in the effect site increases KD and is related 

to the decrease of pupil diameter over time after administration of remifentanil. As this effect 

is linear, remifentanil could decrease PDiam below physiological constraints. In order to prevent 

this from happening, a feedback mechanism limiting the effect of remifentanil (PDiam-

θLimit/PDiam) was incorporated into the model. 
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Predicted values of Ce,remi were obtained using equation 9, which represents the effect 

compartment model13.  

𝑑𝑑𝑑𝑑𝑒𝑒,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑒𝑒0 × �𝐶𝐶𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐶𝐶𝑒𝑒,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�    (𝑒𝑒𝑒𝑒. 9) 

Where ke0, is the first-order rate constant governing the drug distribution equilibrium between 

the central and effect site compartments. 

Additional effects of remifentanil as well as the contribution of propofol to the activation of 

nociceptors and pupil turnover were also investigated. Neither of these processes resulted in a 

significant improvement in model fit (p>0.05), and therefore, were not incorporated in the 

model. Figure 7A shows both the schematic and the full mathematical representation of the 

structural part of the population model for PRD response.  

 

Figure 7. Schematic and mathematical representation of the PKPD models developed for pupil diameter 

(A) and movement response (B). All parameters are described in the text. Note that in our model KS and 

KD are the same parameter. 
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The model parameters, shown in table 4, were estimated with good precision. The estimated 

PDiam at baseline was 3.8 mm. The estimates of the first-order rate constants KD, KP,D, and ke0 

corresponds to half-lives of 9.5 s, 1.3 s and 3.56 min respectively, indicating faster turn-overs of 

Nact and PDiam than the distribution of remifentanil from plasma to the effect site. The steady-

state concentration of remifentanil to reduce by half the impact of θES and double KD are 1.15 

and 0.67 ng/mL respectively.  

Data supported the estimation of moderate IIV on PDiam0, θES, KP,D and θremi ranging from 24 to 

56% coefficient of variation. A correlation of -0.51 was found between random effects 

associated with PDiam0 and θES. As no tendencies were detected between individual estimates 

of model parameters and patient characteristics, no further investigation of potential covariate 

effects was undertaken. Although including autocorrelation in the residual model decreased the 

−2LL, the model performed worse as reflected by the individual predictions and VPCs, and 

therefore autocorrelation was not included in the selected model. 

Figure 8 shows the goodness of fit plots corresponding to all data used for model development 

(A) and the results of the simulation-based diagnostics (B), both indicating adequate model 

performance and absence of model misspecifications. Similar results, model accuracy and lack 

of bias (NPE below 10% except for outliers and centred around 0), were found for the internal 

model validation using the data corresponding to the 5th stimulus (Figure 9). Supplementary 

material (SM) 1 shows the NMTRAN code corresponding to the selected model. 
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Table 4. Models parameter estimates 

Cov, covariance. IIV is expressed as percentage coefficient of variation calculated as �𝑒𝑒𝜔𝜔2 − 1 × 100, 

where ω2 corresponds to the variance of the random effects. θ1-3 define the baseline probabilities of 

movement as described in eq. 10. θm,m is the parameter defining the probability of maintaining an m 

movement grade once it is reached. The rest of the terms are defined in the main text.  

Parameter Estimate RSE (%) 2.5th – 97.5th  Shrinkage (%) 

Pupillary Reflex Dilation Response 

KS (s-1) 0.0726 19.6 0.0203 – 0.152 - 

PDiam0
 
(mm) 3.80 3.3 3.57 – 4.02 - 

IIV PDiam0
 
(%) 24.6 7.7 20.9 – 28.4 1 

KP,D (s-1) 0.531 13.9 0.294 – 1.07 - 

IIV KP,D (%) 54.4 22.0 31.5 – 107 26 

θES  1.54 11.0 1.10 – 4.33 - 

IIV θES
 
(%) 49.6 11.5 36.9 – 63.7 9 

Cov (ω2
PDiam0, ω2

θES) -0.0574 18.7 -0.0978 – -0.0236 - 

C50
 
(ng/ml) 1.15 14.0 0.868 – 1.52 - 

θremi (ml/ng) 1.50 12.9 1.10 – 2.39 - 

IIV θremi
 
(%) 55.6 8.7 44.1 – 73.9 2 

ke0 (s-1) 0.00324 8.0 (2.67 – 3.82) x 10-3 - 

θLimit (mm) 1.41 6.1 1.18 – 1.61 - 

Residual error (%) 9.90 6.6 8.50 – 11.0 3 

Movement Response 

KS (s-1) 0.437 13.9 0.336 – 0.617 - 

θES  6.63 8.2 5.67 – 7.98 - 

 θ1  -4.90 4.0 -5.38 –  -4.58 - 

θ2  -0.754 11.2 -0.916 –  -0.584 - 

θ3 -0.978 17.1 -1.32 –  -0.697 - 

θ1,1 1.76 13.1 1.30 – 2.17 - 

θ2,2 1.93 16.2 1.31 – 2.63 - 

θ3,3 2.43 16.7 1.58 – 3.50 - 

C50
 
(ng/ml) 0.617 23.3 0.360 –  1.02 - 
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Figure 8. Pupil Diameter model evaluation. A. Goodness of fit plots. Data are coloured according to the 

stimulus: 1, red; 2, green; 3, blue; 4, purple. The dashed line represents the loess smoothing curve. CWRES, 

conditional weighted residuals; IWRES, individual weighted residuals.  B. Visual Predictive Checks for 

stimulus 1 to 4. Median (solid line), 2.5th and 97.5th percentiles (dashed lines) of observed data compared 

to 95% prediction intervals (shaded area) for the median, 2.5th and 97.5th percentiles based on 1000 

simulations.  

 

Figure 9. Pupil model validation.  Prediction errors (PE) for each stimulus (left). Note that data from 

stimulus 5 was not used for model building and is part of the internal model validation. Visual Predictive 

Check for the stimulus 5 (right). Median (solid line), 2.5th and 97.5th percentiles (dashed lines) of observed 

data compared to 95% prediction intervals (shaded area) for the median, 2.5th and 97.5th percentiles 

computed from 1000 simulations.  
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Reflex movement response 

Movement response was recorded as an ordered categorical variable and was modelled using 

the proportional odds logistic regression approach. To account for the observed similarities 

between PDdiam and movement responses, the dynamics of Nact (equation 7) were assumed to 

also drive the probability of movement. L, the logit, brings together the parameters defining the 

baseline probabilities of movement and the contribution of Nact, represented in equation 10 as 

θk and h(Nact), respectively. 

𝐿𝐿 = �𝜃𝜃𝑘𝑘

𝑚𝑚

𝑘𝑘=1

+ ℎ(𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎) + 𝜂𝜂𝑖𝑖   (𝑒𝑒𝑒𝑒. 10) 

The cumulative conditional probability of observing a score ≥ than a certain m category in the ith 

subject at the jth observation time is denoted P(Yij ≥ m|ηi) and is described by equation 11, where 

ηi is the individual random effect that belongs to a distribution of mean 0 and variance ω2.  

𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 ≥ 𝑚𝑚�𝜂𝜂𝑖𝑖� =
𝑒𝑒𝐿𝐿

1 + 𝑒𝑒𝐿𝐿     (𝑒𝑒𝑒𝑒. 11) 

Finally, the probability of observing a m score P(Yij = m|ηi) is given by equation 12: 

P(Yij = m|ηi) = P(Yij ≥ (m-1)|ηi) - P(Yij ≥ m|ηi)      (eq. 12) 

In the movement response, the addition of a second turn-over compartment as in the case of 

PDiam did not improve the fit significantly (p > 0.05). Remifentanil elicited a significant effect (p 

< 0.01) reducing the nociceptive effects triggered by electric stimulation as it was previously 

described for PDiam. Figure 7B shows the schematic and mathematical representation of the 

model for movement reflex. Regarding the structure of the logit, the function h() (see equation 

6) has as argument Nact – 1, which gives the value of zero in unperturbed conditions. The addition 

of a random effect on the L was not significant (p > 0.05), and as in the case of the PDiam, 

propofol was not shown to significantly contribute to antinociception.  
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The possibility that the probability of each score at a certain time is influenced at least in part 

on the score achieved in the previous time (first-order Markov process) was also investigated. 

The addition of the parameters accounting for all transitions resulted in a significant (p < 0.01) 

improvement in the predictions, particularly for movement grades 1 and 3 (Figure 10 Panel C). 

On the contrary, a non-proportional odds model was not statistically significant (p > 0.05). 

 

Figure 10. Exploration of key model components. A. Pupil response to tetanic stimulation before and 

after the administration of remifentanil for one of the study subjects. A reduction in the response to the 

nociceptive stimulation (red arrows) and a decrease in pupil diameter pre-stimulus (green arrow) could 

be observed after the administration of remifentanil. B.  Typical pupil response to the stimulus in the 

absence of remifentanil (blue) or at a steady-state concentration of remifentanil of 1 ng/ml (purple), 

ignoring the effect of remifentanil on the (i) degradation of the activated nociceptors (red), or (ii) stimulus 

attenuation (green). C. Comparison of the probability of movement during the first stimulus for each 

grade maintaining (orange) or excluding (green) the Markov components of the model. Calculated from 

1000 simulations. 
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Table 4 also lists the model parameter estimates corresponding to the movement response. All 

parameters were estimated precisely as confirmed by the low RSE and 95% confidence intervals.  

The estimate of KD corresponds to a value of half-life of 1.58 s, and C50 is estimated as 0.617 

ng/mL. In absence of stimulus, the probability of transitioning to movement is negligible (<0.8%). 

Once a certain grade is reached, the probability of maintaining the movement intensity is 85, 87 

and 92% for grades 1, 2 and 3 and returning probabilities to baseline are 15, 13 and 8% 

respectively. 

Results shown in Figure 11, corresponding to the goodness of fit (left panel) and visual predictive 

checks pooling all data together (right panel), indicate that the model described the data 

properly. SM 2 shows the NMTRAN code corresponding to the selected model incorporating the 

Markov elements. 

 

Figure 11. Movement response model evaluation. A. Observed versus predicted probability of 

movement for each grade and number of stimulus calculated from 500 simulations. Solid line is the 

identity representing a perfect fit. B.  Visual Predictive Checks stratified by grade. Solid line corresponds 

to the median probability calculated from raw data, and the shaded areas represented the 95% prediction 

intervals computed from 1000 simulations.  

Figure 12 splits the visual predictive check per stimulus and shows, in addition, good model 

performance for the movement responses gathered in stimulus 5 which were used for internal 

validation purposes. Our model was also able to capture the number of transitions between 
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movement grades observed in the study: 261 for the raw data and a median of 272 for the model 

predictions (248 to 297, 95% confidence interval). 

 

Figure 12. Visual Predictive Checks (VPCs) for the movement model stratified by grade and stimulus. 

Solid line corresponds to the median probability calculated from raw data, and the shaded areas 

represented the 95% prediction intervals computed from 1000 simulations. Note that stimulus 5 was not 

used for model building and was part of the internal model evaluation.  
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Model exploration 

Figure 10 explores the impact of some of the key components of the selected models on the 

measured responses. Panels A and B show the changes in pupil response after the 

administration of remifentanil and graphically explore the individual contribution of the model 

effects to these changes. Figure 13A shows the time course of the predicted degree of 

nociceptor activation for movement and PRD, and despite similar trends, movement appears 

associated with a faster turnover. The relationship between the amplitude in the pupil response 

profile and the probability of movement vs steady-state remifentanil concentrations are shown 

in Figure 13B and 13C. Similar patterns between the two variables can be observed again, with 

the degree of steepness higher for movement. 

  

 

Figure 13. Models exploration. A. Dynamics of nociceptor activation. B. Pupil diameter and probability of 

movement in response to tetanic stimulation in absence (blue) or presence of remifentanil at 2 ng/ml 

steady-state concentration (purple). C.  Percentage change in pupil diameter and probability of movement 

after tetanic stimulation at different steady-state concentrations of remifentanil.   



Results 
 

60 

Clinical applicability 

Model-based simulations were performed to identify the concentration of remifentanil at which 

80% of patients would not experience movement after the delivery of a tetanic current ranging 

from 1.2 to 0.8 times the one used in the experimental procedure. The simulation assumed an 

intensity of 1.2 for laryngoscopy and intubation while an intensity of 0.8 was assumed to 

represent a less painful surgical wound closure. For this purpose, we simulated one thousand 

individuals receiving electric stimulus of varying intensity at steady-state concentrations of 

remifentanil from 0 to 4 ng/ml and computed the percentage of individuals not experiencing 

movement. A SS concentration of 2 ng/ml was found to inhibit movement in 81% percent of the 

individuals with the experimental stimulus intensity and 77.8 and 83.1% of the individuals with 

a 20% increase and reduction in the stimulus intensity respectively. 

This concentration (2 ng/ml SS) was subsequently used to simulate the PDiam of one thousand 

individuals from baseline to the end of a PRD. PDiam before electric stimulation for 80% of the 

individuals ranged from 1.69 to 2.61mm (10 and 90 percentiles) and were distinctly different 

from the PDiam at baseline (2.71 and 5.25 mm, 10 and 90 percentiles respectively) due to the 

pharmacologic effects of remifentanil. However, no correlation could be established between 

PRD and the pre-stimulus or basal (PDiam0) pupil thus preventing recommendations on 

treatment individualization based on pre-stimulus pupil size. 
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Clinical study 2: PTC model 

Pharmacokinetic models 

In the absence of measured concentrations, the PK models developed by Saldien et al.101 and De 

Haes et al.102 were used to predict rocuronium concentrations over time. Saldien101 conducted 

a PK/PD analysis of rocuronium in infants, children, and adults, while De Haes102 described the 

time course of action of rocuronium in myasthenic patients and matched controls, comparing 

the results with the Sheiner model13.  The reported parameters for adults and controls from 

these three-compartment models were used in our PK analysis (Table 5). 

Table 5. Saldien and De Haes pharmacokinetic models’ parameters for rocuronium. 

 Saldien model De Haes model 

V1 (mL kg-1) 35.6 42.0 

k10 (min-1) 0.126 0.0762 

k12 (min-1) 0.209 0.124 

k13 (min-1) 0.0500 0.0214 

k21 (min-1) 0.163 0.130 

k31 (min-1) 0.0150 0.0130 

ke0 (min-1) 0.168 0.150 

ke0 - rate constant between central and effect compartment; kij - rate constant for equilibration 

between compartments i and j; V1 - distribution volume of central compartment. 

Pharmacodynamic model 

The response variable analysed in the current evaluation is discrete. PTC were treated as an 

ordered categorical variable and divided in four m categories representing the increase in NMB: 

m = 0 [moderate (PTC ≥ 6)], m =1 [deep (PTC = 4 & 5)], m = 2 [profound (PTC = 2 & 3)], and m = 

3 [very profound (PTC = 0 & 1)].  
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In the absence of rocuronium, the model assumes a moderate NMB. For deeper levels of 

blockage, the cumulative conditional probability of observing NMB ≥ than a certain m category 

is denoted by P(Yi,j ≥ m|ηi) and it is represented by the following expression: 

𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 ≥ 𝑚𝑚�𝜂𝜂𝑖𝑖� =
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

𝛾𝛾

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝛾𝛾 +  𝐶𝐶𝐶𝐶50,𝑚𝑚,𝑖𝑖

𝛾𝛾  
    (𝑒𝑒𝑒𝑒. 13) 

Where Ceij, is the predicted concentration of rocuronium at the effect site for the ith subject at 

the jth time, Ce50,m  is the effect site concentration associated with 50% of probability for the m 

category, and γ is the Hill coefficient governing the steepness of the curve.  

The probability of observing an m score P(Yij = m|ηi) is calculated following equation 14: 

𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 = 𝑚𝑚�𝜂𝜂𝑖𝑖� =  𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 ≥ 𝑚𝑚�𝜂𝜂𝑖𝑖� − 𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 ≥ (𝑚𝑚 + 1)�𝜂𝜂𝑖𝑖�   (𝑒𝑒𝑒𝑒. 14) 

For the particular cases of m = 0 and m = 3, equations 15 and 16 are used respectively: 

𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 = 𝑚𝑚�𝜂𝜂𝑖𝑖� = 1 −  𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 ≥ (𝑚𝑚 + 1)�𝜂𝜂𝑖𝑖�  (𝑒𝑒𝑒𝑒. 15) 

𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 = 𝑚𝑚�𝜂𝜂𝑖𝑖� = 𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 ≥ 𝑚𝑚�𝜂𝜂𝑖𝑖�     (𝑒𝑒𝑒𝑒. 16) 

The time course of Ce was predicted based on the effect compartment model (also called Link 

model13) and according to equation 17: 

𝑑𝑑𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑒𝑒0 × (𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑒𝑒)    (𝑒𝑒𝑒𝑒. 17) 

Cp corresponds to the plasma concentrations of rocuronium, which were generated using the 

current individual patient dosing and the model’s parameters adjusted by the covariates (body 

weight) reported by Saldien and De Haes in their respective publications, and ke0 is the first-

order rate constant that governs the equilibrium delay between the central and effect-site 

compartments. With respect to effect site kinetics, two approaches were followed: (i) ke0 was 
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fixed to the typical estimates reported by Saldien and De Haes, and (ii) ke0 was estimated as an 

additional parameter in the model. 

During the process of model building, it was found that the fits were significantly improved when 

the distribution equilibrium delay between the central and effect site compartments was 

estimated, with respect to the use of the ke0 parameters reported by Saldien and De Haes 

(p<0.001). The estimated half-lives associated with ke0 (t1/2_ke0) were 7.22 and 5.25 min for the 

Saldien and De Haes models, respectively (as opposed to the 4.13 and 4.62 min reported in their 

original models). Figure 14 shows the raw PTC response and the predicted effect-site 

concentrations with the Saldien and De Haes models for two patients. Noteworthy, within the 

same individual, different PTCs are observed for similar effect-site concentrations, which might 

be artefacts inherent to the method of recording and/or the use of predicted concentrations. 

 

Figure 14. Overview of the raw data. Individual observed (bars) PTC response vs time profiles 

corresponding to two patients included in the study. For each patient, the predicted effect site 

concentration (Ce) profiles is presented as solid lines in green. 
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Estimates of γ, the Hill coefficient, were very similar for both models (4.05 for Saldien and 4.15 

for De Haes models). Higher discrepancies were found for the Ce50, with approximately a 30% 

difference between models. Rocuronium Ce was found to decrease the probability of movement 

with Ce50 of 0.765, 1.05 and 1.55 µg ml-1 for the m categories 1, 2, and 3, respectively (Saldien 

model). For the case of the De Haes model, the corresponding values were, and 1.1, 1.5 and 2.2 

µg ml-1, respectively. A model incorporating the knowledge that high receptor occupancy is 

required to achieve 50% of neuromuscular was also considered103 without improving the 

description of the data (p>0.05).   

Table 6 lists the model parameters for the two PK/PD models. Estimates were obtained with 

reasonable precision since the values of RSE were lower than 30% for both, fixed and random 

effects parameters. With respect to random effects, IIV resulted significant in Ce50 for the 

categories m = 1 and m = 3 (p<0.001).  The degree of IIV (expressed as coefficient of variation) 

was large ranging from 57 to 63% approximately and showed consistency across the two models. 

Figures 15 and 16 present the results of the model evaluation exercise using simulation model-

based diagnostics corresponding to the Saldien model. Figure 15 shows the visual predictive 

checks stratified by the degree of blockade. In general, the model captures well the time profiles 

of the response regardless of the observed magnitude of the NMB. Figure 16 evaluates whether 

the model captures the observed frequencies for each category. Results indicate that the model 

is able to describe the observed raw data, although with a moderate overestimation of the 

category m = 0. The performance of the model selected using PK profiles derived from the De 

Haes model was indistinguishable from the Saldien model as it is shown in Figure 17. SM 3 shows 

the NMTRAN code corresponding to the selected models. 
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Table 6. Model parameter estimates 

 

Parameter Estimate RSE (%) Bootstrap analysis 
5th – 95th Shrinkage (%) 

Saldien pharmacokinetic model 

Ce50, m=1 
 
(µg ml-1) 0.765 19.2 0.537 – 1.03 - 

∆Ce50, m=2
 
(µg ml-1) 0.285 10.4 0.231 – 0.332 - 

Ce50, PTC m=2
 
(µg ml-1) 1.05 - - - 

∆Ce50, m=3
 
(µg ml-1) 0.501 15.2 0.378 – 0.624 - 

Ce50, m=3
 
(µg ml-1) 1.55 - - - 

γ 4.05 19.0 3.13 – 5.67 - 

ke0 (min-1) 0.0948 14.2 0.075 – 0.117 - 

IIV Ce50, m=1 (%) 57.0 22.4 34.2– 85.9 9 

IIV ∆Ce50, m=3
 
(%) 62.9 15.0 44.4 –  84.0 5 

De Haes pharmacokinetic model 

Ce50, m=1 
 
(µg ml-1) 1.10 18.1 0.797 – 1.47 - 

∆Ce50, m=2
 
(µg ml-1) 0.40 10.3 0.327 – 0.463 - 

Ce50, PTC m=2
 
(µg ml-1) 1.5 - - - 

∆Ce50, m=3
 
(µg ml-1) 0.70 14.6 0.531 – 0.867 - 

Ce50, m=3
 
(µg ml-1) 2.2 - - - 

γ 4.15 17.9 3.21 – 5.69 - 

ke0 (min-1) 0.134 9.7 0.114 – 0.156 - 

IIV Ce50, m=1 (%) 57.0 22.6 34.4 – 86.2 9 

IIV ∆Ce50, m=3
 
(%) 61.7 15.1 42.8 –  82.9 5 

Inter-individual variability (IIV) is expressed as coefficient of variation (%) calculated as �eω2 − 1 ×

100, where ω2 corresponds to the variance of the random effects. Ce50 is the effect site concentration 

of rocuronium associated with 50% of probability for the m PTC category calculated for m=2, and m=3 

categories from the corresponding parameters estimates as: C50,m=i = C50,m=1 + ∑ ∆Ce50,m=i
3
i=2 . 

∆Ce50 is the increment in the Ce50 with respect to the Ce50 of the m-1 category. γ is the Hill coefficient 

governing the steepness of the concentration-response curve. ke0 is the first-order rate constant that 

governs the equilibrium delay between the central and effect-site compartments. 
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Figure 15. Visual predictive checks corresponding to the Saldien pharmacokinetic model stratified by 

the degree of neuromuscular blockade. Solid lines correspond to the median probability calculated from 

(i) raw data (red) and simulations (black). Shaded areas represent the 95% prediction intervals computed 

from 500 simulations.  

 

Figure 16. Predicted versus observed frequencies for the Saldien pharmacokinetic model. Observed (red 

circles) versus predicted frequencies (boxplot) for each m category calculated from 500 simulations. 



Results 

67 

 

Figure 17. Visual predictive checks corresponding to the Saldien and De Haes models stratified by the 

degree of neuromuscular blockade. Solid lines correspond to the median probability calculated from (i) 

raw data (red) and simulations (black). Shaded areas represent the 95% prediction intervals computed 

from 500 simulations. 
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Clinical study 3: Haemoglobin and fluid models 

Our modelling approach focused on predicting and characterizing the Hb during the first four 

perioperative days, as it was considered the crucial period regarding transfusion-related 

decisions.  The model was developed using a semi-mechanistic approach, which included a 

mechanistic framework related to the main underlying processes that govern perioperative Hb, 

and a mathematical fitting using NLME models. As clinical prediction was the main aim of the 

model only fundamental processes were considered, and the leading efforts in modelling were 

focused on the parsimony of the model. 

Pharmacodynamic model 

Haemoglobin is a protein located, under normal conditions, only within the intravascular 

compartment. As other authors have stated, its concentration in blood (Hb) results from the 

total amount of haemoglobin suspended in the intravascular compartment and therefore104–107, 

can be expressed as the ratio of its circulating mass to the volume containing it. Taking into 

account the observable period of this study, circulating haemoglobin mass was considered to 

remain steady with negligible synthesis and degradation rates, but only altered by haemoglobin 

mass loss (from surgical blood loss). 

Therefore, in order to model Hb perioperative variations, changes in circulating haemoglobin 

mass due to bleeding and intravascular volume were taken into account. Equation 18 describes 

Hb at time t (Hb(t)):  

 𝐻𝐻𝐻𝐻(𝑡𝑡) =
 𝐴𝐴0 −   𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 𝑉𝑉𝐵𝐵(𝑡𝑡)
   (𝑒𝑒𝑒𝑒. 18) 

Where A0 and Aloss are the preoperative circulating haemoglobin mass and haemoglobin mass 

loss, respectively, and VB(t) is the perioperative intravascular volume. Preoperative intravascular 

volume (VB(0)) was calculated using the ICSH formula (International Council for Standardization 

in Hematology Radionuclide Expert Panel108), as a good agreement has been observed between 
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the estimates and direct measurements of preoperative intravascular volume (reported as 106 

±10% when comparing estimates with direct measurements)109. A0 was calculated by multiplying 

the preoperative value of Hb by the estimated intravascular volume (VB(0)). Aloss, which was 

assumed to be 0 prior to the operation, was measured directly from the blood loss during 

surgery as described in the Methods section. The remaining unknown variable, VB(t), was 

described using a model for fluid kinetics. 

Pharmacokinetic model 

Hb variations that occurred in the absence of changes in circulating haemoglobin mass were 

considered as a result of variations in VB(t). In turn, variations in VB(t) were deemed a consequence 

of an imbalance between fluid input and output processes. To characterize the impact of these 

processes over time two different structural models were proposed and evaluated. The one-

compartment model assumed a single expandable volume (equation 19): 

𝑑𝑑𝑉𝑉𝐵𝐵
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑘𝑘10 × 𝑉𝑉𝐵𝐵 (𝑒𝑒𝑒𝑒. 19) 

Where infusion fluid is administered into the intravascular compartment following a zero-order 

infusion rate (FluidRate) and eliminated via a first-order process governed by the constant k10, 

which can be parametrized as the quotient of the elimination clearance (CL) and VB(0). The 

FluidRate for each type of infusion fluid (glucose and crystalloid) was calculated by dividing the 

administered volumes by the time between Hb measurements. The volume of blood lost during 

surgery was expressed as a constant zero-order rate (BRate), calculated as the measured volume 

of blood lost divided by the length of the surgery. BRate was set to 0 before and after the surgical 

procedure. At baseline, VB equals VB(0). 

The two-compartment model extended this model to include a peripheral expandable 

compartment (equations 20 and 21):  
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𝑑𝑑𝑉𝑉𝐵𝐵
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑘𝑘10 × 𝑉𝑉𝐵𝐵 −
𝑄𝑄

𝑉𝑉𝐵𝐵(0)
× 𝑉𝑉𝐵𝐵 +

𝑄𝑄
𝑉𝑉𝑃𝑃(0)

× 𝑉𝑉𝑃𝑃   (𝑒𝑒𝑒𝑒. 20) 

𝑑𝑑𝑉𝑉𝑃𝑃
𝑑𝑑𝑑𝑑

=  
𝑄𝑄

𝑉𝑉𝐵𝐵(0)
× 𝑉𝑉𝐵𝐵 −

𝑄𝑄
𝑉𝑉𝑃𝑃(0)

× 𝑉𝑉𝑃𝑃  (𝑒𝑒𝑒𝑒. 21) 

Where VP is the volume of the peripheral compartment. Fluid distribution kinetics between the 

intravascular and peripheral compartment –and vice versa– were characterized by the 

intercompartmental clearance (Q). At baseline, VB equals VB(0), while VP(0) was estimated in the 

model. 

A two-compartment model described Hb significantly better than the one-compartment model 

(p <0.01); thus, subsequent modelling was based on the two-compartment model. 

Urinary elimination of fluid for both models was initially described by equation 22, assuming 

urinary elimination is the unique source of fluid output from the intravascular compartment 

after surgery: 

𝑑𝑑𝑉𝑉𝑈𝑈𝑈𝑈
𝑑𝑑𝑑𝑑

= 𝑘𝑘10 × 𝑉𝑉𝐵𝐵   (𝑒𝑒𝑒𝑒. 22) 

Where VUR is the volume of urine between each Hb measurement. 

However, visual exploration of the GOFs revealed that, whereas Hb was accurately described, 

urine volume was overpredicted, suggesting the presence of an extra fluid elimination 

mechanism. To account for this mechanism, a new parameter (RF) was added, which quantified 

the fraction of total fluid elimination (k10) that corresponded to urinary elimination (equation 

23): 

𝑑𝑑𝑉𝑉𝑈𝑈𝑈𝑈
𝑑𝑑𝑑𝑑

= 𝑘𝑘10 × 𝑅𝑅𝑅𝑅 × 𝑉𝑉𝐵𝐵  (𝑒𝑒𝑒𝑒. 23) 
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The addition of the RF parameter resulted in estimation issues for VP. To improve parameter 

identifiability, the estimate and RSE obtained for VP before the inclusion of RF were used in the 

model as Bayesian priors using the NWPRI subroutine available in NOMEM. 

During data exploration, it was observed that urine output (volume/hour) was reduced 

postoperatively. Two hypotheses were considered: (1) urine volume (VUR) is affected by surgery, 

and (2) total fluid elimination (k10) is affected by surgery. The later hypothesis resulted in a 

significant improvement (p <0.01) in model fit, and an inhibitory model was implemented to 

characterize the changes of total fluid elimination after surgery (equation 24): 

𝑘𝑘10 =
𝐶𝐶𝐶𝐶
𝑉𝑉𝐵𝐵(0)

× �1− 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 × 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛾𝛾

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛾𝛾 +  𝑇𝑇50
𝛾𝛾 �   (𝑒𝑒𝑒𝑒. 24) 

Where CL is the fluid clearance, Imax is the maximum inhibition of the clearance, Time is the 

perioperative time in hours (considering the beginning of the surgery as time zero), and T50 is 

the time to produce 50% inhibition of the fluid clearance. Gamma (γ) was set to a value of 9 to 

represent the fast clearance inhibition that could not be estimated otherwise. The final model 

representation and equations are presented in Figure 18.  

Additionally, although alternative parametrizations for glucose and crystalloids solutions were 

evaluated, no differences in the elimination or distribution between them were found (p >0.05). 

Covariate model 

The following covariates were included in the SCM analysis: blood volume loss, age, type of 

surgery and monocyte count on CL and RF, and blood volume loss on Q. Two of these covariates, 

age on CL and type of surgery on RF, were selected for the final model. For the latter, types of 

surgeries with similar estimates of RF were grouped into four categories without resulting in 

worsening of the objective function (p >0.05): (1) robotic prostatectomy, partial nephrectomy 

and myomectomy (reference category); (2) radical nephrectomy and nephroureterectomy; (3) 

hysterectomy and hysterectomy with adnexectomy; (4) endometriosis.  
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Figure 18. (A) Schematic and (B) mathematical representation of the model. Solid arrows represent fluid 

kinetics, while the dashed arrow indicates haemoglobin mass loss. All parameters are described in the 

main text. 

Model validation 

Figure 19 shows the results of the model validation performed using the validation cohort of 

patients, where an adequate predictive capacity is observed. For measures after surgery, 95% 

of the predicted errors are within -4.4 and +5.5 g/L and 100% within ±9.2 g/L. Particularly, the 

predicted errors for Hb values <100 g/L (a usual threshold for considering RBC transfusion in 

patients with cardiovascular disease) were in the same range of magnitude (-3.7 and +5.4 g/L 

for quantiles 2.5 and 97.5, respectively), reinforcing the consistency of the model.  



Results 

73 

 

Figure 19. Model validation. (A) Predicted errors (PE) for the validation group. As in Fig. 1, the first 

postoperative time points are gathered into a single time point (PO). (B) Best, median and worst individual 

predictions of Hb for the patients in the validation group. Lines and points represent Hb predictions and 

measures, respectively. 

Final model evaluation 

Once the predictive capacity of the model had been evaluated, the estimation and validation 

datasets were combined and analyzed simultaneously to provide final estimates for the model 

(Table 7). All parameters were estimated with precision (RSE <30%) and were consistent with 

the results obtained in the estimation dataset. Data supported the inclusion of IIV on CL, Q and 

RF ranging from 21% to 73% coefficient of variation. Model evaluation showed an adequate 

model performance and absence of misspecifications (Figure 20). SM 4 shows the NMTRAN code 

corresponding to the selected model.  
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Table 7. Model parameter estimates 

†Priors. *Not estimated. Inter-individual variation (IIV) is expressed as coefficient of variation (%) 

calculated as �𝑒𝑒𝜔𝜔2 − 1 × 100, where ω2 corresponds to the variance of the random effects. Covariate 

effects are expressed as the fractional change with respect to the estimate of the reference category 

(categorical) or the fractional change of the estimate per unit of covariate from the median of the 

covariate (continuous). CI: confidence intervals, RN: Radical Nephrectomy, NU: Nephroureterectomy, HT: 

Hysterectomy, HTA: Hysterectomy with adnexectomy. The rest of the terms are defined in the main text. 

Parameter Estimate RSE (%) 95% CI from 
bootstrap analysis Shrinkage (%) 

CL (L/h) 0.253 2.8 0.240 – 0.267 - 

IIV CL (%) 20.6 6.6 17.2 – 23.9 7 

RF (unitless) 0.240 3.8 0.220 – 0.260 - 

IIV RF (%) 47.2 7.0 36.9 – 55.3 10 

Q (L/h) 4.47 7.7 3.77 – 5.19 - 

IIV Q (%) 72.8 14.0 40.5 – 103 35 

Vp(0) (L) 48.1† 0.3† 48.1 – 48.1 - 

Imax (unitless) 0.420 3.3 0.388 – 0.451 - 

T50
 
(hours) 9.10 11.2 5.42 – 9.60 - 

Gamma (unitless) 9* - - - 

CL ~ Age 0.00872 16.5 0.00606 – 0.0111 - 

RF ~ RN, NU -0.365 19.1 -0.454 – -0.252 - 

RF ~ HT, HTA 0.307 29.6 0.150 – 0.477 - 

RF ~ Endometriosis 0.846 21.9 0.579 – 1.13 - 

Residual error Hb (ln g/L) 0.0208 3.2 0.0189 – 0.0230 
12 

Residual error urine (ln L) 0.286 3.1 0.239 – 0.339 
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Figure 20. Final model evaluation. Goodness of fit plots for Hb (A, red) and urine data (B, yellow). Black 

dashed lines represent the loess smoothing curve. The last panel of each row shows the Visual Predictive 

Checks for Hb (A) and urine (B). Median (solid colour lines), 2.5th and 97.5th percentiles (dashed colour 

lines) of observed data compared to 95% prediction intervals (shaded areas) for the median, 2.5th and 

97.5th percentiles based on 1000 simulations. 

The effect of covariates on model parameters are displayed in a forest plot (Figure 21), and can 

be summarized as follows: category (2) was associated with a 36% reduction in RF; category (3) 

was associated with a 31% increase in RF; category (4) was associated with an 85% increase in 

RF; and a median change of −17% and 23% for CL was observed for the low and high extreme 

values of age (35 and 81 years, respectively). 
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Figure 21. Covariate evaluation. Forest plot evaluating the impact of the selected covariates on model 

parameters. The solid line represents the normalized parameter value, while the dashed lines show a 20% 

interval around the reference group. Solid points represent the relative change in the parameter value 

caused by the covariate effect and whiskers, the 95% confidence interval around it. As a continuous 

covariate, the impact of Age was explored for the 2.5th and 97.5th percentiles. Abbreviations are defined 

in the main text. 

Simulation 

Model-based simulations were performed to explore the risk of reaching a Hb threshold of 70 

g/L as a function of the basal Hb concentrations (Hb(0)) of the patient and haemoglobin mass loss 

during surgery (Aloss). We simulated 1000 individuals for the combination of Hb(0) values ranging 

from 150 to 90 g/L with values of Aloss from 25 to 250 g and computed the percentage of 

individuals not reaching the Hb threshold. Two different sets of simulations were performed, 

one replicating the sparse sampling times used in this study and another reconstructing the full 

temporal profile (from surgery until 96 hours postoperatively). These simulations assumed a 

typical patient of 56 years and 77 kg and a 3-hours surgical procedure of the reference category. 

Following a standard strategy for fluid therapy110, patients received 1.5 mL of fluid infusion per 

mL of blood lost, additional 2 mL/kg/h during the intraoperative period, and 25 mL/kg/24h 
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during the postoperative period. Results are presented in Figure 22. The volume of blood lost 

during surgery (necessary to estimate BRate) was extrapolated for each Aloss using a linear 

regression model as shown in Figure 23. 

 

Figure 22. Model-based simulation of patients not reaching Hb ≤ 70 g/L. Each graph indicates a different 

preoperative Hb (Hb(0)). The horizontal axis represents the haemoglobin mass loss (Aloss), while the vertical 

axis indicates the percentage of patients not reaching the Hb threshold. Dashed colour lines correspond 

to the results calculated using the sampling times used in this study, while solid colour lines represent the 

calculations based on a full temporal profile.  

Three groups of risk could be identified. Firstly, patients with Hb(0) of 150, 140 and 130 g/L 

showed a low risk of reaching the Hb threshold independently of Aloss. In an intermediate case, 

patients with Hb(0) of 120, 110 and 100 g/l showed risk only at high Aloss (150-250 g). Finally, 

patients with Hb(0) of 90 g/l reached the Hb threshold with Aloss as low as 100 to 150 g. Of note, 

the full temporal course was able to detect a higher number of patients at risk of requiring a 

transfusion than the original study design.  
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Figure 23. Extrapolation of blood volume loss. Extrapolation of the blood volume loss from the 

haemoglobin mass lost during surgery (Aloss) using a linear regression model.



   

 

 

Discussion
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Despite that the amount of information generated every day is continuously growing since the 

development of new technologies, most of the decisions taken daily are not data-driven. This is 

evident in the field of drug development, where for example, clinical trials are becoming more 

complex and burdensome111 without improving the success of development programs112. This 

apparent contradiction between data generation and data usage is a key argument for the 

implementation of mechanism-based quantitative methods in drug discovery. 

The modelling and simulation techniques included under the umbrella of pharmacometrics offer 

the possibility to integrate information from multiple stages of drug development to better 

understand the drug-pathology interaction, which can be used to inform decision-making. This 

versatility has been key for the expansion and consolidation of pharmacometrics across the 

pharmaceutical industry. If the initial responsibilities of pharmacometricians were related to 

dose calculations and extrapolation, today’s expectations encompass from clinical trial design 

to setting up Go/No-Go criteria36, being an integral part of drug development. However, the 

success in drug development has put the focus of pharmacometrics on regulatory impact, to the 

detriment of developing synergies with other disciplines and the implementation of new 

technologies113. As a consequence, pharmacometrics is at risk of missing the boat of innovation 

and remaining a niche discipline limited to the area of drug development. Among the different 

challenges that the field will have to face in the immediate future are the integration of machine 

learning and artificial intelligence114, and the transition from internal to big data coming from 

multiple sources such as omics, real-world evidence or data collection initiatives115,116. In this 

evolving context, subdisciplines such as QSP, which can integrate mechanistically data at various 

levels, are in advantage vs traditional popPK/PD17. It is likely that in the future, hybrid 

methodologies resulting from the combination of popPK/PD, PBPK and QSP would be the norm, 

and only data availability and the objective of the model would drive which modelling technique 

is used117.  
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Similar challenges and opportunities faces pharmacometrics in clinical practice, with the 

additional disadvantage that in this field, the use of pharmacometrics is much scarcer. The 

reasons behind the limited use of modelling and simulation techniques in clinical practice have 

been mentioned in the Introduction and are expected to continue in the near future. Aspects 

such as the lack of training in pharmacometrics are not easily solved as require deep changes in 

the already saturated curricula of medical specialities. For this reason, user-friendly tools 

represent a clear opportunity to facilitate the applicability of MIPD. Similarly, natural language 

processing tools could automatically organise clinical records into structured data, increasing 

the quality and quantity of the information available for analysis.  Although the increase of MIPD 

is a positive step toward personalised medicine, not all therapies are expected to benefit from 

it. Drugs with narrow therapeutic windows and complex PK properties are likely the ones that 

will benefit the most from the application of MIPD45.  

In this thesis, we present the case of one of these drugs, remifentanil, for which the available 

tools are not sufficient to efficiently guide drug administration during surgical procedures. For 

many years, the administration of remifentanil has depended on non-specific autonomic 

responses such as arterial hypertension, tachycardia, involuntary movements, sweating or the 

presence of tears, and there is a need for more specific biomarkers. Nonetheless, developing 

new biomarkers for pain is a complex task. Firstly, in early phase studies, there is a need to 

induce pain in healthy subjects, which is often associated with ethical concerns. Then, if these 

studies are approved, there are no objective measures to quantify pain and validate the 

biomarker. In this work, the later limitation was circumvented by using movement as a surrogate 

measure for surgical pain. This approach represents an innovation that builds on the known 

physiological association between surgical pain and movement. 

The models developed for PRD and movement revealed a similar response to tetanic stimulation 

and pharmacologic action, indicating that both variables share the same mechanisms of 
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regulation. These results are in agreement with the research hypothesis behind this study, 

although the fact that both variables were not modelled simultaneously represents a limitation 

for the use of the model in clinical practice. Additionally, because neither basal nor pre-stimulus 

pupil diameter were found to correlate with the amplitude of PRD, a tetanic stimulation would 

be required to assess the degree of individual patient anaesthesia. Further studies evaluating 

serial intensities of painful stimulation would allow characterising the full relationship between 

stimulus intensity and movement response, and perhaps allow the use of less painful stimulus 

to monitor pain perception.  

Our models were able to characterise PRD and movement responses across a variety of 

experimental conditions (absence or presence of opioids, tetanic stimulation and surgical 

procedure), reflecting robustness. Regarding the pharmacodynamics of remifentanil, our 

estimated C50 for both PRD and movement models are in line with reported values for other 

markers of central activity such as arterial pressure118,119, spectral edge frequency of the 

electroencephalogram82 and respiratory depression120,121 (0.92 to 11.2 ng/ml). In contrast, our 

value of t1/2_ke0 for PRD is slightly larger than previously reported (0.53 to 2.48 min82,118–121). This 

may be due to the fact that predicted instead of measured concentrations were used for this 

analysis. Alternatively, it may indicate that the region in the central nervous system in which 

remifentanil elicits analgesia is, at least from a rate of distribution point of view, different from 

those contributing to cortical effects and respiratory depression121. This argumentation also 

applies to the effect of remifentanil on stimulus perception, where no differences were found 

in the equilibration between the central and the effect site compartment. In this case, the lack 

of movement and PRD reflexes in the absence of tetanic stimulation, and the use of SS 

concentrations during the measured intervals, may have also hampered the characterization of 

a delay in the distribution. 
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Although the use of predicted concentrations could bias parameter estimation, it represents a 

closer approach to clinical scenarios, where concentrations are not routinely measured. In this 

work, we suggest that a SS concentration of 2 ng/ml of remifentanil could suppress movement 

response in 80% of the patients. Considering that the target concentrations of remifentanil in 

combination with propofol typically range from 2 to 6 ng/ml122, our results point out a potential 

dose reduction. Additional studies comparing the accuracy of TCI-predicted vs measured 

concentrations123 would be necessary to build confidence in the extrapolation of results using 

predicted concentrations and validate our findings. 

Regarding PRD, our model reproduced the results from Barvais et al.57 and Guglielminotti et 

al.124, demonstrating that it is a robust and reproducible biomarker. Previous studies have used 

PK/PD modelling to describe the effect of opioids125–129 and drugs modulating noradrenergic 

pathways130–132 on the pupil. Only in two cases, modelling has been extended to associate PDiam 

with nociception. Skarke et al.133 modelled separately pupil and pain tolerance in response to 

electric stimulation to show a temporal correlation between the two variables. More recently 

Mangas-Sanjuan et al.134 showed that the changes in PDiam triggered by the active components 

of axomadol correlated linearly with the area under the curve of the cold pressor test. 

In this work, we went a step beyond previous studies and developed a semi-mechanistic 

framework using NLME to characterise the temporal and pharmacological response of pupil and 

movement responses. This methodology represents an innovative approach that could be used 

to guide the design and evaluation of future research studies in the field of pain management. 

However, financing and executing clinical trials of new analgesics is challenging. In Appendix 1 

we propose an overview of the Innovative Medicines Initiative (IMI)-PAINCARE, a public-private 

collaboration aiming to improve the management of patients suffering from acute or chronic 

pain. We believe that collaborations of this type are key for improving the success of drug 

development. In first place, they represent a holistic approach to a given problem encountered 
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in clinical practice, as it is in this case, the lack of medicines for pain management. For example, 

by addressing this problem at different levels, PAINCARE is designed to provide a comprehensive 

toolbox of new biomarkers, outcome measures and stratifying tools, whose use spans from early 

preclinical to clinical practice. This broad scope is partially a consequence of the diversity of 

collaborators from small and medium companies, the pharmaceutical industry and academia, 

each of them with their own areas of interest and expertise. Despite the increased complexity 

in project coordination, the benefits associated with this multidisciplinary approach are evident. 

Putting together the expertise of pharmaceutical companies in drug development with the 

innovation of academia allows cross-fertilization and alignment between the different 

stakeholders, and optimises investment and resource allocation. The development of a strong 

scientific methodology for the evaluation of pain is critical to de-risk the search for new 

analgesics, encouraging pharmaceutical companies to invest in research programs in the field.  

The subproject BioPain within the IMI-PAINCARE is intended to evaluate functional biomarkers 

using, among other methodologies, PK/PD modelling to improve the translation from preclinical 

to clinical development. The relevance of pharmacometrics was already recognised by the IMI 

during the grant evaluation by requesting to have a dedicated group responsible for this analysis. 

So far, in this project, pharmacometrics has played a central role in the selection of the drug 

candidates and dosing schedules that are being used in the preclinical and clinical studies135. As 

the project progresses and data is generated, pharmacometric techniques will be used for the 

analysis of quantitative biomarkers combining information from different areas of the nervous 

system. The generation of such a comprehensive amount of information for several biomarkers 

and drugs in multiple research centres represents a scientific and logistic challenge that would 

hardly have been achieved without a consortium of this nature.  

This thesis also provides an example of how popPK/PK can use prior knowledge (i.e. literature 

data) to shed some light on an unresolved clinical problem. In this case, we used –and 
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evaluated– the performance of two published PK models for rocuronium to characterise the 

effects of this drug on profound NMB. From all the PK studies for rocuronium, Saldien101 and De 

Haes models102 were selected based on their extensive reporting of model parameters (including 

Ke0), the use of covariates and a good description of the PD response. However, these studies 

were developed using lower levels of rocuronium —and therefore in non-profound NMB—, 

which contrasts with our experimental setting.  

Our analysis assumed that Ce were the only driver of the effect and did not change within each 

recording period of a PTC (23 seconds). The same advantages and limitations associated with 

the use of predicted concentrations that were discussed for PRD and movement models apply 

to this work. Among those, the most relevant for this study is that the use of predicted 

concentrations can bias the estimation of the effect-site kinetics and pharmacodynamics 

parameters (ke0 and Ce50)136, hampering the biological interpretation of our results. However, 

the fact that two different PK models were evaluated represents a more neutral approach to the 

analysis of the data. Also, our estimates for these parameters are in line with the reported values 

for rocuronium101,102. 

Multiple modelling alternatives —treating data as continuous, categorical or count— were 

considered to analyse PTCs. Ultimately, a model for categorical data was used in order to fulfil 

the discrete nature and dependency between PTC twitches and, as this approach has already 

been used in the field of anaesthesia123, to facilitate the interpretation of the results. This case 

exemplifies the versatility of the methodologies available for popPK/PD analysis and shows how 

data can be modelled differently depending on the purpose of the model. 

During the process of data analysis, PTCs were found to follow a complex pattern with regard to 

rocuronium concentrations. The fact that multiple values of PTC were observed for the same 

concentration of rocuronium represented a challenge for building the model and could be a 
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limitation for the application of the model in clinical practice. This issue was partially mitigated 

by grouping PTCs into categories, although at the expense of model resolution.  

Multiple factors could be responsible for the observed disparity between PTC counts gathered 

at very similar plasma concentrations of rocuronium. Some of them, such as the existence of a 

temporal delay between plasma concentrations and response, were accounted during model 

development, for example, with the use of an effect-site compartment. On the contrary, the 

influence of the measurement technique, the surgical procedure or the intrinsic variability in the 

response could not be evaluated. We hypothesise that some of these aspects may have 

influenced the occurrence of PTCs equal to 0 and 1, which was systematically miss-predicted 

despite the multiple modelling approaches used. Interestingly, Hoshino et al.137 used a 

physiological receptor occupancy model138 to model PTCs and showed a similar pattern of 

response to effect-site concentrations. However, because this work lacks a quantitative 

evaluation of model performance, it is not possible to conclude whether a more mechanistic 

approach would be able to provide a better description of the PTC response. Despite these 

mixed results, profound NMB has been shown to correlate with lower postoperative pain and 

better recovery139, reinforcing the need to refine the understanding of PTCs. Further studies 

should be conducted to optimise the PK/PD description of rocuronium and PTCs, aiming to 

develop a TCI system for profound NMB. 

Our last model is another example of the application of popPK/PD to perioperative 

management. In this work, we developed a semi-mechanistic model to characterise the time 

course of Hb concentrations in the early perioperative period. This model is the result of the low 

reliability of the individual measurements of Hb after surgery –as a consequence of the so-called 

haemoglobin drift– to guide transfusion decisions. We believe that a predictive tool reproducing 

the full profile of Hb concentrations represents a more comprehensive approach to support 

decision criteria in this scenario. 



Discussion 
 

88 

In the pursuit of a model that could be reproducible, only variables routinely collected in surgical 

procedures or easily measured were used to develop our model. Other parameters such as the 

individual blood volumes were derived from the patient’s characteristics using standard 

formulas. Although these approaches may complicate the physiological interpretation of our 

results, we prioritised model applicability over obtaining a deeper understanding of the 

biological processes involved. This is not to say that biology was disregarded during model 

building. We ensured that all processes and derived parameters were coherent with the known 

physiology of fluid dynamics. For example, we confirmed that the blood volumes predicted by 

the ICSH formula were similar to those estimated by the model, allowing us to reduce the 

number of parameters to be estimated. Similarly, some assumptions were made to simplify the 

modelling process. In the first place, because cumulative volumes and not infusion rates are 

recoded in daily clinical practice, we assumed a constant rate of infusion within the 

measurement periods. Secondly, blood was treated as a homogenous fluid, assuming that the 

fraction of fluid within the RBC can directly distribute to peripheral tissue or be eliminated via 

urine. The haematocrit could have been used to differentiate between plasma and RBC fluid, 

but at the expense of adding complexity to the model, and this approach was disregarded. 

Unlike traditional PK modelling, water is the main component of both fluid therapy and blood. 

For this reason, our modelling approach is closer to volume kinetics140, with which we share 

common elements but differentiate in the objective. The novelty of our model lies in our focus 

to describe Hb, not use it to characterise fluid dynamics. This approach conditioned some of the 

characteristics of the study protocol. Firstly, only laparoscopic surgeries, which allow for reliable 

measurement of blood loss (especially of haemoglobin mass loss)89, were included in the study. 

The extrapolation of our model to non-laparoscopic surgeries would require the use of validated 

methods to quantify haemoglobin mass loss141,142. Secondly, due to the clinical and not 

experimental setup, our study was not likely to replicate the perturbations in fluid dynamics of 

experimental studies143. For example, fluid infusion was not guided by protocol and was based 
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on the clinician’s criteria. Although a significant range of fluid volumes was expected, the 

relatively low infusion rates are not likely to expand the peripheral volume144, which could not 

be appropriately estimated without the use of Bayesian priors. Similarly, the sparse sampling in 

our study is probably linked to the fact that we did not find differences in the kinetics of dextrose 

and crystalloid solutions. We hypothesize that differences in the experimental design and the 

simultaneous characterization of both fluid infusions are the reasons why our estimate for the 

peripheral volume is larger than total body water and the 6.9 L reported for 0.9% saline and 5.4 

L for 5% dextrose143,144 —although peripheral volumes do not necessarily represent an actual 

physiological volume and could be the result of an assortment of processes, such as cell uptake. 

Covariate evaluation showed a significant effect of age and the type of surgical procedure on 

total fluid elimination and the fraction of fluid eliminated via urine, respectively. In the case of 

age, despite the statistical significance, a limited clinical impact was found. An association 

between the type of surgical procedure and haemoglobin drift has been described, being of 

greater magnitude in those surgeries with high intravenous fluid and blood transfusion 

requirements145. In this study, we incorporated these elements into the model, and additionally 

found a significant inhibition of total fluid elimination after surgery.  

Part of this inhibition could be attributed to the reduced diuresis caused by the anaesthesia, 

hypotension, haemorrhage, and hypovolemia146, which has been described to last from 4 hours 

to at least 24 hours after the surgical procedure ended147,148. The inhibition of urinary fluid 

elimination has been shown to correlate with the degree of hypovolemia in healthy 

volunteers149 and animal models150. In our study, blood loss did not correlate with fluid 

elimination parameters. However, it must be taken into account that in sheep, a loss of 15% of 

the blood volume already inhibits urinary output by a half150, a percentage that was clearly 

exceeded in our study (10% to 55% of total blood volume assuming a standard blood volume of 

5 L). Interestingly, in both the sheep model from Norberg et al.150 and our clinical study, the 
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impairment of urinary fluid elimination persisted even if fluid balance was restored, suggesting 

that mechanisms other than the decrease in blood pressure and hypovolemia play a role in this 

phenomenon. Unfortunately, the inhibition of the urinary output exceeded the length of our 

study and therefore, the recovery of renal elimination could not be characterized. This fact 

represents a limitation for the application of our model outside the study period.  

To our knowledge, the inhibition of non-urinary fluid elimination after surgery has not been 

previously described. We hypothesize that this finding could be a consequence of increased fluid 

losses during surgery (e.g. sweating, mechanical ventilation), and/or accumulation of fluid in 

areas of the body not equilibrating with plasma (the so-called third space)151, which would result 

in an apparent inhibition of fluid elimination after the surgical procedure. As a result, large 

differences between pre- and post-surgery non-urinary elimination would be associated with 

the formation of oedema, although this data was not available to corroborate our hypothesis. 

The observed increase in fluid elimination with age could also point out a higher risk of fluid 

accumulation in older patients. Dedicated studies in which the system is perturbed in multiple 

ways (fluid administration and blood losses) would be required to evaluate the individual 

contribution of each of these processes. 

In our study, urine does not represent the main route of fluid elimination, a situation that has 

already been described in surgical patients during general anaesthesia151 and that together with 

the aforementioned inhibition of the diuretic response, reinforces the conclusion that 

monitoring urine is an ineffective method to guide fluid management during surgery140. Our 

covariate analysis suggests that surgeries significantly affecting the renal system involve a larger 

reduction of diuresis, while gynaecological surgeries are associated with the opposite effect. The 

fact that the type of surgical procedure only affected the proportion of fluid eliminated via urine 

implies that certain surgeries (those showing a lower proportion of urinary elimination, RF in our 

model) are associated with larger non-urinary fluid elimination. This finding could be a 
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consequence of the stress response driven by the surgical procedure, which could cause 

pathologic fluid distribution and subsequent tissue edema152,153. In our study, an increase in 

inflammatory markers (C-reactive protein, monocytes and neutrophils) was observed after 

surgery. However, no correlation between these markers and model parameters could be 

established, likely due to the sparse data, and thus further investigation is required. 

This work integrates a semi-mechanistic model with routine clinical data to predict Hb in the 

perioperative settings. Predictive models represent an opportunity to support decision-making 

in clinical scenarios and individualize treatment administration154. In the case of RBC 

transfusions, our model can be used to identify patients at risk of postoperative anaemia, guide 

fluid administration by detecting haemoconcentration and haemodilution states, and define the 

preoperative Hb target to avoid an RBC transfusion (assuming a predictable amount of bleeding). 

Extrapolation to surgical procedures not included in this study would require previous validation 

of the model, particularly of parameters related to fluid elimination, which may change for each 

type of surgery. We believe that model-based approaches represent a non-invasive and cost-

effective method to guide RBC transfusion, supporting the decision-making in this complicated 

scenario. 

A wide range of models spanning from empirical to semi-mechanistic has been developed in this 

thesis. In all of these models, parameters were estimated with precision, as supported by the 

low RSE and bootstrap results. Similarly, the developed models were extensively evaluated, and 

in the case of pupil, movement and Hb, validated using a set of data not used not for model 

development. We ensured that the maximum standards for popPK/PD analysis were applied 

throughout the modelling process. For this reason, and despite the complexity of clinical 

research, we think that these models represent a suitable framework to answer our research 

hypothesis and draw valid conclusions from our results. 
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Either because of the lack of awareness or expertise, the use of pharmacometrics is uncommon 

in the clinic. This thesis provides concrete examples of the potential applicability of 

pharmacometric techniques in a wide range of perioperative scenarios, some of them as unusual 

in popPK/PD as blood transfusion. The use of the population approach provides 

pharmacometrics with a distinct advantage to characterise the wide range of variability 

observed in clinical settings. This feature is a key step towards individualising dose 

administration and ultimately, with the integration of the “omics” data, to precision medicine.  

We foresee a future where collaborations between scientists, quantitative disciplines (among 

those pharmacometricians) and clinicians would be the norm and not the exception, resulting 

in a multidisciplinary approach to disease management.
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The primary aim of this thesis was to develop and apply pharmacometric models in the areas of 

pain and perioperative management, expanding the application of these techniques in clinical 

practice. The main findings from this work are summarised in the following conclusions: 

1. Two pharmacodynamic models relating painful stimulation with pupillary and movement 

reflexes in the presence and absence of opioids were developed. A similar temporal as well 

as pharmacological response to tetanic stimulation was found for both reflexes, pointing 

out to a common physiological mechanism of control. 

2. The developed models were used to propose dose recommendations minimising the 

percentage of patients that experience movement during the surgical procedures. 

Altogether, this work constitutes a semi-mechanistic framework to evaluate the use of 

pupillary reflex as a biomarker for pain during surgical procedures, providing anaesthetists 

with a quantitative tool to individualise drug administration. 

3. A population PK/PD model to characterise the effects of rocuronium in post-tetanic counts 

(PTC) during profound neuromuscular blockade was built. This work evaluated the 

performance of two published PK models and found an adequate and equivalent 

performance for assessing the PTC effect, modelled as an order categorical variable. 

4. This study serves as a basis for optimising rocuronium administration in surgical procedures, 

in particular when a deep level of neuromuscular blockade is required. Further confirmatory 

studies are necessary to improve the understanding of the concentration/effect relationship 

for low PTC counts, increasing the resolution in which deep neuromuscular blockade can be 

characterised. 

5. Clinical variables collected in everyday surgical procedures were used to develop and 

validate a quantitative model to describe haemoglobin concentrations in the early 

perioperative period. This model was subsequently used to evaluate the risk of requiring a 
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blood transfusion in different clinical scenarios and provide recommendations on the 

administration of blood and fluid therapy. 

6. In these patients, urinary fluid elimination represented only a quarter of the total fluid 

elimination and was found to be inhibited after surgery in a time dependent-manner, 

indicating that monitoring urine is an ineffective method to guide fluid administration in 

perioperative settings.  

7. In summary, this thesis used pharmacometrics techniques to develop a toolbox of 

quantitative methods in the fields of pain and perioperative management. We expect that 

this work constitutes a step towards the use of model-informed precision dosing in clinical 

practice. 
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El objetivo principal de la presente tesis doctoral ha sido desarrollar modelos de farmacometría 

en las áreas del dolor y el manejo perioperatorio, expandiendo la aplicación de estas técnicas en 

la práctica clínica. Los principales resultados de este trabajo se pueden sintetizar en las 

siguientes conclusiones: 

1. Se han desarrollado dos modelos de farmacodinamia que relacionan, respectivamente, la 

estimulación dolorosa con el reflejo pupilar y el movimiento. Así, se ha identificado una 

respuesta temporal y farmacológica similar entre ambas variables, sugiriendo que ambas 

comparten un mecanismo fisiológico de control común.  

2. Dichos modelos han sido utilizados para recomendar pautas de dosificación que minimicen 

el porcentaje de pacientes que experimentan movimiento durante los procedimientos 

quirúrgicos. En su conjunto, el presente trabajo constituye una aproximación 

semicuantitativa para evaluar el uso del reflejo pupilar como un biomarcador del dolor 

durante la cirugía, proporcionando una herramienta cuantitativa para individualizar la 

administración de fármacos.  

3. Siguiendo esta línea de investigación, se ha desarrollado un modelo de 

farmacocinética/farmacodinamia poblacional para caracterizar los efectos del rocuronio 

en el recuento postetánico. En este trabajo se evaluaron dos modelos de farmacocinética 

publicados en la literatura científica, demostrando que ambos modelos poseen una 

capacidad adecuada y muy semejante para describir el recuento postetánico, que fue 

modelado como una variable categórica ordenada. 

4. Este estudio sirve de base para optimizar la administración de rocuronio en procedimientos 

quirúrgicos, especialmente para aquellos que requieran un elevado nivel de bloqueo 

neuromuscular. No obstante, nuevos estudios son necesarios para mejorar la comprensión 

de la relación contracción/efecto para bajos recuentos postetánicos, aumentando así la 

precisión para caracterizar el bloqueo neuromuscular profundo. 
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5. Se ha desarrollado y validado un modelo cuantitativo para describir las concentraciones de 

hemoglobina en el periodo perioperatorio usando variables recogidas de forma rutinaria 

durante los procedimientos quirúrgicos. Posteriormente, dicho modelo fue utilizado para 

evaluar la necesidad de recibir una transfusión en diferentes escenarios clínicos y 

proporcionar recomendaciones sobre la administración de terapia sanguínea y de fluidos. 

6. En estos pacientes, la eliminación de fluido por vía urinaria solo representó un cuarto del 

volumen total eliminado y se constató que este último queda inhibido de forma tiempo-

dependiente después de la cirugía. Estos hechos indican que la monitorización de la orina 

es un método ineficaz para guiar la administración de fluido en el periodo perioperatorio. 

7. Finalmente, cabe destacar que en la presente tesis doctoral se ha utilizado la 

farmacometría para desarrollar un conjunto de herramientas cuantitativas en los campos 

del dolor y el manejo perioperatorio. De acuerdo con lo anterior, creemos que este trabajo 

representa una importante contribución al desarrollo de la dosificación de precisión guiada 

por modelos en la práctica clínica.  
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Supplementary material 1 

;; 1. Based on:  

;; 2. Description: PRD model 

;; x1. Author: user 

 

$PROB Pupil 

 

$INPUT ID Time FLAG DVN DV MDV STIM CpREMI CpPROPO EVID NOcc_REMI NOcc_Stimul NT 
Post_surgery PSDV 

 

$DATA Example_NM_dataset.csv IGNORE=@ IGNORE=(FLAG.GT.1) IGNORE=(NOcc_REMI.GT.3) 

; FLAG=1: Pupil diameter 

; FLAG=2: Movement 

 

$SUBROUTINES ADVAN13  TOL=9 

 

$MODEL 

COMP= (BP) ;Biophase comparment 

COMP= (SP) ;Nact comparment 

COMP= (DP) ;Pupil diameter 

 

$PK 

SLOPE = THETA(2) * EXP(ETA(2)) 

C50      = THETA(3) * EXP(ETA(3)) 

Limit    = THETA(4) * EXP(ETA(4)) 

KE0      = THETA(5) * EXP(ETA(5)) 

KS       = THETA(6) * EXP(ETA(6)) 

KPD     = THETA(7) * EXP(ETA(7)) 

PDiam0  = THETA(8) * EXP(ETA(8)) 

KPS        = PDiam0*KPD 

ES       = THETA(9) * EXP(ETA(9)) 
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A_0(1)=0 

A_0(2)=1 

A_0(3)=PDiam0 

 

$DES 

LM=0 

DELTA=A(3)-Limit 

IF (DELTA.GT.0) LM=((A(3)-Limit)/A(3)) 

 

DADT(1)=KE0*(CpREMI-A(1)) 

DADT(2)=KS*(1+((ES*STIM)/(1+(CpREMI/C50))))-KS*A(2)*(1+(LM*A(1)*SLOPE)) 

DADT(3)=KPS*A(2)-KPD*A(3) 

 

$ERROR 

BP=A(1) 

NACT=A(2) 

DiamPupil=A(3) 

IPRED= LOG(DiamPupil) 

W = THETA(1)* EXP(ETA(1)) 

Y = IPRED + W*EPS(1) 

IRES = DV-IPRED 

IWRES = IRES/W 

 

$THETA 

(0, 0.09)        ; Add.RE   -Additive error (log data) 

(0, 1.35)        ; SLOPE    -Remifentanil SLOPE 

(0, 0.9)           ; C50      -Remifentanil C50 

(0, 1.6)           ; Limit    -Pupil diameter at which remifentanil effects on KS cease 

(0, 0.0025)    ; KE0      -Equilibration constant effect site 

(0, 0.06)        ; KS      -Nact synthesis constant 

(0, 0.48)        ; KDP      -Pupil degradation constant 

(0, 3.6)          ; PDiam0    -Baseline pupil 

(0, 1.4)          ; ES       -Electric stimulus perception 
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$OMEGA 

0 FIX            ; IIV RE 

0.35             ; IIV SLOPE 

0 FIX            ; IIV C50 

0 FIX            ; IIV Limit 

0 FIX            ; IIV Ke0 

0 FIX            ; IIV KS 

0.15             ; IIV KDP 

 

$OMEGA BLOCK(2) 

0.1  ; IIV PDiam0 

-0.07  0.25          ; IIV ES 

 

$SIGMA 

1 FIX            ; ERROR 

 

$ESTIMATION MAXEVAL=9999 NOABORT METHOD=COND INTERACTION MSFO=msfb5 PRINT=5 
SIGL=9 

$COV PRINT=E 

$TABLE ID TIME NT IPRED CPRED STIM IWRES CWRES CpPROPO CpREMI BP NACT EVID 
NOcc_REMI NOcc_Stimul Post_surgery ONEHEADER NOPRINT FILE=sdtab_SM _1 

$TABLE ID ETAS(1:LAST) KS PDiam0 KPS KPD C50 SLOPE ES Limit Ke0 NOAPPEND ONEHEADER 
NOPRINT FILE=patab_SM_1 
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Supplementary material 2 

;; 1. Based on: 

;; 2. Description: Movement model 

;; x1. Author: user 

 

$PROB Movement 

 

$INPUT ID Time FLAG DVN DV MDV STIM CpREMI CpPROPO EVID NOcc_REMI NOcc_Stimul NT 
Post_surgery PDV 

 

$DATA Example_NM_dataset.csv IGNORE=@ IGNORE=(FLAG.EQ.1) IGNORE=(NOcc_REMI.GT.3) 

 

; FLAG=1: Pupil diameter 

; FLAG=2: Movement 

 

$SUBROUTINES ADVAN13  TOL=9 

 

$MODEL 

COMP= (SP)  ;Nact comparment 

 

$PK 

KS = THETA(7) 

ES = THETA(8) 

NOCIP0=1 

A_0(1)=NOCIP0 

C50 = THETA(9) 

 

$DES 

DADT(1)=KS*(1+((ES*STIM)/(1+(CpREMI/C50))))-KS*A(1) 

 

$ERROR 

NACT=A(1) 
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NOCIP=A(1)-NOCIP0 

 

B01=THETA(1) 

B02=B01+THETA(2) 

B03=B02+THETA(3) 

 

LGT01=B01 + NOCIP + ETA(1) 

LGT02=B02 + NOCIP + ETA(1) 

LGT03=B03 + NOCIP + ETA(1) 

 

PLGT01 = EXP(LGT01)/(1+EXP(LGT01)) 

PLGT02 = EXP(LGT02)/(1+EXP(LGT02)) 

PLGT03 = EXP(LGT03)/(1+EXP(LGT03)) 

 

P00 = 1-PLGT01 

P01 = PLGT01-PLGT02 

P02 = PLGT02-PLGT03 

P03 = PLGT03 

 

B11=THETA(4) 

LGT11=B11 + NOCIP + ETA(1) 

PLGT11 = EXP(LGT11)/(1+EXP(LGT11)) 

 

P10 = 1-PLGT11 

P11 = PLGT11 

 

B22=THETA(5) 

LGT22=B22 + NOCIP + ETA(1) 

PLGT22 = EXP(LGT22)/(1+EXP(LGT22)) 

 

P20 = 1-PLGT22 

P22 = PLGT22 
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B33=THETA(6) 

 

LGT33=B33 + NOCIP + ETA(1) 

 

PLGT33 = EXP(LGT33)/(1+EXP(LGT33)) 

 

P30 = 1-PLGT33 

P33 = PLGT33 

 

;===================================== 

 

IF(PDV.EQ.0.AND.DV.EQ.0) Y=P00 

IF(PDV.EQ.0.AND.DV.EQ.1) Y=P01 

IF(PDV.EQ.0.AND.DV.EQ.2) Y=P02 

IF(PDV.EQ.0.AND.DV.EQ.3) Y=P03 

 

IF(PDV.EQ.1.AND.DV.EQ.0) Y=P10 

IF(PDV.EQ.1.AND.DV.EQ.1) Y=P11 

 

IF(PDV.EQ.2.AND.DV.EQ.0) Y=P20 

IF(PDV.EQ.2.AND.DV.EQ.2) Y=P22 

 

IF(PDV.EQ.3.AND.DV.EQ.0) Y=P30 

IF(PDV.EQ.3.AND.DV.EQ.3) Y=P33 

 

IPRED=Y 

 

$THETA 

(-INF,-5.0)              ; P01 

(-INF,-0.7,0)           ; P02 

(-INF,-1.0,0)           ; P03 

 

(-INF,2.0)                ; P11 
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(-INF,2.2)              ; P22 

(-INF,-2.3)             ; P33 

 

$THETA 

(0, 0.45)               ; KS  -Nact synthesis constant 

(0, 6.15)               ; ES  -Electric stimulus perception 

(0, 0.65)               ; C50 -Remifentanil C50 

 

$OMEGA 

0 FIX                    ; IIV Logit 

 

$ESTIMATION MAXEVAL=9999 NOABORT METHOD=1 LAPLACIAN LIKE NUMERICAL SLOW 
MSFO=msfb5 PRINT=5 SIGL=9 

$COV PRINT=E 

$TABLE ID TIME NT FLAG IPRED CPRED STIM CpPROPO CpREMI NACT NOCIP EVID NOcc_REMI 
NOcc_Stimul Post_surgery ONEHEADER NOPRINT FILE=sdtab_SM_2 

$TABLE ID ETAS(1:LAST) KS ES C50 P01 P02 P03 P11 P22 P33 NOAPPEND ONEHEADER NOPRINT 
FILE=patab_SM _2 
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Supplementary material 3 

;; 1. Based on: 

;; 2. Description:  Saldien and De Haes PK models, PTC model 

;; x1. Author: user 

$PROBLEM PTC 

$INPUT ID TIME PTC DV AMT RATE CMT EVID MDV VOL AVOL NN AAVOL CE_SW CE_HW AGE 
WEIGHT HEIGHT GENDER=DROP BMI FFM 

$DATA rocuroniumPTCdataset.csv  IGNORE=@      

$SUBROUTINE ADVAN13 TOL=9 

 

; CMT=1: Central 

; CMT=2: Peripheral Shallow 

; CMT=3: Peripheral Deep 

; CMT=4: PTC 

; CMT=5: Effect compartment 

 

$MODEL 

COMP=(CENTR) 

COMP=(PERIPHERAL_S) 

COMP=(PERIPHERAL_D) 

COMP=(PTC DEFOBS) 

COMP=(CE) 

 

$PK 

V1  = 35.6  * WEIGHT    ;Saldien PK Model 

V2  = 72    * WEIGHT 

V3  = 122   * WEIGHT 

K10 = 0.126 /60 

K12 = 0.209 /60 

K13 = 0.050 /60 

K21 = 0.163 /60 

K31 = 0.015 /60 
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;KE0 = 0.168 /60 

 

; V1  = 42   * WEIGHT    ;De Haes PK Model 

; V2  = 40   * WEIGHT 

; V3  = 69   * WEIGHT 

; K10 = 0.076 /60 

; K12 = 0.124 /60 

; K13 = 0.021 /60 

; K21 = 0.130 /60 

; K31 = 0.013 /60 

 

KE0=THETA(1) * EXP(ETA(1)) 

 

 A_0(1)=0 

 A_0(2)=0 

 A_0(3)=0 

 A_0(4)=0 

 A_0(5)=0 

 

$DES 

DADT(1)= -K10*A(1) -K12*A(1) +K21*A(2) -K13*A(1) +K31*A(3)    ;CC en mg/ml 

DADT(2)=            K12*A(1) -K21*A(2) 

DADT(3)=                                K13*A(1) -K31*A(3) 

DADT(4)= 0 

DADT(5)= KE0*((A(1)/V1)-A(5)) 

 

$ERROR 

CC   = A(1)/V1 

CP_S = A(2)/V2 

CP_D = A(3)/V3 

CE   = A(5)*1000              ; CC en ug/ml 
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;---------------------PD model-------------------------- 

CE50_1= THETA(2)          * EXP(ETA(2)) 

CE50_2= CE50_1 + THETA(3) * EXP(ETA(3)) 

CE50_3= CE50_2 + THETA(4) * EXP(ETA(4)) 

 

GAM=THETA(5)* EXP(ETA(5)) 

 

P1=CE**GAM/(CE50_1**GAM+CE**GAM) ; P(Y) >= 1 

P2=CE**GAM/(CE50_2**GAM+CE**GAM) ; P(Y) >= 2 

P3=CE**GAM/(CE50_3**GAM+CE**GAM) ; P(Y) >= 3 

 

 ;---------------------Probability-------------------------- 

 

 PA=1-P1        ; P(m=0 == PTC>=6) 

 PB=P1-P2       ; P(m=1 == PTC =4 or 5) 

 PC=P2-P3       ; P(m=2 == PTC =2 or 3) 

 PD=P3          ; P(m=3 == PTC =0 or 1) 

 

;---------------------Set likelihood-------------------------- 

 

 IF(DV.EQ.0) Y=PA 

 IF(DV.EQ.1) Y=PB 

 IF(DV.EQ.2) Y=PC 

 IF(DV.EQ.3) Y=PD 

 

IPRED=Y 

 

$THETA 

 (0, 0.0022)   ; Ke0 

 (0, 0.65)        ; IC50_1 

 (0, 0.17)        ; IC50_2 

 (0, 0.74)        ; IC50_3 

 (0, 3.7)          ; Gamma 
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$OMEGA 

 0 FIX             ; IIV KE0 

 0.15              ; IIV m=1 

 0 FIX             ; IIV m=2 

 0.2                ; IIV m=3 

 0 FIX             ; IIV Gamma 

 

$ESTIMATION MAXEVAL=9999 NOABORT METHOD=1 LAPLACIAN LIKE NUMERICAL SLOW 
MSFO=msfb5 PRINT=5 SIGL=9 

$COV PRINT=E 

$TABLE ID TIME EVID CC CP_S CP_D CE CE_SW CE_HW CE ONEHEADER NOPRINT FILE=sdtab_SM 
_3 

$TABLE ID ETAS(1:LAST) NOAPPEND ONEHEADER NOPRINT FILE=patab_SM _3 
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Supplementary material 4 

;; 1. Based on:  

;; 2. Description: Hb model 

;; x1. Author: user 

 

$PROBLEM 

 

$INPUT  ID TIME DVN DV HCT DVID AMT SID SFLAG=DROP RATIOGS DINF RATE CMT EVID MDV 
OP VLOST TIMEOP ALOST ALOST2 BRATE VC HB0 HBPS VURIPRE VSALPRE SEX AGE WGT HGT 
BMI HBLOSS VLOSS PCR MON MON_C NEU NEU_C SURG REM STUDY 

 

$DATA Haemoglobin_NM_dataset.csv  IGNORE=@; 

 

; CMT=1: Central 

; CMT=2: Peripheral 

; CMT=3: Urine 

 

$SUBROUTINE ADVAN13 TOL=9 

 

$MODEL 

COMP=(CENTR) 

COMP=(PERIPHERAL) 

COMP=(URINE) 

 

$PK 

;;; FRSURG-DEFINITION START 

FRSURG = 1 ; robotic prostatectomy, partial nephrectomy and myomectomy (reference 
category) 

IF(SURG.EQ.3.0000E+00) FRSURG = ( 1 + THETA(12)) ; radical nephrectomy 

IF(SURG.EQ.4.0000E+00) FRSURG = ( 1 + THETA(12)) ; nephroureterectomy; 

IF(SURG.EQ.5.0000E+00) FRSURG = ( 1 + THETA(13)) ; hysterectomy  

IF(SURG.EQ.6.0000E+00) FRSURG = ( 1 + THETA(13)) ; hysterectomy with adnexectomy 

IF(SURG.EQ.8.0000E+00) FRSURG = ( 1 + THETA(14)) ; endometriosis. 
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;;; FRSURG-DEFINITION END 

 

;;; FR-RELATION START 

FRCOV=FRSURG 

;;; FR-RELATION END 

 

;;; CLAGE-DEFINITION START 

CLAGE = ( 1 + THETA(11)*(AGE - 56.50)) 

;;; CLAGE-DEFINITION END 

 

;;; CL-RELATION START 

CLCOV=CLAGE 

;;; CL-RELATION END 

 

VP    = THETA(1) 

TVCL  = THETA(2) 

 

TVCL = CLCOV*TVCL 

CL    = TVCL * EXP(ETA(2)) 

TVQ   = THETA(5) 

Q     = TVQ * EXP(ETA(5)) 

V0    = VC + THETA(6)* EXP(ETA(1)) 

TVFR  = THETA(8) 

 

TVFR = FRCOV*TVFR 

PHU   = LOG((TVFR)/(1-TVFR)) 

FR    = EXP(PHU+ETA(6))/(1+EXP(PHU+ETA(6))) 

 

T50   = THETA(7)* EXP(ETA(7)) 

GAMMA = THETA(9) 

IMAX  = THETA(10) 
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 A_0(1)= V0 

 A_0(2)= VP 

 A_0(3)= 0 

 

CLT    = CL*(1-IMAX*((TIME**GAMMA)/((TIME**GAMMA) + (T50**GAMMA))) ) 

 

K10    = CLT/V0 

K12    = Q/V0 

K21    = Q/VP 

K13    = K10*FR 

 

$DES 

DADT(1)= -K10*A(1) -BRATE -K12*A(1) +K21*A(2) 

DADT(2)=                              K12*A(1) -K21*A(2) 

DADT(3)=  K13*A(1) 

 

$ERROR 

VCEN= A(1) 

VPER= A(2) 

VORI= A(3) 

 

AHM = HB0*VC - ALOST 

VOLUME=A(1) 

 

IF(CMT.EQ.1) THEN 

IPRED= LOG(AHM/VOLUME + 0.000001) 

W = THETA(3) * EXP(ETA(3)) 

ENDIF 

 

IF(CMT.EQ.3) THEN 

IPRED = LOG(A(3)+ 0.000001) 

W = THETA(4) * EXP(ETA(4)) 

ENDIF 
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Y = IPRED + W*EPS(1) 

IRES = DV-IPRED 

IWRES = IRES/W 

 

$THETA 

(0, 40.1)       ; VP 

(0, 0.222)       ; CL 

(0, 0.017)     ; Add.RE Hb 

(0, 0.35)        ; RE Urine 

(0, 4.29)        ; Q 

(0) FIX         ; VC 

(0, 9.5)         ; T50 

(0, 0.21, 1)     ; FR 

9 FIX            ; GAMMA 

(0, 0.5, 1)      ; IMAX 

 

$THETA 

(-0.031,0.006,0.035) ; CLAGE1 

 

$THETA 

 (-1,-0.5,5)        ; FRSURG34 = radical nephrectomy and nephroureterectomy; 

 (-1,0.35,5)         ; FRSURG56 = hysterectomy and hysterectomy with adnexectomy 

 (-1,0.79,5)         ; FRSURG8   = endometriosis. 

 

$OMEGA 

 0 FIX           ; IIV VC 

 0.05            ; IIV CL 

 0 FIX           ; IIV RE Hb 

 0 FIX           ; IIV RE Urine 

 0.2            ; IIV Q 

 0.1             ; IIV FR 

 0 FIX           ; IIV T50 
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$SIGMA 

 1 FIX    ; Residual Error 

  

$PRIOR  NWPRI 

$THETAP 

48.1   FIX  ; VP 

 

$THETAPV 

0.0225 FIX  ; VP 

 

$ESTIMATION MAXEVAL=9999 NOABORT METHOD=COND INTERACTION PRINT=5 SIGL=9 

$COV PRINT=E MATRIX=R 

 

$TABLE ID TIME IPRED CWRES IWRES CMT DVID SID EVID MDV OP VCEN VPER VORI AHM VLOST 
ALOST RATIOGS MON ONEHEADER NOPRINT FILE=sdtab_SM _4 

$TABLE ID ETAS(1:LAST) K13 NOAPPEND ONEHEADER NOPRINT FILE=patab_SM _4 

$TABLE ID TIMEOP HBPS VURIPRE VSALPRE AGE WGT HGT BMI HBLOSS VLOSS MON NEU 
NOAPPEND ONEHEADER NOPRINT FILE=cotab_SM _4 

$TABLE ID SEX SURG TIMEOP NOAPPEND ONEHEADER NOPRINT FILE=catab_SM _4
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